Звёздные скопления. Галактики. Общая астрономия. Звездные скопления и ассоциации

ЗАДАНИЯ

ПО АСТРОНОМИИ

2013 – 2014 уч. г.

(муниципальный этап )
7-8 классы


  1. Шаровое звездное скопление , галактика , звездная ассоциация , созвездие , рассеянное звездное скопление . Вычеркните лишнее в этом списке и объясните свой ответ.

  1. Астронавты, находящиеся на Луне, наблюдают Землю. Какой будет казаться для них продолжительность суток на Земле?

  1. В нашей Галактике 3∙10 11 звезд. Если все эти звезды равномерно расположить по периметру Галактики, то, какое расстояние будет между двумя соседними звездами? Радиус нашей Галактики R = 50 000 световых лет.

  1. Взрыв Тунгусского метеорита наблюдался на горизонте в городе Киренске (на реке Лене) в 350 км от места взрыва. Определите, на какой высоте произошел взрыв. (Атмосферную рефракцию не учитывать).

  1. На какой высоте над поверхностью Земли сила тяжести будет в два раза меньше чем на её поверхности? Считать радиус Земли R = 6370 км.

  1. Космический телескоп способен зарегистрировать значительно менее яркие звезды, чем наземный телескоп такого же диаметра. Почему?
ЗАДАНИЯ

всеРоссийской ОЛИМПИАДЫ школьников

ПО АСТРОНОМИИ

2013 – 2014 уч. г.

(муниципальный этап )
9 класс



  1. Известно, что фотон (квант, т.е. частица света), возникший в центре Солнца, добирается до его поверхности через 30 миллионов лет после своего рождения. Оцените среднюю скорость перемещения фотона от центра Солнца до поверхности, если известно, что радиус Солнца примерно в 200 раз меньше расстояния от Солнца до Земли, а расстояние от поверхности Солнца до Земли фотон преодолевает за 500 секунд.

  1. Ракета вертикально удаляется от Земли с постоянным ускорением g=9,8 м/с 2 . Как меняется вес тел в ракете по мере её удаления от Земли?

  1. Среднее расстояние между центрами Земли и Луны равно 60 земным радиусам, а масса Земли в 81 раз больше массы Луны. На каком расстоянии от Луны на отрезке, соединяющем центры Земли и Луны расположена точка, в которой тело будет притягиваться ими с одинаковой силой?

  1. В нашей Галактике 3∙10 11 звезд. Если все эти звезды равномерно расположить по периметру Галактики, то какое расстояние будет между двумя соседними звездами? Радиус нашей Галактики R = 50 000 световых лет.

  1. Во время Второй Мировой войны английские радиолокационные службы противовоздушной обороны по утрам часто объявляли ложные тревоги. Что именно они принимали за немецкие самолеты и почему?

ЗАДАНИЯ

всеРоссийской ОЛИМПИАДЫ школьников

ПО АСТРОНОМИИ

2013 – 2014 уч. г.

(муниципальный этап )
10 класс


  1. Церера, Каллисто, Ида, Гаспра, Веста . Укажите лишнее в этом списке и обоснуйте свой выбор.


  1. Ракета массой М с работающим двигателем неподвижно «зависла» над Землей. Скорость вытекающих из ракеты газов равна u . Какова мощность двигателя N ?

  1. Один любитель астрономии утверждал, что однажды, наблюдая в полночь «парад планет» в телескоп с большим полем зрения, он видел все планеты Солнечной системы сразу. Возможно ли это? Ответ обоснуйте.

  1. Существует гипотеза, в соответствии с которой Луна образовалась из вещества, выброшенного из Земли в результате падения на нее метеорита, а на том месте, откуда была вырвана Луна, образовался Тихий океан. Подтвердите или опровергните эту гипотезу, имея в виду, что диаметр Луны примерно в четыре раза меньше диаметра Земли.

  1. Космическая станция (КС) вращается вокруг Земли на высоте 250 км. Может ли космонавт из этой КС напрямую связаться с московским центром управления полетами при помощи передатчика достаточной мощности на частоте 150 МГц в момент, когда станция пролетает над Парижем? От Москвы до Парижа 2500 км. Радиус Земли 6370 км.

ЗАДАНИЯ

всеРоссийской ОЛИМПИАДЫ школьников

ПО АСТРОНОМИИ

2013 – 2014 уч. г.

(муниципальный этап )
11 класс


  1. Весы, Кошачий глаз, Песочные часы, Розетка, Улитка . Укажите лишнее в этом списке и обоснуйте свой выбор.

  1. При наблюдениях на телескопе с фокусным расстоянием 2.5 м используется ПЗС-матрица размером 1024×1024 пикселов. Найдите размер одного пиксела, если на матрице получается изображение участка неба с угловыми размерами 20 ′ ×20 ′ .

  1. Три звезды с массами, равными массе Солнца, находятся в вершинах равностороннего треугольника со стороной 1 а.е. Какими должны быть скорости звезд, чтобы их взаимное расположение не изменялось со временем?

  1. Длина тени, отбрасываемой в полдень телеграфным столбом, установленным вертикально на косогоре, обращенном к югу, равна высоте этого столба. Определите высоту Солнца, если угол наклона косогора к горизонту равен α.

  1. Вычислите максимальное расстояние, с которого Солнце можно увидеть невооруженным глазом.

  1. Красная звезда по диаметру в 2 раза больше своей голубой соседки по двойной системе. Какая из звезд излучает больше энергии? Оцените, во сколько раз. Ответ поясните.

