Гончаров обломов анализ произведения кратко. Презентация к уроку по литературе на тему: Комплексный анализ романа Гончарова "Обломов". Образы главных героев

В природе существует три класса неорганических химических соединений: соли, гидроксиды и оксиды. Первые являются соединениями атома металла с кислотным остатком, к примеру, СІ-. Вторые подразделяются на кислоты и основания. Молекулы первых из них состоят из катионов Н+ и кислотного остатка, например, SO 4 -. Основания же имеют в своем составе катион металла, к примеру, К+, и анион в виде гидроксильной группы ОН-. А оксиды, в зависимости от своих свойств, делятся на кислотные и основные. О последних мы и расскажем в этой статье.

Определение

Основные оксиды — это вещества, состоящие из двух химических элементов, одним из которых обязательно является оксиген, а вторым — металл. При добавлении воды к веществам этого типа образуются основания.

Химические свойства основных оксидов

Вещества данного класса в первую очередь способны вступать в реакцию с водой, вследствие которой получается основание. Для примера можно привести следующее уравнение: СаО + Н 2 О = Са(ОН) 2 .

Реакции с кислотами

Если основные оксиды смешать с кислотами, можно получить соли и воду. К примеру, если к оксиду калия добавить хлоридную кислоту, получим хлорид калия и воду. Уравнение реакции будет выглядеть таким образом: К 2 О + 2НСІ = 2КСІ + Н 2 О.

Взаимодействие с кислотными оксидами

Такого рода химические реакции приводят к образованию солей. Например, если к оксиду кальция добавить углекислый газ, получим карбонат кальция. Данную реакцию можно выразить в виде следующего уравнения: СаО + СО 2 = СаСО 3 . Подобного рода химическое взаимодействие может произойти только под воздействием высокой температуры.

Амфотерные и основные оксиды

Эти вещества также могут взаимодействовать между собой. Это происходит, потому что первые из них имеют свойства как кислотных, так и основных оксидов. В результате подобных химических взаимодействий образуются сложные соли. Для примера приведем уравнение реакции, которая происходит при смешивании оксида калия (основного) с оксидом алюминия (амфотерным): К 2 О + АІ 2 О 3 = 2КАІО 2 . Полученное при этом вещество называется алюминат калия. Если смешать те же реагенты, но еще и добавить воду, то реакция пройдет следующим образом: К 2 О + АІ 2 О 3 + 4Н 2 О = 2К. Вещество, которое образовалось, называется тетрагидроксоалюминат калия.

Физические свойства

Разнообразные основные оксиды весьма отличаются друг от друга по физическим свойствам, однако все они в основном при нормальных условиях пребывают в твердом агрегатном состоянии, имеют высокую температуру плавления.

Давайте рассмотрим каждое химическое соединение по отдельности. Оксид калия выглядит как твердое вещество светло-желтого цвета. Плавится при температуре +740 градусов по шкале Цельсия. Оксид натрия представляет собой бесцветные кристаллы. Превращаются в жидкость при температуре +1132 градуса. Оксид кальция представлен белыми кристаллами, которые плавятся при +2570 градусах. Диоксид железа выглядит как черный порошок. Принимает жидкое агрегатное состояние при температуре +1377 градусов Цельсия. Оксид магния похож на соединение кальция — это также кристаллы белого цвета. Плавится при +2825 градусах. Оксид лития представляет собой прозрачные кристаллы с температурой плавления +1570 градусов. Данное вещество обладает высокой гигроскопичностью. Оксид бария выглядит так же, как и предыдущее химическое соединения, температура, при которой оно принимает жидкое состояние, чуть выше — +1920 градусов. Оксид ртути — порошок оранжево-красного цвета. При температуре +500 градусов по Цельсию данное химическое вещество разлагается. Оксид хрома — это порошок темно-красной расцветки с такой же температурой плавления, как и у соединения лития. Оксид цезия обладает такой же окраской, как и ртути. Разлагается под воздействием солнечной энергии. Оксид никеля — кристаллы зеленого цвета, превращаются в жидкость при температуре +1682 градуса по шкале Цельсия. Как видите, физические свойства всех веществ данной группы обладают многими общими чертами, хотя и имеют некоторые различия. Оксид купрума (меди) выглядит как кристаллы, обладающие черной окраской. В жидкое агрегатное состояние переходит при температуре +1447 градус по Цельсию.

Как добывают химические вещества этого класса?

Основные оксиды можно получить путем проведения реакции между металлом и кислородом под воздействием высокой температуры. Уравнение такого взаимодействия выглядит следующим образом: 4К + О 2 = 2К 2 О. Второй способ получения химических соединений данного класса — разложение нерастворимого основания. Уравнение можно записать так: Са(ОН) 2 = СаО + Н 2 О. Для осуществления подобного рода реакции необходимы специальные условия в виде высоких температур. Кроме того, основные оксиды также образуются при разложении определенных солей. Примером может служить такое уравнение: СаСО 3 = СаО + СО 2 . Таким образом, образовался еще и кислотный оксид.

Использование основных оксидов

Химические соединения данной группы находят широкое применение в различных отраслях промышленности. Далее рассмотрим использование каждого из них. Оксид алюминия применяют в стоматологии для изготовления зубных протезов. Его также используют при производстве керамики. Оксид кальция является одним из компонентов, участвующих в изготовлении силикатного кирпича. Также он может выступать в роли огнеупорного материала. В пищевой промышленности это добавка Е529. Оксид калия — один из ингредиентов минеральных удобрений для растений, натрия — используется в химической промышленности, в основном при получении гидроксида этого же металла. Оксид магния также применяют в пищевой отрасли, в качестве добавки под номером Е530. Кроме того, он является средством против повышения кислотности желудочного сока. Оксид бария применяется в химических реакциях в качестве катализатора. Диоксид железа используют в производстве чугуна, керамики, красок. Он также является пищевым красителем по номером Е172. Оксид никеля придает стеклу зеленый цвет. Кроме того, он используется в синтезе солей и катализаторов. Оксид лития — один из компонентов в производстве некоторых видов стекла, он повышает прочность материала. Соединение цезия выступает в роли катализатора для проведения некоторых химических реакций. Оксид купрума, как и некоторые другие, находит свое применение в изготовлении специальных видов стекла, а также для получения чистой меди. При производстве красок и эмалей он используется в качестве пигмента, придающего синий цвет.