Изучите звездные скопления Вселенной: описание, классификация, рассеянные и шаровые типы с фото и видео, список скоплений, возраст, каталог Мессье, разрушение.

– группа звезд с общим происхождением и гравитационной связью на определенное время. Это полезный инструмент для астрономов, так как помогают изучать и моделировать звездную эволюцию. Существуют два главных вида звездных скопления: рассеянные скопления (открытые) и шаровые скопления. Узнайте больше про звездные скопления галактики в интересном видео.

Астроном Алексей Расторгуев о роли гравитации во Вселенной, рассеянных и шаровых скоплениях и изучении истории галактик:

Типы звездных скоплений

Называют так, потому что отдельные звезды можно легко разрешить. Например, Плеяды и Гиады настолько близки, что отдельные звезды без проблем удается рассмотреть невооруженным глазом. Иногда их называют галактическими скоплениями, так как они расположены в пыльных спиральных рукавах. Звезды в открытом скоплении обладают общим происхождением (сформировались и одного и того же начального молекулярного облака). Обычно в скоплении вмещается несколько сотен звезд (могут достигать нескольких тысяч).

Звезды связаны гравитацией, но она довольно слабая. Скопление вращается вокруг галактики и на финальной стадии рассеивается из-за гравитационного контакта с более сильными объектами. Полагают, что Солнце появилось в открытом скоплении, которого сейчас уже нет. Поэтому это всегда молодые объекты. В Плеядах все еще заметна туманность, намекающая на недавнее формирование.

Открытые скопления наполнены звездами населения I – молодые и с высоким уровнем металличности. В ширине охватывают от 2 до 20 парсеков.

Рассеянные звездные скопления каталога Мессье

Другие известные рассеянные звездные скопления

Шаровые скопления галактик вмещают от пары тысяч до миллиона звезд, расположенных в сферической гравитационной системе. Они находятся в ореоле и представляют собою наиболее древние звезды – население II (развитые, но низкая металличность). Скопления настолько старые, что любая звезда (выше G или F класса) уже перешагнула главную последовательность. В шаровом скоплении мало пыли и газа, потому что там не формируются новые звезды. Плотность во внутренних областях намного выше, чем на участках возле Солнца.

В шаровых скоплениях звезды также разделяют общее происхождение. Но этот тип прочно удерживает объекты гравитацией (звезды не рассеиваются). Во Млечном Пути находится примерно 200 шаровых скоплений. Среди них можно вспомнить 47 Тукана, М4 и Омега Центавра. Хотя насчет последнего есть предположения, что это может быть карликовая сфероидальная галактика.

Шаровые скопления

Астроном Владимир Сурдин о видах звездных скоплений, ядре галактики и жизни на планетах шаровых скоплений:

Шаровые звездные скопления каталога Мессье

Другие известные шаровые звездные скопления

Возраст скоплений звезд

Звездные скопления невероятно ценны для астрономов, так как с их помощью можно определить возраст звезды и проследить за эволюцией.

У звезд открытых скоплений единое происхождение, поэтому у них сходится уровень металличности, а значит, все члены будут одинаково проходить по эволюционным этапам. Кроме того, они расположены на одном расстоянии, что также позволяет вывести абсолютную величину. Если же вы видите выделяющиеся яркие звезды, значит они намного светлее, чем их более слабые соседи.

С этой информацией ученые создают цифровые диаграммы для скоплений. Они отображают кажущуюся величину V на вертикальной оси относительно цифрового индекса B – V по горизонтали. При помощи спектрографического параллакса можно откалибровать диаграмму, чтобы вывести абсолютную величину.

Если построить для них диаграммы, то получим нижний график. Так как они находятся на разной удаленности, то он откалиброван до значений абсолютной величины.

На правой вертикальной оси заметна новая шкала. «Годы» – возраст скопления. Пара в Персее настолько молодая, что большая часть звезд пребывает на этапе главной последовательности. Плеяды немного старше и не располагают звездами, превышающими индекс цвета 0 (спектральный класс А0). Более массивные объекты уже перешагнули к гигантским ветвям. У М67 нет звезды горячее индекса цвета 0.4. Наибольшее значение имеет точка поворота на диаграмме, где скопление отключает главную последовательность. Чем ниже главная последовательность, тем старше скопление.

Шаровые обычно намного старше открытых, поэтому цветная величина на диаграмме демонстрирует более развитые звезды. Также они лишены объектов с большой массой. Этот момент проиллюстрирован ниже не примере М55.

Здесь заметна группа горячих звезд в главной последовательности выше точки выключения. Их называют синими отставшими. Ученые считают, что из-за высоких звездных плотностей в шаровых скоплениях, некоторые способны сливаться. Объединенная масса делает звезду более горячей и ярче, чем основная звездная масса. Звездные скопления - не вечные конструкции и они разрушаются. Изучите этот процесс на видео. Также воспользуйтесь картой звездного неба онлайн, чтобы найти скопления самостоятельно. Если не можете купить телескоп, то посетите нашу страничку с виртуальной моделью галактики Млечный Путь или рассмотрите фото из списка скоплений.

Разрушение звездных скоплений

Астроном Алексей Расторгуев о звездной динамике, времени жизни звездных скоплений и гравитационном потенциале нашей Галактики

Общая астрономия. Звездные скопления и ассоциации

По современным данным, не менее 70% звезд Галактики входят в состав двойных и кратных систем, а одиночные звезды (как, например, наше Солнце) - это, скорее, исключение из правил. Но нередко звезды собираются и в более многочисленные "коллективы" – звездные скопления. Звездное скопление - группа звезд, расположенных в пространстве недалеко друг от друга, связанных общим происхождением и взаимным тяготением. Все входящие в скопление звёзды находятся от нас на одном расстоянии (с точностью до размеров скопления) и имеют примерно одинаковый возраст и химический состав, но в то же время они находятся на разных стадиях эволюции (определяемой начальной массой каждой звезды), что делает их удобным объектом для проверки теорий происхождения и эволюции звезд. Различаются два вида звездных скоплений: шаровые и рассеянные. Первоначально такое разделение было принято по внешнему виду, но по мере дальнейшего изучения стало ясно, что шаровые и рассеянные скопления непохожи буквально во всем - по возрасту, звездному составу, характеру движения и т.д.


Шаровые звездные скопления насчитывают в своем составе от десятков тысяч до миллионов звезд. Для этого типа скоплений характерна правильная сферическая или несколько сплюснутая форма (которая, по-видимому, является признаком осевого вращения скопления). Но известны и бедные звездами скопления, по внешнему виду неотличимые от рассеянных (например, NGC 5053), и отнесенные к шаровым по характерным особенностям диаграммы "спектр-светимость". Двум самым ярким из шаровых скопленияй присвоены обозначения омега Центавра (NGC 5139) и 47 Тукана (NGC 104), как обычным звездам, поскольку благодаря значительному видимому блеску (+3. m 6 и +4. m 1 соответственно) они хорошо видны невооруженным глазом, но только в южных странах. А в средних широтах северного полушария для невооруженного глаза доступны, хотя и с трудом (даже для темного незасвеченного неба), только два - в созвездиях Стрельца (М22) и Геркулеса (М13).

Омега Центавра - одно из ярчайших и по абсолютной звездной величине, для него она составляет -10. m 2, в то время как у одного из слабейших (NGC 6366) - всего -5. m . Линейные диаметры шаровых скоплений в основном составляют от 15 до 200 пк, при этом концентрация звезд в их центральных областях достигает тысяч и десятков тысяч в 1 пк 3 (в окрестностях Солнца - всего 0.13 звезды на 1 пк 3). Видимые угловые размеры зависят и от линейного диаметра, и от расстояния до скопления, и поэтому различаются сильнее. Самое крупное - это опять омега Центавра (54" - более чем в полтора раза больше видимого диаметра Луны!), а из видимых в средних широтах северного полушария - М4 в Скорпионе (34", и к тому же оно - одно из ближайших, до него 2 кпк) и уже упомянутое М22 в Стрельце (32"). У самых мелких видимый угловой размер составляет около 1".

Шаровых скоплений в Галактике в настоящее время известно около 150, но очевидно, что это только небольшая часть из существующих на самом деле (полное их число оценивается примерно в 400-600). Их распределение по небесной сфере неравномерное - они сильно концентрируются к галактическому центру, образуя вокруг него протяженное гало. Примерно половина из них расположена не дальше 30 градусов от видимого центра Галактики (в Стрельце), т.е. в области, площадь которой составляет лишь на 6% от всей площади небесной сферы. Такое распределение является следствием особенностей обращения шаровых скоплений вокруг центра Галактики, характерное для объектов сферической подсистемы - по сильно вытянутым орбитам. Один раз за период (10 8 -10 9 лет) шаровое скопление проходит через плотные центральные области Галактики и её диск, что способствует "выметанию" межзвездного газа из скопления (наблюдения подтверждают, что газа в этих скоплениях очень мало). Некоторые шаровые скопления находятся так далеко от центра Галактики (NGC 2419 - 100 кпк), что их можно отнести к межгалактическим.

Диаграмма "спектр-светимость" у шаровых скоплений имеет характерную форму из-за отсутствия массивных звезд на ветви главной последовательности. Это свидетельствует о значительном возрасте шаровых скоплений (10-12 млрд. лет, т.е. они формировались одновременно с образованием самой Галактики) - за такое время запасы водорода исчерпываются у звезд с массой, близкой к солнечной, и они покидают главную последовательность (и чем больше начальная масса звезды - тем быстрее), образуя ветвь субгигантов и гигантов. Поэтому в шаровых скоплениях самыми яркими звездами являются красные гиганты. Кроме того, в них наблюдаются переменные звезды (особенно часто - типа RR Лиры), а также - конечные продукты эволюции массивных звезд (в ходящие в тесные двойные системы с нормальной звездой белые карлики, нейтронные звезды и черные дыры), проявлющие себя в виде рентгеновских источников разных типов. Но в общем в шаровых скоплениях двойные звезды встречаются редко. Следует отметить, что в других галактиках (например, в Магеллановых Облаках) найдены типичные по внешнему виду шаровые скопления, но со звездным составом небольшого возраста, и поэтому такие объекты считаются молодыми шаровыми скоплениями. Еще одна особенность шаровых скоплений - пониженное содержание тяжелых (тяжелее гелия) элементов в атмосферах входящих в них звезд. По сравнению с их содержанием в Солнце звезды шаровых скоплений обеднены этими элементами в 5-10 раз, а в некоторых скоплениях - до 200 раз. Эта особенность характерна для объектов сферической составляющей Галактики и также связана с большим возрастом скоплений - их звезды формировались из первичного газа, в то время как Солнце было образовано значительно позже и содержит в себе тяжелые элементы, образованные ранее проэволюционировавшими звездами.