Вещества данного класса в природе

В естественной среде химические соединения этой группы встречаются в виде минералов. В основном это кислотные оксиды, но среди других также они встречаются. К примеру, соединение алюминия — корунд.

В зависимости от присутствующих в нем примесей, он может быть различного цвета. Среди вариаций на основе АІ 2 О 3 можно выделить рубин, который имеет красную расцветку, и сапфир — минерал, обладающий синей окраской. Это же химическое вещество можно встретить в природе и в виде глинозема. Соединение купрума с оксигеном встречается в природе в виде минерала тенорита.

Заключение

В качестве вывода можно сказать, что все вещества, рассмотренные в данной статье, обладают похожими физическими и аналогичными химическими свойствами. Они находят свое применение во многих отраслях промышленности — от фармацевтической до пищевой.

Кислотные оксиды

Кислотные оксиды (ангидриды) – оксиды, проявляющие кислотные свойства и образующие соответствующие кислородсодержащие кислоты. Образованы типичными неметаллами и некоторыми переходными элементами . Элементы в кислотных оксидах обычно проявляют степень окисления от IV до VII. Они могут взаимодействовать с некоторыми основными и амфотерными оксидами, например: с оксидом кальция CaO, оксидом натрия Na 2 О, оксидом цинка ZnO, либо с оксидом алюминия Al 2 O 3 (амфотерный оксид).

Характерные реакции

Кислотные оксиды могут реагировать с:

SO 3 + H 2 O → H 2 SO 4

2NaOH + CO 2 => Na 2 CO 3 + H 2 O

Fe 2 O 3 + 3CO 2 => Fe 2 (CO 3) 3

Кислотные оксиды могут быть получены из соответствующей кислоты:

H 2 SiO 3 → SiO 2 + H 2 O

Примеры

  • Оксид марганца(VII) Mn 2 O 7 ;
  • Оксид азота NO 2 ;
  • Оксид хлора Cl 2 O 5 , Cl 2 O 3

См. также


Wikimedia Foundation . 2010 .

Смотреть что такое "Кислотные оксиды" в других словарях:

    Оксиды металлов - это соединения металлов с кислородом. Многие из них могут соединяться с одной или несколькими молекулами воды с образованием гидроксидов. Большинство оксидов являются основными, так как их гидроксиды ведут себя как основания. Однако некоторые… … Официальная терминология

    Оксид (окисел, окись) бинарное соединение химического элемента с кислородом в степени окисления −2, в котором сам кислород связан только с менее электроотрицательным элементом. Химический элемент кислород по электроотрицательности второй… … Википедия

    Скульптура, пострадавшая от кислотного дождя Кислотный дождь все виды метеорологических осадков дождь, снег, град, туман, дождь со снегом, при котором наблюдается понижение pH дождевых осадков из за загрязнений воздуха кислотными оксидами (обычно … Википедия

    Географическая энциклопедия

    оксиды - Соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (наприме, Na2О, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды подразделяют на… … Справочник технического переводчика

    ОКСИДЫ - хим. соединения элементов с кислородом (устаревшее название окислы); один из важнейших классов хим. веществ. О. образуются чаще всего при непосредственном окислении простых и сложных веществ. Напр. при окислении углеводородов образуются О.… … Большая политехническая энциклопедия

    - (кислые дожди), характеризуются повышенным содержанием кислот (в основном серной); водородный показатель pH<4,5. Образуются при взаимодействии атмосферной влаги с транспортно промышленными выбросами (главным образом серы диоксид, а также азота … Современная энциклопедия

    Соединения элементов с кислородом. В О. степень окисления атома кислорода Ч2. К О. относятся все соед. элементов с кислородом, кроме содержащих атомы О, соединенные друг с другом (пероксиды, надпероксиды, озо ниды), и соед. фтора с кислородом… … Химическая энциклопедия

    Дождь, снег или дождь со снегом, имеющие повышенную кислотность. Кислотные осадки возникают главным образом из за выбросов оксидов серы и азота в атмосферу при сжигании ископаемого топлива (угля, нефти и природного газа). Растворяясь в… … Энциклопедия Кольера

    Оксиды - соединение химического элемента с кислородом. По химическим свойствам все оксиды делятся на солеобразующие (например, Na2O, MgO, Al2O3, SiO2, P2O5, SO3, Cl2O7) и несолеобразующие (например, СО, N2O, NO, H2O). Солеобразующие оксиды… … Энциклопедический словарь по металлургии


Оксиды – сложные вещества, состоящие из двух элементов, одним из которых является кислород. Оксиды могут быть солеобразующими и несолеобразующими: одним из видов солеобразующих оксидов являются основные оксиды. Чем они отличаются от других видов, и каковы их химические свойства?

Солеобразующие оксиды подразделяются на основные, кислотные и амфотерные оксиды. Если основным оксидам соответствуют основания, то кислотным – кислоты, а амфотерным оксидам соответствуют амфотерные образования. Амфотерными оксидами называют такие соединения, которые в зависимости от условий могут проявлять либо основные, либо кислотные свойства.

Рис. 1. Классификация оксидов.

Физические свойства оксидов очень разнообразны. Они могут быть как газами (CO 2), так и твердыми (Fe 2 O 3) или жидкими веществами (H 2 O).

При этом большинство основных оксидов является твердыми веществами различных цветов.

оксиды, в которых элементы проявляют свою высшую активность называются высшими оксидами. Порядок возрастания кислотных свойств высших оксидов соответствующих элементов в периодах слева направо объясняется постепенным возрастанием положительного заряда ионов этих элементов.

Химические свойства основных оксидов

Основными оксидами называются оксиды, которым соответствуют основания. Например, основным оксидам K 2 O, СaO соответствуют основания KOH, Ca(OH) 2 .

Рис. 2. Основные оксиды и соответствующие им основания.

Основные оксиды образуются типичными металлами, а также металлами переменной валентности в низшей степени окисления (например, CaO, FeO), реагируют с кислотами и кислотными оксидами, образуя при этом соли:

CaO (основной оксид)+CO 2 (кислотный оксид)=СaCO 3 (соль)

FeO (основной оксид)+H 2 SO 4 (кислота)=FeSO 4 (соль)+2H 2 O (вода)

Основные оксиды также взаимодействуют с амфотерными оксидами, в результате чего происходит образование соли, например:

С водой реагируют только оксиды щелочных и щелочно-земельных металлов:

BaO (основной оксид)+H 2 O (вода)=Ba(OH) 2 (основание щелочнозем. металла)

Многие основные оксиды имеют характер восстанавливаться до веществ, состоящих из атомов одного химического элемента:

3CuO+2NH 3 =3Cu+3H 2 O+N 2

При нагревании разлагаются только оксиды ртути и благородных металлов:

Рис. 3. Оксид ртути.

Список основных оксидов:

Название оксида Химическая формула Свойства
Оксид кальция CaO негашенная известь, белое кристаллическое вещество
Оксид магния MgO белое вещество, малорастворимое в воде
Оксид бария BaO бесцветные кристаллы с кубической решеткой
Оксид меди II CuO вещество черного цвета практически нерастворимое в воде
HgO твердое вещество красного или желто-оранжевого цвета
Оксид калия K 2 O бесцветное или бледно-желтое вещество
Оксид натрия Na 2 O вещество, состоящее из бесцветных кристаллов
Оксид лития Li 2 O вещество, состоящее из бесцветных кристаллов, которые имеют строение кубической решетки

Прежде чем начать говорить про химические свойства оксидов, нужно вспомнить о том, что все оксиды делятся на 4 типа, а именно основные, кислотные, амфотерные и несолеобразующие. Для того чтобы определить тип какого-либо оксида, прежде всего нужно понять — оксид металла или неметалла перед вами, а затем воспользоваться алгоритмом (его надо выучить!), представленным в следующей таблице:

Оксид неметалла Оксид металла
1) Степень окисления неметалла +1 или +2
Вывод: оксид несолеобразующий
Исключение: Cl 2 O не относится к несолеобразующим оксидам
1) Степень окисления металла +1 или +2
Вывод: оксид металла — основный
Исключение: BeO, ZnO и PbO не относятся к основным оксидам
2) Степень окисления больше либо равна +3
Вывод: оксид кислотный
Исключение: Cl 2 O относится к кислотным оксидам, несмотря на степень окисления хлора +1
2) Степень окисления металла +3 или +4
Вывод: оксид амфотерный
Исключение: BeO, ZnO и PbO амфотерны, несмотря на степень окисления +2 у металлов
3) Степень окисления металла +5, +6, +7
Вывод: оксид кислотный

Помимо типов оксидов, указанных выше, введем также еще два подтипа основных оксидов, исходя из их химической активности, а именно активные основные оксиды и малоактивные основные оксиды.

  • К активным основным оксидам отнесем оксиды щелочных и щелочноземельных металлов (все элементы IA и IIA групп, кроме водорода H, бериллия Be и магния Mg). Например, Na 2 O, CaO, Rb 2 O, SrO и т.д.
  • К малоактивным основным оксидам отнесем все основные оксиды, которые не попали в список активных основных оксидов . Например, FeO, CuO, CrO и т.д.

Логично предположить, что активные основные оксиды часто вступают в те реакции, в которые не вступают малоактивные.
Следует отметить, что несмотря на то что фактически вода является оксидом неметалла (H 2 O), обычно ее свойства рассматривают в отрыве от свойств иных оксидов. Обусловлено это ее специфически огромным распространением в окружающем нас мире, в связи с чем в большинстве случаев вода является не реагентом, а средой, в которой может осуществляться бесчисленное множество химических реакций. Однако нередко она принимает и непосредственное участие в различных превращениях, в частности, некоторые группы оксидов с ней реагируют.

Какие оксиды реагируют с водой?

Из всех оксидов с водой реагируют только:
1) все активные основные оксиды (оксиды ЩМ и ЩЗМ);
2) все кислотные оксиды, кроме диоксида кремния (SiO 2);

т.е. из вышесказанного следует, что с водой точно не реагируют :
1) все малоактивные основные оксиды;
2) все амфотерные оксиды;
3) несолеобразующие оксиды (NO, N 2 O, CO, SiO).

Способность определить то, какие оксиды могут реагировать с водой даже без умения писать соответствующие уравнения реакций, уже позволяет получить баллы за некоторые вопросы тестовой части ЕГЭ.

Теперь давайте разберемся, как же все-таки те или иные оксиды реагируют с водой, т.е. научимся писать соответствующие уравнения реакций.

Активные основные оксиды , реагируя с водой, образуют соответствующие им гидроксиды. Напомним, что соответствующим оксиду металла является такой гидроксид, который содержит металл в той же степени окисления, что и оксид. Так, например, при реакции с водой активных основных оксидов K +1 2 O и Ba +2 O образуются соответствующие им гидроксиды K +1 OH и Ba +2 (OH) 2:

K 2 O + H 2 O = 2KOH – гидроксид калия

BaO + H 2 O = Ba(OH) 2 – гидроксид бария

Все гидроксиды, соответствующие активным основным оксидам (оксидам ЩМ и ЩЗМ), относятся к щелочам. Щелочами называют все хорошо растворимые в воде гидроксиды металлов, а также малорастворимый гидроксид кальция Ca(OH) 2 (как исключение).

Взаимодействие кислотных оксидов с водой так же, как и реакция активных основных оксидов с водой, приводит к образованию соответствующих гидроксидов. Только в случае кислотных оксидов им соответствуют не основные, а кислотные гидроксиды, чаще называемые кислородсодержащими кислотами . Напомним, что соответствующей кислотному оксиду является такая кислородсодержащая кислота, которая содержит кислотообразующий элемент в той же степени окисления, что и в оксиде.