Рассеянные звездные скопления содержат относительно немного звезд - от нескольких десятков до нескольких тысяч, и ни о какой правильной форме здесь, как правило, уже речи не идет. Самым известным рассеянным скоплением являются Плеяды, видимые в созвездии Тельца. В том же созвездии находится еще одно скопление - Гиады - группа слабых звезд вокруг яркого Альдебарана.

Раасеянных звездных скоплений известно около 1200, но считается, что их в Галактике их гораздо больше (порядка 20 тысяч). Они также распределены по небесной сфере неравномерно, но, в отличие от шаровых скоплений, сильно концентрируются к плоскости Галактики, поэтому практически все скопления этого типа видны вблизи Млечного Пути, и в основном удалены не более 2 кпк от Солнца. Этим фактом объясняется, почему наблюдается столь малая доля из общего количества скоплений - многие из них слишком далеки и теряются на фоне высокой звездной плотности Млечного Пути, или скрыты поглощающими свет газово-пылевыми облаками, также сосредоточенными в галактической плоскости. Как и другие объекты диска Галактики, рассеянные скопления обращаются вокруг галактического центра по орбитам, близким к круговым. Диаметры рассеянных скоплений от 1.5 пк до 15-20 пк, а концентрация звезд составляет от 1 до 80 на 1 пк 3 . Как правило, скопления состоят из относительно плотного ядра и более разряженной кроны. Среди рассеянных скоплений известны двойные (как, например, хи и аш Персея) и кратные, т.е. группы, характеризуемые их пространственной близостью и сходными собственными движениями и лучевыми скоростями.

Главное отличие рассеянных скоплений от шаровых - большое разнообразие диаграмм "спектр-светимость" у первых, вызванное различиями их возрастов. Самым молодым скоплениям - около 1 млн. лет, самым старым - 5-10 млрд. Поэтому и звездный состав рассеянных скоплений отличается разнообразием - в них встречаются голубые и красные сверхгиганты, гиганты, переменные различных типов - вспыхивающие, цефеиды и т.д. Химический состав звезд, входящих в рассеянные скопления, достаточно однороден, и в среднем содержание тяжелых элементов близко к солнечному, что типично для объектов диска Галактики.

Другая особенность рассеянных скоплений - что они нередко бывают видны совместно с газовопылевой туманностью - остатком облака, из которого звезды этого скопления когда-то образовались. Звезды могут разогревать или освещать "свою" туманность, делая ее видимой. Известные всем Плеяды (см. фото) тоже погружены в голубую холодную туманность. В галактике рассеянные скопления могут быть только там, где много газовых облаков. В спиральных галактиках, таких, как наша, такие места в изобилии встречаются в плоской составляющей галактики, и молодые скопления служат неплохими индикаторами спиральной структуры, поскольку за время, прошедшее с момента формирования, они не успевают удалиться от спиральных ветвей, в которых это формирование происходит.

Особой разновидностью рассеянных скоплений являются движущиеся скопления , для которых удается точно измерить собственные движения входящих в него звезд. Примерами таких скоплений являются Гиады, Плеяды, Ясли и некоторые другие. Продолжения направлений этих движений (либо назад, либо вперед) пересекаются в точке, называемой радиантом - это схождение параллельных линий вследствии перспективы. Изучение таких скоплений имеет фундаментальное значение по причине того, что знание собственных движений звезд, их лучевых скоростей и угловых расстояний до радианта позволяет вычислить полную пространственную скорость этих звезд, а следовательно - точное расстояние до них (точнее, чем методом тригонометрического параллакса). А знание расстояния даёт возможность хотя бы для одного скопления "откалибровать" диаграмму "спектр-светимость", т.е. привязать её к абсолютным звездным величинам. Такая привязка очень важна для определения расстояний до других скоплений по получаемым непосредственно из наблюдений диаграммам "спектр-видимый блеск", поскольку совмещение главной последовательности такой диаграммы и "откалиброванной" сразу даёт разность между видимой и абсолютной величинами, зависящую только от расстояния. В качестве "опорного" скопления удобнее всего использовать Гиады, как самое близкое (40 пк), и можно без преувеличения сказать, что до недавнего времени (до запуска миссии HIPPARCOS) на Гиадах держалась вся шкала межзвездных расстояний.

Звездные ассоциации - разреженные группы звезд, возраст которых не превышает нескольких десятков миллионов лет (при этом самым молодым из них - не более миллиона лет). Обычно звездная ассоциация имеет размер 50-100 пк и содержит от нескольких звезд до нескольких сотен, тем самым отличаясь от молодых звездных скоплений большим размером и меньшей плотностью звезд. Притяжение между звездами в ассоциациях обычно слишком мало, чтобы удержать их вместе, и поэтому ассоциации существуют недолго (по космическим меркам) - всего за 10-20 млн. лет они расширяются настолько, что их звезды уже не выделяются на фоне других звезд. Существование в Галактике звездных скоплений и ассоциаций самого различного возраста неопровержимо свидетельствует о том, что звезды формируются не в одиночку, а группами, а сам процесс звездообразования продолжается и в настоящее время. Примером звездной ассоциации является группа молодых голубых звезд в созвездии Ориона, ядром которых является "трапеция Ориона".


Не только входящие в скопления звезды, но и сами скопления не вечны. Расстояния между звездами в рассеянных скоплениях относительно велики, а значит - малы и силы гравитационного взаимодействия. За миллионы лет вследствие приливного действия Галактики скопления постепенно распадаются - входящие в них звезды все больше удаляются друг от друга и постепенно утрачивают гравитационные связи. Иногда по общему движению и расстоянию до группы звезд можно угадать в ней бывшее рассеянное скопление. Такие группы называются звездными потоками . Мало кому известно, что 5 звезд Ковша Большой Медведицы входят в одну из таких групп (см. фото слева), расположенную особенно близко к Солнцу (примерно 28 пк), и поэтому занимет на небе большую площадь. Этот поток состоит примерно из 100 звёзд, среди которых - Гемма (альфа Северной Короны), и даже Сириус!