Таким образом, если мы, например, хотим записать уравнение взаимодействия кислотного оксида SO 3 с водой, прежде всего мы должны вспомнить основные, изучаемые в рамках школьной программы, серосодержащие кислоты. Таковыми являются сероводородная H 2 S, сернистая H 2 SO 3 и серная H 2 SO 4 кислоты. Cероводородная кислота H 2 S, как легко заметить, не является кислородсодержащей, поэтому ее образование при взаимодействии SO 3 с водой можно сразу исключить. Из кислот H 2 SO 3 и H 2 SO 4 серу в степени окисления +6, как в оксиде SO 3 , содержит только серная кислота H 2 SO 4 . Поэтому именно она и будет образовываться в реакции SO 3 с водой:

H 2 O + SO 3 = H 2 SO 4

Аналогично оксид N 2 O 5 , содержащий азот в степени окисления +5, реагируя с водой, образует азотную кислоту HNO 3 , но ни в коем случае не азотистую HNO 2 , поскольку в азотной кислоте степень окисления азота, как и в N 2 O 5 , равна +5, а в азотистой — +3:

N +5 2 O 5 + H 2 O = 2HN +5 O 3

Взаимодействие оксидов друг с другом

Прежде всего нужно четко усвоить тот факт, что среди солеобразующих оксидов (кислотных, основных, амфотерных) практически никогда не протекают реакции между оксидами одного класса, т.е. в подавляющем большинстве случаев невозможно взаимодействие:

1) основный оксид + основный оксид ≠

2) кислотный оксид + кислотный оксид ≠

3) амфотерный оксид + амфотерный оксид ≠

В то время, как практически всегда возможно взаимодействие между оксидами, относящимися к разным типам, т.е. практически всегда протекают реакции между:

1) основным оксидом и кислотным оксидом;

2) амфотерным оксидом и кислотным оксидом;

3) амфотерным оксидом и основным оксидом.

В результате всех таких взаимодействий всегда продуктом является средняя (нормальная) соль.

Рассмотрим все указанные пары взаимодействий более детально.

В результате взаимодействия:

Me x O y + кислотный оксид, где Me x O y – оксид металла (основный или амфотерный)

образуется соль, состоящая из катиона металла Me (из исходного Me x O y) и кислотного остатка кислоты, соответствующей кислотному оксиду.

Для примера попробуем записать уравнения взаимодействия следующих пар реагентов:

Na 2 O + P 2 O 5 и Al 2 O 3 + SO 3

В первой паре реагентов мы видим основный оксид (Na 2 O) и кислотный оксид (P 2 O 5). Во второй – амфотерный оксид (Al 2 O 3) и кислотный оксид (SO 3).

Как уже было сказано, в результате взаимодействия основного/амфотерного оксида с кислотным образуется соль, состоящая из катиона металла (из исходного основного/амфотерного оксида) и кислотного остатка кислоты, соответствующей исходному кислотному оксиду.

Таким образом, при взаимодействии Na 2 O и P 2 O 5 должна образоваться соль, состоящая из катионов Na + (из Na 2 O) и кислотного остатка PO 4 3- , поскольку оксиду P +5 2 O 5 соответствует кислота H 3 P +5 O 4 . Т.е. в результате такого взаимодействия образуется фосфат натрия:

3Na 2 O + P 2 O 5 = 2Na 3 PO 4 — фосфат натрия

В свою очередь, при взаимодействии Al 2 O 3 и SO 3 должна образоваться соль, состоящая из катионов Al 3+ (из Al 2 O 3) и кислотного остатка SO 4 2- , поскольку оксиду S +6 O 3 соответствует кислота H 2 S +6 O 4 . Таким образом, в результате данной реакции получается сульфат алюминия:

Al 2 O 3 + 3SO 3 = Al 2 (SO 4) 3 — сульфат алюминия

Более специфическим является взаимодействие между амфотерными и основными оксидами. Данные реакции осуществляют при высоких температурах, и их протекание возможно благодаря тому, что амфотерный оксид фактически берет на себя роль кислотного. В результате такого взаимодействия образуется соль специфического состава, состоящая из катиона металла, образующего исходный основный оксид и «кислотного остатка»/аниона, в состав которого входит металл из амфотерного оксида. Формулу такого «кислотного остатка»/аниона в общем виде можно записать как MeO 2 x — , где Me – металл из амфотерного оксида, а х = 2 в случае амфотерных оксидов с общей формулой вида Me +2 O (ZnO, BeO, PbO) и x = 1 – для амфотерных оксидов с общей формулой вида Me +3 2 O 3 (например, Al 2 O 3 , Cr 2 O 3 и Fe 2 O 3).

Попробуем записать в качестве примера уравнения взаимодействия

ZnO + Na 2 O и Al 2 O 3 + BaO

В первом случае ZnO является амфотерным оксидом с общей формулой Me +2 O, а Na 2 O – типичный основный оксид. Согласно сказанному выше, в результате их взаимодействия должна образоваться соль, состоящая из катиона металла, образующего основный оксид, т.е. в нашем случае Na + (из Na 2 O) и «кислотного остатка»/аниона c формулой ZnO 2 2- , поскольку амфотерный оксид имеет общую формулу вида Me +2 O. Таким образом, формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Na 2 ZnO 2:

ZnO + Na 2 O =t o => Na 2 ZnO 2

В случае взаимодействующей пары реагентов Al 2 O 3 и BaO первое вещество является амфотерным оксидом с общей формулой вида Me +3 2 O 3 , а второе — типичным основным оксидом. В этом случае образуется соль, содержащая катион металла из основного оксида, т.е. Ba 2+ (из BaO) и «кислотного остатка»/аниона AlO 2 — . Т.е. формула получаемой соли при соблюдении условия электронейтральности одной ее структурной единицы («молекулы») будет иметь вид Ba(AlO 2) 2 , а само уравнение взаимодействия запишется как:

Al 2 O 3 + BaO =t o => Ba(AlO 2) 2

Как мы уже писали выше, практически всегда протекает реакция:

Me x O y + кислотный оксид ,

где Me x O y – либо основный, либо амфотерный оксид металла.

Однако следует запомнить два «привередливых» кислотных оксида – углекислый газ (CO 2) и сернистый газ (SO 2). «Привередливость» их заключается в том, что несмотря на явные кислотные свойства, активности CO 2 и SO 2 недостаточно для их взаимодействия с малоактивными основными и амфотерными оксидами. Из оксидов металлов они реагируют только с активными основными оксидами (оксидами ЩМ и ЩЗМ). Так, например, Na 2 O и BaO, являясь активными основными оксидами, могут с ними реагировать:

CO 2 + Na 2 O = Na 2 CO 3

SO 2 + BaO = BaSO 3

В то время, как оксиды CuO и Al 2 O 3 , не относящиеся к активным основным оксидам, в реакцию с CO 2 и SO 2 не вступают:

CO 2 + CuO ≠

CO 2 + Al 2 O 3 ≠

SO 2 + CuO ≠

SO 2 + Al 2 O 3 ≠

Взаимодействие оксидов с кислотами

С кислотами реагируют основные и амфотерные оксиды. При этом образуются соли и вода:

FeO + H 2 SO 4 = FeSO 4 + H 2 O

Несолеобразующие оксиды не реагируют с кислотами вообще, а кислотные оксиды не реагируют с кислотами в большинстве случаев.

Когда все-таки кислотный оксид реагирует с кислотой?

Решая часть ЕГЭ с вариантами ответа, вы должны условно считать, что кислотные оксиды не реагируют ни с кислотными оксидами, ни с кислотами, за исключением следующих случаев:

1) диоксид кремния, будучи кислотным оксидом, реагирует с плавиковой кислотой, растворяясь в ней. В частности, благодаря этой реакции в плавиковой кислоте можно растворить стекло. В случае избытка HF уравнение реакции имеет вид:

SiO 2 + 6HF = H 2 + 2H 2 O ,

а в случае недостатка HF:

SiO 2 + 4HF = SiF 4 + 2H 2 O

2) SO 2 , будучи кислотным оксидом, легко реагирует с сероводородной кислотой H 2 S по типу сопропорционирования :

S +4 O 2 + 2H 2 S -2 = 3S 0 + 2H 2 O

3) Оксид фосфора (III) P 2 O 3 может реагировать с кислотами-окислителями, к которым относятся концентрированная серная кислота и азотная кислота любой концентрации. При этом степень окисления фосфора повышается от значения +3 до +5:

P 2 O 3 + 2H 2 SO 4 + H 2 O =t o => 2SO 2 + 2H 3 PO 4
(конц.)
3 P 2 O 3 + 4HNO 3 + 7 H 2 O =t o => 4NO + 6 H 3 PO 4
(разб.)
2HNO 3 + 3SO 2 + 2H 2 O =t o => 3H 2 SO 4 + 2NO
(разб.)

Взаимодействие оксидов с гидроксидами металлов

С гидроксидами металлов как основными, так и амфотерными реагируют кислотные оксиды. При этом образуется соль, состоящая из катиона металла (из исходного гидроксида металла) и кислотного остатка кислоты, соответствующей кислотному оксиду.

SO 3 + 2NaOH = Na 2 SO 4 + H 2 O

Кислотные оксиды, которым соответствуют многоосновные кислоты, с щелочами могут образовывать как нормальные, так и кислые соли:

CO 2 + 2NaOH = Na 2 CO 3 + H 2 O

CO 2 + NaOH = NaHCO 3

P 2 O 5 + 6KOH = 2K 3 PO 4 + 3H 2 O

P 2 O 5 + 4KOH = 2K 2 HPO 4 + H 2 O

P 2 O 5 + 2KOH + H 2 O = 2KH 2 PO 4

«Привередливые» оксиды CO 2 и SO 2 , активности которых, как уже было сказано, не хватает для протекания их реакции с малоактивными основными и амфотерными оксидами, тем не менее, реагируют с большей частью соответствующих им гидроксидов металлов. Точнее, углекислый и сернистый газы взаимодействуют с нерастворимыми гидроксидами в виде их суспензии в воде. При этом образуются только осно вные соли, называемые гидроксокарбонатами и гидроксосульфитами, а образование средних (нормальных) солей невозможно:

2Zn(OH) 2 + CO 2 = (ZnOH) 2 CO 3 + H 2 O (в растворе)

2Cu(OH) 2 + CO 2 = (CuOH) 2 CO 3 + H 2 O (в растворе)

Однако с гидроксидами металлов в степени окисления +3, например, такими, как Al(OH) 3 , Cr(OH) 3 и т.д., углекислый и сернистый газ не реагируют вовсе.

Следует отметить также особую инертность диоксида кремния (SiO 2), в природе наиболее часто встречаемого в виде обычного песка. Данный оксид является кислотным, однако из гидроксидов металлов способен реагировать только с концентрированными (50-60%) растворами щелочей, а также с чистыми (твердыми) щелочами при сплавлении. При этом образуются силикаты:

2NaOH + SiO 2 =t o => Na 2 SiO 3 + H 2 O

Амфотерные оксиды из гидроксидов металлов реагируют только со щелочами (гидроксидами щелочных и щелочноземельных металлов). При этом при проведении реакции в водных растворах образуются растворимые комплексные соли:

ZnO + 2NaOH + H 2 O = Na 2 — тетрагидроксоцинкат натрия

BeO + 2NaOH + H 2 O = Na 2 — тетрагидроксобериллат натрия

Al 2 O 3 + 2NaOH + 3H 2 O = 2Na — тетрагидроксоалюминат натрия

Cr 2 O 3 + 6NaOH + 3H 2 O = 2Na 3 — гексагидроксохромат (III) натрия

А при сплавлении этих же амфотерных оксидов со щелочами получаются соли, состоящие из катиона щелочного или щелочноземельного металла и аниона вида MeO 2 x — , где x = 2 в случае амфотерного оксида типа Me +2 O и x = 1 для амфотерного оксида вида Me 2 +2 O 3:

ZnO + 2NaOH =t o => Na 2 ZnO 2 + H 2 O

BeO + 2NaOH =t o => Na 2 BeO 2 + H 2 O

Al 2 O 3 + 2NaOH =t o => 2NaAlO 2 + H 2 O

Cr 2 O 3 + 2NaOH =t o => 2NaCrO 2 + H 2 O

Fe 2 O 3 + 2NaOH =t o => 2NaFeO 2 + H 2 O

Следует отметить, что соли, получаемые сплавлением амфотерных оксидов с твердыми щелочами, могут быть легко получены из растворов соответствующих комплексных солей их упариванием и последующим прокаливанием:

Na 2 =t o => Na 2 ZnO 2 + 2H 2 O

Na =t o => NaAlO 2 + 2H 2 O

Взаимодействие оксидов со средними солями

Чаще всего средние соли с оксидами не реагируют.

Однако следует выучить следующие исключения из данного правила, часто встречающиеся на экзамене.