В теме о звездных скоплениях нелишне будет напоследок упомянуть и об астеризмах - характерных конфигурациях (нередко - правильной формы, либо напоминающей контур какого-то предмета), образуемых случайными, никак друг с другом не связанными звездами. Астеризмами считаются и крупные образования, вроде фигур созвездий (например, главные звезды фигуры Ориона носят название астеризма "Бабочка"), и даже - сразу нескольких созвездий (так, Вега, Денеб и Альтаир образуют хорошо известный "весенне-летний треугольник"), и совсем мелкие, видимые в бинокль или телескоп (например, астеризм "Вешалка" в Лисичке). Никакого научного интереса астеризмы не представляют, но с эстетической точки зрения бывают достаточно эффектными.

ЗВЁЗДНЫЕ СКОПЛЕНИЯ

Скопление
Звёздные скопления бывают двух типов:

открытые скопления , например Плеяды, насчитывают от нескольких сотен до нескольких тысяч свободно расположенных молодых звёзд;
в шаровых скоплениях , таких как Омега Центавра, звёзды располагаются очень компактно. Они могут содержать до миллиона очень старых звёзд и, возможно, являются самыми древними образованиями нашей Галактики.

ПЛЕЯДЫ

Открытое скопление М45 в созвездии Тельца .
Диаметр центра - 7 световых лет.

Общий диаметр - 40 световых лет.

Расстояние до Солнца - 410 световых лет.

Концентрация: 3000 звёзд на 0.05 кубических световыхлет.

СКОПЛЕНИЕ ГЕРКУЛЕСА

Шаровое скопление М13 в созвездии Геркулеса.

Диаметр - 160 световых лет.

Расстояние до Солнца - 23 500 световых лет.

Концентрация в центре - 1 звезда на кубический световой год.

ГАЛАКТИЧЕСКИЕ СКОПЛЕНИЯ

Скопление - группа небесных тел одной природы, связанных силами гравитационного взаимодействия. Различают галактические скопления и звёздные скопления, находящиеся в пределах одной галактики.
ГМП относится к маленькому скоплению, известному под названием Локальная Группа. Некоторые галактические скопления объединены в сверхскопления.

В Сферических Галактиках нет спиральных рукавов, они более-менее плоские и их часто объединяют в одну группу со спиральными Галактиками. К сферическим Галактикам относится шаровая Галактика NGC 5128 (созвездие Кентавра) или М 87 (созвездие Девы). Они привлекают к себе внимание как мощнейшие источники радиоизлучения.

Эллиптические Галактики выглядят как несколько приплюснутые сферы и содержат мало газа и пыли. Их диаметр изменяется от 30.000 до 300.000 световых лет: такие Галактики составляют 10-15% от всех видимых Галактик во Вселенной. Эти Галактики выглядят как эллипсы с разной степенью сжатия. Среди них есть Галактики, похожие на линзу, и почти шаровые звёздные системы. Встречаются и гиганты, и карлики. Примерно четверть из наиболее ярких Галактик относят к числу эллиптических. Для многих из них характерен красноватый цвет.


Сферические / эллиптические: самые круглые - Е0, самые сплющенные Е7;
SО - промежуточные между спиральными и эллиптическими Галактиками;

спиральные: Sa - с короткими рукавами, толстыми спиралями, у Sc - ветви длинные, тонкие;

спиральные пересечённые", с перемычкой, из концов которой начинаются рукава (SВа, SВb, SВс);

неправильные Галактики (Irr).

Спиральная Галактика имеет форму диска с утолщением в центре - ядром. Из ядра исходят спиральные рукава, более или менее плотно прилегающих друг к другу. Ядро в основном состоит из старых звёзд, в то время как рукава состоят по большей части из молодых звёзд и газа, в основном - водорода. Все ветви - а их может быть одна, две или несколько - лежат в плоскости, совпадающей с плоскостью вращения Галактики. Поэтому Галактика имеет вид сплющенного диска. Спиральные Галактики окружены обширным тёмным, почти сферическим ореолом, который также состоит из старых звёзд.
Спиральные Галактики встречаются чаще других. К их числу относятся Галактика Млечного Пути, Галактика в Андромеде (М31), Галактика в Треугольнике (М33).

СОМБРЕРО

Галактика М104 в созвездии Девы.

Диаметр - около 110.000 световых лет.

Расстояние до Солнца – 40.000.000 световых лет.

ГОНЧИЕ ПСЫ

Ширина - около 60.000 световых лет.

Расстояние до Солнца – 35.000.000 световых лет.

Тип: гигантская спиральная галактика.

М 31 ТУМАННОСТЬ АНДРОМЕДЫ

Диаметр - около 150.000 световых лет. Расстояние до Солнца – 2.400.000 световых лет. Тип: гигантская спиральная галактика.

ГАЛАКТИКА МЛЕЧНОГО ПУТИ (ГМП)

17 млрд. лет назад началась образовываться наша ГАЛАКТИКА - МЛЕЧНЫЙ ПУТЬ. Спиральная Галактика Млечного Пути - одна из множеств Галактик разной формы, существующих во Вселенной. См.