Одним из таких исключений является то, что амфотерные оксиды, а также диоксид кремния (SiO 2) при их сплавлении с сульфитами и карбонатами вытесняют из последних сернистый (SO 2) и углекислый (CO 2) газы соответственно. Например:

Al 2 O 3 + Na 2 CO 3 =t o => 2NaAlO 2 + CO 2

SiO 2 + K 2 SO 3 =t o => K 2 SiO 3 + SO 2

Также к реакциям оксидов с солями можно условно отнести взаимодействие сернистого и углекислого газов с водными растворами или взвесями соответствующих солей — сульфитов и карбонатов, приводящее к образованию кислых солей:

Na 2 CO 3 + CO 2 + H 2 O = 2NaHCO 3

CaCO 3 + CO 2 + H 2 O = Ca(HCO 3) 2

Также сернистый газ при пропускании его через водные растворы или взвеси карбонатов вытесняет из них углекислый газ благодаря тому, что сернистая кислота является более сильной и устойчивой кислотой, чем угольная:

K 2 СO 3 + SO 2 = K 2 SO 3 + CO 2

ОВР с участием оксидов

Восстановление оксидов металлов и неметаллов

Аналогично тому, как металлы могут реагировать с растворами солей менее активных металлов, вытесняя последние в свободном виде, оксиды металлов при нагревании также способны реагировать с более активными металлами.

Напомним, что сравнить активность металлов можно либо используя ряд активности металлов, либо, если одного или сразу двух металлов нет в ряду активности, по их положению относительно друг друга в таблице Менделеева: чем ниже и левее металл, тем он более активен. Также полезно помнить, что любой металл из семейства ЩМ и ЩЗМ будет всегда активнее металла, не являющегося представителем ЩМ или ЩЗМ.

В частности, на взаимодействии металла с оксидом менее активного металла основан метод алюмотермии, используемый в промышленности для получения таких трудновосстанавливаемых металлов, как хром и ванадий:

Cr 2 O 3 + 2Al =t o => Al 2 O 3 + 2Cr

При протекании процесса алюмотермии образуется колоссальное количество тепла, а температура реакционной смеси может достигать более 2000 o C.

Также оксиды практически всех металлов, находящихся в ряду активности правее алюминия, могут быть восстановлены до свободных металлов водородом (H 2), углеродом (C) и угарным газом (CO) при нагревании. Например:

Fe 2 O 3 + 3CO =t o => 2Fe + 3CO 2

CuO + C =t o => Cu + CO

FeO + H 2 =t o => Fe + H 2 O

Следует отметить, что в случае, если металл может иметь несколько степеней окисления, при недостатке используемого восстановителя возможно также неполное восстановление оксидов. Например:

Fe 2 O 3 + CO =t o => 2FeO + CO 2

4CuO + C =t o => 2Cu 2 O + CO 2

Оксиды активных металлов (щелочных, щелочноземельных, магния и алюминия) с водородом и угарным газом не реагируют .

Однако оксиды активных металлов реагируют с углеродом, но иначе, чем оксиды менее активных металлов.

В рамках программы ЕГЭ, чтобы не путаться, следует считать, что в результате реакции оксидов активных металлов (до Al включительно) с углеродом образование свободного ЩМ, ЩЗМ, Mg, а также Al невозможно. В таких случаях происходит образование карбида металла и угарного газа. Например:

2Al 2 O 3 + 9C =t o => Al 4 C 3 + 6CO

CaO + 3C =t o => CaC 2 + CO

Оксиды неметаллов нередко могут быть восстановлены металлами до свободных неметаллов. Так, например, оксиды углерода и кремния при нагревании реагируют с щелочными, щелочноземельными металлами и магнием:

CO 2 + 2Mg =t o => 2MgO + C

SiO 2 + 2Mg =t o => Si + 2MgO

При избытке магния последнее взаимодействие может приводить также к образованию силицида магния Mg 2 Si:

SiO 2 + 4Mg =t o => Mg 2 Si + 2MgO

Оксиды азота могут быть относительно легко восстановлены даже менее активными металлами, например, цинком или медью:

Zn + 2NO =t o => ZnO + N 2

NO 2 + 2Cu =t o => 2CuO + N 2

Взаимодействие оксидов с кислородом

Для того чтобы в заданиях реального ЕГЭ суметь ответить на вопрос, реагирует ли какой-либо оксид с кислородом (O 2), прежде всего нужно запомнить, что оксиды, способные реагировать с кислородом (из тех, что могут попасться вам на самом экзамене) могут образовать только химические элементы из списка:

Встречающиеся в реальном ЕГЭ оксиды любых других химических элементов с кислородом реагировать не будут (!) .

Для более наглядного удобного запоминания перечисленных выше списка элементов, на мой взгляд, удобна следующая иллюстрация:

Все химические элементы, способные образовывать оксиды, реагирующие с кислородом (из встречающегося на экзамене)

В первую очередь, среди перечисленных элементов следует рассмотреть азот N, т.к. отношение его оксидов к кислороду заметно отличается от оксидов остальных элементов приведенного выше списка.

Следует четко запомнить тот факт, что всего азот способен образовать пять оксидов, а именно:

Из всех оксидов азота с кислородом может реагировать только NO. Данная реакция протекает очень легко при смешении NO как с чистым кислородом, так и с воздухом. При этом наблюдается быстрое изменение окраски газа с бесцветной (NO) на бурую (NO 2):

2NO + O 2 = 2NO 2
бесцветный бурый

Для того чтобы дать ответ на вопрос — реагирует ли с кислородом какой-либо оксид любого другого из перечисленных выше химических элементов (т.е. С, Si , P , S , Cu , Mn , Fe , Cr ) — прежде всего обязательно нужно запомнить их основные степени окисления (СО). Вот они:

Далее нужно запомнить тот факт, что из возможных оксидов указанных выше химических элементов, с кислородом будут реагировать только те, которые содержат элемент в минимальной, среди указанных выше, степени окисления. При этом степень окисления элемента повышается до ближайшего положительного значения из возможных:

элемент

Отношение его оксидов к кислороду

С Минимальная среди основных положительных степеней окисления углерода равна +2 , а ближайшая к ней положительная — +4 . Таким образом, с кислородом из оксидов C +2 O и C +4 O 2 реагирует только CO. При этом протекает реакция:

2C +2 O + O 2 =t o => 2C +4 O 2

CO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления углерода.