Магеллановы Облака - это карликовые Галактики. Наибольшие угловые их размеры на звёздном небе 8°для Большого Магелланова Облака (БМО) и 4° для Малого Магеланова Облака (ММО). Звёзды Магелановых Облаков сходны со звёздами спиральных рукавов нашей Галактики, которые для земного наблюдателя видятся как серебристое сияние Млечного Пути. В Магелановых Облаках много молодых и горячих ярких звёзд, очень много голубых сверхгигантов чрезвычайно высокой светимости.


БОЛЬШОЕ МАГЕЛАНОВО ОБЛАКО (БМО)

Галактика LMC в созвездии Золотой Рыбы.

Диаметр – 26.000 световых лет.

Расстояние до Солнца - 16. 000 световых лет.

На современных звёздных картах БМО попадает в созвездие Столовой Горы и Золотой Рыбы.

S Золотой Рыбы в БМО - ярчайшая из известных на сегодняшний день во Вселенной.

Тарантул - световая диффузная туманность БМО. Это самая крупная из известных туманностей в Местной группе Галактик. Внутри этой туманности с "неистовой скоростью" происходит процесс рождения новых звёзд. В центре туманности находится рассеянное скопление очень горячих голубых звёзд.

МАЛОЕ МАГЕЛАНОВО ОБЛАКО (ММО)

Галактика SMC в созвездии Тукана.

Диаметр - 16.000 световых лет.

Расстояние до Солнца – 212.000 световых лет.

Тип: галактика неправильной формы.

На современных звёздных картах ММО попадает в созвездие Тукана.

МЕТАГАЛАКТИКА

ЛОКАЛЬНАЯ ГРУППА - скопление, насчитывающее около 30 Галактик, среди которых Млечный Путь, Магелановы Облака и туманность Андромеды. Имеет неправильную форму, расстояние между наиболее удалёнными точками скопления оценивается в 6 млн. световых лет.

Ячеисто-сотовая структура Метагалактики

Исходя из выше сказанного, не трудно объяснить видимые в Метагалактике образования, напоминающие пчелиные соты с размерами ячеек в 100-300 миллионов световых лет. Характерной особенностью ячеисто-сотовой структуры состоит в том, что внутренняя полость ячеек (войды) выглядит практически пустой, а все галактики и их скопления собраны в кластеры или вдоль так называемых "стенок", оконтуривающих ячейки.

Образование додекаэдра с внутренними шестнадцатью полостями формируется после второго этапа квантования. Но квантование пространства на этом этапе не заканчивается. Оно продолжится в каждой из вновь созданной хронооболочке много раз, образуя все новые и новые миллиарды систем по фрактальному типу.

Войды

В додекаэдрической структуре первого порядка образуются более мелкие додекаэдрические структуры второго порядка и т. д. Возможно, что они дополняются икосаэдрическими структурами, т.к. оба многогранника (додекаэдр и икосаэдр) легко перестраиваются друг в друга. Икосаэдро-додекаэдрическая структура хронооболочек образует крупномасштабную ячеисто-сотовую структуру Метагалактики. Скопления и сверхскопления галактик образуются в икосаэдро-додекаэдрических структурах меньшего уровня.

Вселенная в момент инфляции представляет собой псевдопространство, заполненное невидимыми ячейками, наподобие пчелиных сот, где в качестве ячеек находились раздувающиеся пузыри хронооболочек. Причем каждая такая ячейка содержала внутри себя будущее скопление или сверхскопление галактик, исполненных внутренними невидимыми хрональными оболочками будущих галактик и звездных систем по матрешечному типу, образуя фракталы Вселенной. Каждая хронооболочка в свернутом состоянии представляет собой гравитационный веерный диполь в связанном состоянии. Как только к такому диполю начинает поступать энергия, он «раскрывается», преобразуясь в пространство и материю.

Предел дифференциации по горизонтали определяется критической плотностью образующегося вещества. Раскрывающиеся хронооболочки стремительно увеличивают свое пространство, но вещество начинает формироваться только тогда, когда выделенная энергия превысит некоторое предельное значение. Поэтому в самый начальный момент инициации диполя плотность вещества равна нулю. Когда плотность вещества достигает порядка примерно 10-20 г/см3, начинается следующий этап в дифференциации - вертикальный. Он характеризуется тем, что новая образующаяся подсистема относится не к нулевому, а к первому модулю ИСМ, что позволяет ей занимать одно и то же место в пространстве. Т.е. пространства нулевого и первого модуля становятся пересекающимися множествами.

Пределом дифференциации Метагалактики являются галактики, поскольку в их формировании явно выражена вертикальная дифференциация. Эволюционно развитые галактики представляют собой двух-системные образования. К ним относятся спиральные галактики, в которых помимо хронооболочки нулевого модуля – сферической подсистемы, существует хронооболочка первого модуля – дисковая подсистема галактики.


Таким образом, в качестве элементарной структурной единицы Метагалактики будем считать галактику. Точно так же в строении обычного вещества его пределом являются молекулы. Потому что на уровне молекул начинается новая ступень в организации материи. Благодаря одинаковости молекул, мы видим вещество однородным, с присущим только ему определенными физико-химическими свойствами. Так же и в Метагалактике. Вся она состоит их плотной упаковки хронооболочек галактик, которые играют ту же роль, что и молекулы в веществе. В этом смысле Метагалактика супероднородна, т.к. вся она состоит из одних и тех же структурных элементов – галактик, играющих роль «молекул» в «супервеществе» Вселенной.