Si Минимальная среди основных положительных степеней окисления кремния равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из оксидов Si +2 O и Si +4 O 2 реагирует только SiO. Из-за некоторых особенностей оксидов SiO и SiO 2 возможно окисление лишь части атомов кремния в оксиде Si +2 O. Т.е. в результате его взаимодействия с кислородом, образуется смешанный оксид, содержащий как кремний в степени окисления +2, так и кремний в степени окисления +4, а именно Si 2 O 3 (Si +2 O·Si +4 O 2):

4Si +2 O + O 2 =t o => 2Si +2 ,+4 2 O 3 (Si +2 O·Si +4 O 2)

SiO 2 + O 2 ≠ — реакция невозможна в принципе, т.к. +4 – высшая степень окисления кремния.

P Минимальная среди основных положительных степеней окисления фосфора равна +3, а ближайшая к нему положительная — +5. Таким образом, с кислородом из оксидов P +3 2 O 3 и P +5 2 O 5 реагирует только P 2 O 3 . При этом протекает реакция доокисления фосфора кислородом от степени окисления +3 до степени окисления +5:

P +3 2 O 3 + O 2 =t o => P +5 2 O 5

P +5 2 O 5 + O 2 ≠ — реакция невозможна в принципе, т.к. +5 – высшая степень окисления фосфора.

S Минимальная среди основных положительных степеней окисления серы равна +4, а ближайшая к ней по значению положительная — +6. Таким образом, с кислородом из оксидов S +4 O 2 , S +6 O 3 реагирует только SO 2 . При этом протекает реакция:

2S +4 O 2 + O 2 =t o => 2S +6 O 3

2S +6 O 3 + O 2 ≠ — реакция невозможна в принципе, т.к. +6 – высшая степень окисления серы.

Cu Минимальная среди положительных степеней окисления меди равна +1, а ближайшая к ней по значению — положительная (и единственная) +2. Таким образом, с кислородом из оксидов Cu +1 2 O, Cu +2 O реагирует только Cu 2 O. При этом протекает реакция:

2Cu +1 2 O + O 2 =t o => 4Cu +2 O

CuO + O 2 ≠ — реакция невозможна в принципе, т.к. +2 – высшая степень окисления меди.

Cr Минимальная среди основных положительных степеней окисления хрома равна +2, а ближайшая к ней по значению положительная равна +3. Таким образом, с кислородом из оксидов Cr +2 O, Cr +3 2 O 3 и Cr +6 O 3 реагирует только CrO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +3:

4Cr +2 O + O 2 =t o => 2Cr +3 2 O 3

Cr +3 2 O 3 + O 2 ≠ — реакция не протекает, несмотря на то что существует оксид хрома и в большей, чем +3, степени окисления (Cr +6 O 3). Невозможность протекания данной реакции связана с тем, что требуемый для ее гипотетического осуществления нагрев сильно превышает температуру разложения оксида CrO 3 .

Cr +6 O 3 + O 2 ≠ — данная реакция не может протекать в принципе, т.к. +6 – высшая степень окисления хрома.

Mn Минимальная среди основных положительных степеней окисления марганца равна +2, а ближайшая к ней положительная — +4. Таким образом, с кислородом из возможных оксидов Mn +2 O, Mn +4 O 2 , Mn +6 O 3 и Mn +7 2 O 7 реагирует только MnO, при этом окисляясь кислородом до соседней (из возможных) положительной степени окисления, т.е. +4:

2Mn +2 O + O 2 =t o => 2Mn +4 O 2

в то время, как:

Mn +4 O 2 + O 2 ≠ и Mn +6 O 3 + O 2 ≠ — реакции не протекают, несмотря на то что существует оксид марганца Mn 2 O 7 , содержащий Mn в большей, чем +4 и +6, степени окисления. Связанно это с тем, что требуемый для дальнейшего гипотетического окисления оксидов Mn +4 O 2 и Mn +6 O 3 нагрев существенно превышает температуру разложения получаемых оксидов MnO 3 и Mn 2 O 7.

Mn +7 2 O 7 + O 2 ≠ — данная реакция невозможна в принципе, т.к. +7 – высшая степень окисления марганца.

Fe Минимальная среди основных положительных степеней окисления железа равна +2 , а ближайшая к ней среди возможных — +3 . Несмотря на то что для железа существует степень окисления +6, кислотного оксида FeO 3 , впрочем, как и соответствующей ему «железной» кислоты не существует.

Таким образом, из оксидов железа с кислородом могут реагировать только те оксиды, которые содержат Fe в степени окисления +2. Это либо оксид Fe +2 O, либо смешанный оксид железа Fe +2 ,+3 3 O 4 (железная окалина):

4Fe +2 O + O 2 =t o => 2Fe +3 2 O 3 или

6Fe +2 O + O 2 =t o => 2Fe +2,+3 3 O 4

смешанный оксид Fe +2,+3 3 O 4 может быть доокислен до Fe +3 2 O 3:

4Fe +2 ,+3 3 O 4 + O 2 =t o => 6Fe +3 2 O 3

Fe +3 2 O 3 + O 2 ≠ — протекание данной реакции невозможно в принципе, т.к. оксидов, содержащих железо в степени окисления выше, чем +3, не существует.

Роман «Обломов» является составной частью гончаровской трилогии, куда также вошли «Обрыв» и «Обыкновенная история». Напечатан был впервые в 1859 году в журнале «Отечественные записки», однако фрагмент романа «Сон Обломова» автор опубликовал 10 годами раньше, еще в 1849 году. По утверждению автора, черновик целого романа в это время уже был готов. Поездка в родной Симбирск с его старинным патриархальным укладом во многом вдохновил его на публикацию романа. Однако, пришлось сделать перерыв в творческой деятельности в связи с кругосветным путешествием.

Анализ произведения

Введение. История создания романа. Основная идея.

Намного ранее, в 1838 году Гончаров публикует юмористический рассказ «Лихая болесть», где осуждающе описывает такое пагубное явление, процветающее на западе, как склонность к чрезмерной мечтательности и хандре. Именно тогда автор впервые поднимает вопрос «Обломовщины», который впоследствии полностью и многогранно раскрыл в романе.