Циклические этапы в Метагалактике

Если рассматривать Метагалактику с точки зрения циклических этапов, т.е. ее относительного возраста, то можно отметить, что мы видим ранний этап развития Метагалактики, т.е. видим ее молодой. О чем свидетельствует интенсивное скопление галактик вдоль ребер додекаэдра, образующих так называемые «стенки» скоплений и сверхскоплений. Но это несколько упрощенный взгляд, на самом деле ситуация несколько сложнее. Когда мы наблюдаем другие галактики, то мы смотрим не только в даль, но и в прошлое, что связано с конечностью скорости света. Поэтому такое представление связано с тем, что свет, дошедший до нас от этих космических объектов, отправился тогда, когда додекаэдр только формировался.

Объяснение этому факту можно найти в следующем. Можно предположить, что в момент инфляции хронооболочка Вселенной дробилась «бессчетное» количество раз. Одновременно образовались миллиарды и миллиарды хронооболочек галактик, заполнившие собой всю Вселенную. Хронооболочки галактик образовались одновременно, но их количество конечно. В первый момент все хронооболочки представляют собой гравитационные диполи в свернутом виде. Все одновременно развернуться они не могут, т.к. находятся в неравных условиях. Раньше всего себя проявят те галактики, к которым энергия поступает интенсивнее всего. А это происходит вдоль ребер додекаэдра. Также легче «зажигаются» звезды галактик на периферии системы, т.е. там, где нет такого сильного давления, как в центре.

Поэтому все видимое вещество наблюдается вдоль «стенок» или «сшивок» между собой хронооболочек. Еще раз поясню, это связано с тем, что, во-первых, в местах «сшивки» хронооболочек амплитуда выделяющейся энергии возрастает за счет суммирования двух потоков обеих хронооболочек, текущих в одном направлении, что помогает звездообразовательному процессу. Во-вторых, раздвигание пространства на краю хронооболочки происходит легче и проще, чем в ее середине. Поэтому галактики на периферии проявляются значительно раньше, чем внутри. Перемещение звездообразования происходит от периферии к центру хронооболочки. Чем старше возраст (цикл), тем кучнее скопления галактик в центре первичной хронооблочки.


В результате чего в Метагалактике мы наблюдаем кластеры и войды (пустоты). Это достаточно хорошо видно по распределению галактик и их скоплений, т.е. "светящегося вещества". Практически весь "свет" находится в филаментах. В местах пересечения этих волокон располагаются сверхскопления. А в войдах - пусто. Большие войды занимают около 50 процентов объема Метагалактики. Поэтому на данном этапе развития с войдами связаны центральные области сфер хронооболочек высших уровней, в которых подсистемы внутренних хронооболочек находятся пока в виде свернутых диполей.

По мере того, как время жизни этих «первых» галактик вдоль ребер додекаэдра будет заканчиваться, они будут стареть и умирать. Зато на смену им будут «приходить» (проявляться) новые галактики, которые находятся ближе к центру сфер додекаэдра. Звездообразование постепенно будет перемещаться от ребер додекаэдра к центру его граней и далее к центру сферы хронооболочки. Поэтому по мере взросления Метагалактики войды будут «заполняться» все новыми и новыми галактиками, в то время как вдоль ребер додекаэдров галактики будут умирать и гаснуть. Следовательно, на более позднем этапе мы бы увидели шаровые сверхскопления галактик, не на границе сферических оболочек или гранях додекаэдра, а внутри пространственных сфер, расположенных на приблизительно одинаковых расстояниях друг от друга.

Со стороны «взросление» будет выглядеть так, будто вещество ячеек «перемещается» от ребер додекаэдра к его центру, а точнее к центру хронооболочки, где оно начинает как бы «кучковаться». Но это видимое представление. На самом деле галактики никуда не двигаются. Энергия выделяется в центре хронооболочки и дальше распространяется к периферии, а звездообразование начинается от периферии и двигается к центру хронооболочки.

В отличие от самой Метагалактики более низкие ее структурные уровни, т.е. скопления и сверхскопления галактик, находятся в более зрелой стадии своего развития. Вследствие этого в хронооболочках сверхскоплений мы наблюдаем «кучкование» вещества в ее центре. Т.е. мы отмечаем, что галактики как бы «переместились» к центру хронооболочки, где и образовали эти скопления. Когда мы сумеем развернуть нашу двухмерную картину звездного неба в трехмерный вариант, то вполне возможно, что мы сумеем увидеть эту грандиозную структуру.

Астрономы с помощью инструмента MUSE на Очень Большом Телескопе в Чили обнаружили звезду в скоплении NGC 3201, которая ведёт себя очень странно. Складывается такое ощущение, что она вращается вокруг невидимой чёрной дыры, масса которой приблизительно в четыре раза больше массы Солнца. Если это действительно так, что учёные обнаружили первую неактивную чёрную дыру звёздной массы, причём в шаровом звёздном скоплении. К тому же, она будет первой, обнаруженной непосредственно по её гравитации. Это очень важное открытие, которое обязательно окажет влияние на наше понимание формирования таких звёздных скоплений, чёрных дыр и происхождения событий высвобождения гравитационных волн.

Шаровые звёздные скопления потому так и названы, что они являются огромными сферами, содержащими несколько десятков тысяч звёзд. Они расположены в большинстве галактик, являются одними из самых старых известных звёздных объединений во вселенной, а их появление относят к времени начала роста галактики-хозяина и её эволюции. На сегодняшний день известны более чем 150 звёздных скоплений, принадлежащих Млечному Пути.