Позже автор признавался, что выступление Белинского на тему его «Обыкновенной истории» заставило его задуматься над созданием «Обломова». В своем разборе Белинский помог ему наметить четкий образ главного героя, его характер и индивидуальные черты. Кроме того, герой-Обломов, в каком-то роде признание Гончаровым своих ошибок. Ведь он когда-то тоже был приверженцем безмятежного и бессмысленного времяпровождения. Гончаров не раз рассказывал о том, как тяжело порой ему давались какие-то повседневные дела, не говоря уже о том, с каким трудом он принял решение отправиться-таки в кругосветное плавание. Друзья даже прозвали его «Принц Де Лень».

Идейное наполнение романа чрезвычайно глубоко: автор поднимает глубокие социальные проблемы, которые были актуальны для многих его современников. Например, засилье европейских идеалов и канонов в среде дворянства и прозябание исконно-русских ценностей. Вечные вопросы любви, долга, порядочности, человеческих взаимоотношений и жизненных ценностей.

Общая характеристика произведения. Жанр, сюжет и композиция.

Согласно жанровым особенностям, роман «Обломов» можно без труда идентифицировать как типичное произведение направления реализм. Здесь есть все признаки, характерные для произведений данного жанра: центровой конфликт интересов и позиций главного героя и противостоящего ему общества, множество деталей в описании ситуаций и интерьеров, достоверность с точки зрения исторического и бытового аспектов. Так, например, Гончаров очень четко рисует социальное разделение слоев общества, присущее тому времени: мещане, крепостные, чиновники, дворяне. В течение повествования одни герои получают свое развитие, например, Ольга. Обломов же, напротив, деградирует, сломавшись под напором окружающей действительности.

Типичное для того времени явление, описанное на страницах, получившее позже название «Обломовщина», позволяет трактовать роман как социально-бытовой. Крайняя степень лени и моральной распущенности, прозябание и разложение личности - все это крайне пагубно отразилась на мещанах 19 века. А «Обломовщина» стала именем нарицательным, в общем смысле отражавшим образ жизни тогдашней России.

С точки зрения композиции роман можно разделить на 4 отдельных блока или части. В начале автор дает нам понять, что из себя представляет главный герой, проследить за плавным не динамичным и ленивым течением его скучной жизни. Далее следует кульминация романа - Обломов влюбляется в Ольгу, выходит из «спячки», стремиться жить, наслаждаться каждым днем и получать личностное развитие. Однако их отношениям не суждено получить продолжение и пара переживает трагический разрыв. Кратковременное прозрение Обломова превращается в дальнейшую деградацию и распад личности. Обломов снова впадает в уныние и депрессию, погружаясь в свои чувства и безрадостное существование. Развязкой служит эпилог, где описывается дальнейшая жизнь героя: Илья Ильич женится на домовитой и не блещущей интеллектом и эмоциями женщине. Проводит последние дни в спокойствии, предаваясь лености и обжорству. Финалом становится смерть Обломова.

Образы главных героев

В противопоставление Обломову идет описание Андрея Ивановича Штольца. Это два антипода: Взгляд Штольца устремлен четко вперед, он уверен, что без развития нет будущего для него как для личности и для общества в целом. Такие люди движут планету вперед, единственная доступная для него радость - постоянный труд. Он получает удовольствие от достижения целей, ему некогда строить эфемерные воздушные замки и прозябать подобно Обломову в мире бесплотных фантазий. При этом, Гончаров не пытается сделать одного из своих героев плохим, а другого хорошим. Наоборот, он не раз подчеркивает, что ни тот ни другой мужской образ не является идеалом. Каждому из них присущи как положительные черты, так и недостатки. Это еще одна черта, позволяющая причислить роман к реалистическому жанру.

Так же как и мужчины, женщины в этом романе тоже противопоставлены друг другу. Пшеницына Агафья Матвеевна - жена Обломова представлена как недалекая, но чрезвычайно добрая и покладистая натура. Она буквально боготворит мужа, стараясь сделать его жизнь как можно более комфортной. Бедняжка не понимает, что тем самым сама роет ему могилу. Она - типичный представитель старого строя, когда женщина - буквально рабыня своего мужа, не имеющая права на собственное мнение, и заложница бытовых проблем.

Ольга Ильинская

Ольга же, прогрессивная молодая девушка. Ей кажется, что она сможет изменить Обломова, наставить его на истинный путь и у нее почти это получается. Она невероятно сильна духом, эмоциональна и талантлива. В мужчине она хочет видеть прежде всего духовного наставника, сильную цельную личность, как минимум равную ей по складу мыслей и убеждениям. Вот тут то и происходит конфликт интересов с Обломовым. К сожалению, он не может и не хочет соответствовать ее высоким требования и уходит в тень. Не в силах простить подобного малодушия, Ольга рвет с ним и, тем самым спасает себя от «Обломовщины».

Заключение

В романе поднята довольно серьезная проблема с точки зрения исторического развития российского общества, а именно «Обломовщина» или постепенная деградация отдельных слоев российской общественности. Старые устои, которые люди не готовы менять и совершенствовать свое общество и быт, философские вопросы развития, тема любви и слабости человеческого духа - все это по праву позволяет признать роман Гончарова гениальным произведением 19 века.

«Обломовщина» из общественного явления постепенно перетекает в характер самого человека, затягивает его на дно лени и морального разложения. Мечты и иллюзии постепенно вытесняют реальный мир, где подобному человеку просто нет места. Отсюда проистекает еще одна проблематичная тема, затронутая автором, а именно вопрос «Лишнего человека», коим является Обломов. Он застрял в прошлом и порой его мечты даже превалируют на действительно важными вещами, например, любовью к Ольге.

Успех романа во многом был обусловлен совпавшим по времени глубоким кризисом крепостнического строя. Образ заевшегося помещика, неспособного к самостоятельной жизни, очень остро был воспринят общественностью. Многие узнали в Обломове себя, а современники Гончарова, например, писатель Добролюбов быстро подхватил тему «Обломовщины» и продолжил ее развивать на страницах своих научных трудов. Таким образом, роман стал событием не только в области литературы, но важнейшим общественно-политическим и историческим событием.

Автор пытается достучаться до читателя, заставить взглянуть на собственную жизнь, и возможно, что-то переосмыслить. Только правильно истолковав пламенный посыл Гончарова, можно изменить свою жизнь и тогда, можно избежать печального финала Обломова.