Одна из таких групп носит название NGC 3201, она расположена в созвездии Парус южного неба Земли. В данном исследовании она была изучена с помощью современного инструмента MUSE, установленного на Очень Большом Телескопе (VLT) Европейской Южной Обсерватории в Чили. Международная команда астрономов выяснила, что одна из звёзд в скоплении ведёт себя очень странно – колеблется вперёд и назад на скоростях в несколько сотен тысяч километров в час с определённой периодичностью в 167 дней. Обнаруженная звезда является звездой главной последовательности, находящейся в конце своей основной фазы жизни. Это означает, что она исчерпала своё водородное топливо и теперь становится красным гигантом.

Представление художника о неактивной чёрной дыре в скоплении NGC 3201. Источник: ESO/L. Calçada/spaceengine.org

С помощью MUSE в настоящее время проводится обзор 25-ти шаровых звёздных скоплений Млечного Пути. Эта работа позволит астрономам получить спектры от 600 до 27000 звёзд в каждом скоплении. Исследование включает анализ радиальных скоростей отдельных звёзд – скорости, с которой они движутся от Земли или к ней, то есть по линии визирования наблюдателя. Благодаря анализу радиальных скоростей можно измерить орбиты звёзд, а также свойства любого крупного объекта, вокруг которого они могут вращаться.

“Эта звезда вращается вокруг чего-то, что абсолютно невидимо. У него есть масса, которая больше Солнца в четыре раза, и это может быть только чёрной дырой. Получается, что мы впервые нашли подобный объект в звёздном скоплении, причём непосредственно наблюдая её гравитационное воздействие”, – восхищается ведущий автор работы Бенджамин Гисерс из Гёттингенского университета имени Георга-Августа.

Взаимосвязь между чёрными дырами и звёздными скоплениями выглядит для учёных очень важной, но таинственной. Из-за их больших масс и возрастов, эти скопления, как полагают, образовали большое количество чёрных дыр звёздной массы – объекты, образовавшиеся в результате взрыва крупных звёзд и коллапсирующих под воздействием силы всего скопления.

В отсутствие непрерывного образования новых звёзд, именно так и происходит в шаровых звёздных скоплениях, чёрные дыры звёздных масс вскоре становятся самыми крупными существующими объектами. Обычно такие дыры в шаровых скоплениях приблизительно в четыре раза крупнее, чем окружающие их звёзды. Недавно разработанные теории позволили прийти к заключению, что чёрные дыры формируют плотное ядро в группе, которое становится как бы отдельной частью скопления. Движения в центре группы должно было изгнать большинство чёрных дыр. Это означает, что только некоторые подобные объекты могли бы выжить после миллиарда лет.

Шаровое звёздное скопление NGC 3201. Синим кружочком показано предполагаемое расположение неактивной чёрной дыры. Источник: ESA/NASA

Сами чёрные дыры звёздной массы или попросту коллапсары формируются, когда погибают крупные звёзды, разрушаясь под действием своей собственной гравитации, и взрываются как мощные гиперновые. Оставшаяся чёрная дыра содержит большую часть массы прежней звезды, которая в несколько раз больше массы Солнца, а их размер больше нашего светила в несколько десятков раз.

Инструмент MUSE предоставляет астрономам уникальную возможность измерить движение до тысячи далёких звёзд одновременно. С этим новым открытием команда была впервые в состоянии обнаружить неактивную чёрную дыру в центре шарового скопления. Она уникальна тем, что в настоящее время не поглощает материю и не окружена раскалённым диском газа и пыли. А массу дыры удалось оценить благодаря её огромному гравитационному влиянию на саму звезду.

Поскольку никакое излучение не в состоянии убежать от чёрной дыры, основным методом их обнаружения является наблюдение радио или рентгеновской эмиссии, исходящей от горячего материала вокруг них. Но когда чёрная дыра не взаимодействует с горячей материей и не накапливает массы, и не испускает излучения, в этом случае её считают неактивной или невидимой. Поэтому требуется использовать другие методы их обнаружения.

Астрономам удалось определить следующие параметры звезды: её масса составляет приблизительно 0.8 массы Солнца, а масса её таинственного коллеги лежит в пределах 4.36 массы Солнца, почти точно это чёрная дыра. Поскольку неяркий объект этой двойной системы не может наблюдаться непосредственно, есть альтернативный метод, правда, менее убедительный, объясняющий то, что это может быть. Возможно, учёные наблюдают тройную звёздную систему, составленную из двух плотно связанных нейтронных звёзд, вокруг которых вращается звезда, которую мы и наблюдаем. Этот сценарий требует, чтобы каждая плотно связанная звезда была как минимум в два раза массивнее Солнца, а такая двойная система ранее никогда не наблюдалась.

Недавние обнаружения радио и рентгеновских источников в шаровых звёздных скоплениях, а также нахождение в 2016 году сигналов гравитационных волн, созданных слиянием двух чёрных дыр звёздной массы, предполагают, что эти относительно небольшие чёрные дыры могут быть распространены шире в скоплениях, чем предполагалось ранее.

“До недавнего времени нами предполагалось, что почти все чёрные дыры должны исчезнуть из шаровых звёздных скоплений через короткое время, и что системы, подобные этой, даже не должны существовать! Но в реальности дело обстоит не так. Наше открытие – первое прямое наблюдение гравитационных эффектов чёрной дыры звёздной массы в шаровом скоплении. Это открытие поможет нам в понимании формирования таких групп, развития чёрных дыр и двойных звёздных систем – жизненно важных в контексте понимания источников гравитационных волн”.