Законы геометрической оптики. Геометрическая оптика

Определение 1

Оптика – один из разделов физики, который изучает свойства и физическую природу света, а также его взаимодействия с веществами.

Данный раздел делят на три, приведенные ниже, части:

  • геометрическая или, как ее еще называют, лучевая оптика, которая базируется на понятии о световых лучах, откуда и исходит ее название;
  • волновая оптика, исследует явления, в которых проявляются волновые свойства света;
  • квантовая оптика, рассматривает такие взаимодействия света с веществами, при которых о себе дают знать корпускулярные свойства света.

В текущей главе нами будут рассмотрены два подраздела оптики. Корпускулярные свойства света будут рассматриваться в пятой главе.

Задолго до возникновения понимания истинной физической природы света человечеству уже были известны основные законы геометрической оптики.

Закон прямолинейного распространения света

Определение 1

Закон прямолинейного распространения света гласит, что в оптически однородной среде свет распространяется прямолинейно.

Подтверждением этому служат резкие тени, которые отбрасываются непрозрачными телами при освещении с помощью источника света сравнительно малых размеров, то есть так называемым «точечным источником».

Иное доказательство заключается в достаточно известном эксперименте по прохождению света далекого источника сквозь малое отверстие, с образующимся в результате узким световым пучком. Данный опыт подводит нас к представлению светового луча в виде геометрической линии, вдоль которой распространяется свет.

Определение 2

Стоит отметить тот факт, что само понятие светового луча вместе с законом прямолинейного распространения света утрачивают весь свой смысл, в случае если свет проходит через отверстия, размеры которых аналогичны с длиной волны.

Исходя из этого, геометрическая оптика, которая опирается на определение световых лучей – это предельный случай волновой оптики при λ → 0 , рамки применения которой рассмотрим в разделе, посвященном дифракции света.

На грани раздела двух прозрачных сред свет может частично отразиться таким образом, что некоторая часть световой энергии будет рассеиваться после отражения по уже новому направлению, а другая пересечет границу и продолжит свое распространение во второй среде.

Закон отражения света

Определение 3

Закон отражения света , основывается на том, что падающий и отраженный лучи, а также перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, находятся в одной плоскости (плоскость падения). При этом углы отражения и падения, γ и α – соответственно, являются равными величинами.

Закон преломления света

Определение 4

Закон преломления света , базируется на том, что падающий и преломленный лучи, также как перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости. Отношение sin угла падения α к sin угла преломления β является величиной, неизменной для двух приведенных сред:

sin α sin β = n .

Ученый В. Снеллиус экспериментально установил закон преломления в 1621 году.

Определение 5

Постоянная величина n – является относительным показателем преломления второй среды относительно первой.

Определение 6

Показатель преломления среды относительно вакуума имеет название – абсолютный показатель преломления .

Определение 7

Относительный показатель преломления двух сред – это отношение абсолютных показателей преломления данных сред, т.е.:

Свое значение законы преломления и отражения находят в волновой физике. Исходя из ее определений, преломление является результатом преобразования скорости распространения волн в процессе перехода между двумя средами.

Определение 8

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ 1 к скорости во второй υ 2:

Определение 9

Абсолютный показатель преломления эквивалентен отношению скорости света в вакууме c к скорости света υ в среде:

На рисунке 3 . 1 . 1 проиллюстрированы законы отражения и преломления света.

Рисунок 3 . 1 . 1 . Законы отражения υ преломления: γ = α ; n 1 sin α = n 2 sin β .

Определение 10

Среда, абсолютный показатель преломления которой является меньшим, является оптически менее плотной .

Определение 11

В условиях перехода света из одной среды, уступающей в оптической плотности другой (n 2 < n 1) мы получаем возможность наблюдать явление исчезновения преломленного луча.

Данное явление можно наблюдать при углах падения, которые превышают некий критический угол α п р. Этот угол носит название предельного угла полного внутреннего отражения (см. рис. 3 . 1 . 2).

Для угла падения α = α п р sin β = 1 ; значение sin α п р = n 2 n 1 < 1 .

При условии, что второй средой будет воздух (n 2 ≈ 1) , то равенство будет допустимо переписать в вид: sin α п р = 1 n , где n = n 1 > 1 – абсолютный показатель преломления первой среды.

В условиях границы раздела «стекло–воздух», где n = 1 , 5 , критический угол равен α п р = 42 ° , в то время как для границы «вода–воздух» n = 1 , 33 , а α п р = 48 , 7 ° .

Рисунок 3 . 1 . 2 . Полное внутреннее отражение света на границе вода–воздух; S – точечный источник света.

Феномен полного внутреннего отражения широко используется во многих оптических устройствах. Одним из таких устройств является волоконный световод – тонкие, изогнутые случайным образом, нити из оптически прозрачного материала, внутри которых свет, попавший на торец, может распространяться на огромные расстояния. Данное изобретение стало возможным только благодаря правильному применению феномена полного внутреннего отражения от боковых поверхностей (рис 3 . 1 . 3).

Определение 12

Волоконная оптика – это научно-техническое направление, основывающееся на разработке и использовании оптических световодов.

Рисунок 3 . 1 . 3 . Распространение света в волоконном световоде. При сильном изгибе волокна закон полного внутреннего отражения нарушается, и свет частично выходит из волокна через боковую поверхность.

Рисунок 3 . 1 . 4 . Модель отражения и преломления света.

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter

Основные законы геометрической оптики известны ещё с древних времен. Так, Платон (430 г. до н.э.) установил закон прямолинейного распространения света. В трактатах Евклида формулируется закон прямолинейного распространения света и закон равенства углов падения и отражения. Аристотель и Птолемей изучали преломление света. Но точных формулировок этих законов геометрической оптики греческим философам найти не удалось.Геометрическая оптика является предельным случаем волновой оптики, когда длина световой волны стремится к нулю. Простейшие оптические явления, например возникновение теней и получение изображений в оптических приборах, могут быть поняты в рамках геометрической оптики.

В основу формального построения геометрической оптики положено четыре закона , установленных опытным путем:· закон прямолинейного распространения света;· закон независимости световых лучей;· закон отражения;· закон преломления света.Для анализа этих законов Х. Гюйгенс предложил простой и наглядный метод, названный впоследствии принципом Гюйгенса .Каждая точка, до которой доходит световое возбуждение, является , в свою очередь, центром вторичных волн ; поверхность, огибающая в некоторый момент времени эти вторичные волны, указывает положение к этому моменту фронта действительно распространяющейся волны.

Основываясь на своем методе, Гюйгенс объяснил прямолинейность распространения света и вывел законы отражения и преломления .Закон прямолинейного распространения света свет в оптически однородной среде распространяется прямолинейно .Доказательством этого закона является наличие тени с резкими границами от непрозрачных предметов при освещении их источниками малых размеров.Тщательные эксперименты показали, однако, что этот закон нарушается, если свет проходит через очень малые отверстия, причем отклонение от прямолинейности распространения тем больше, чем меньше отверстия.

Тень, отбрасываемая предметом, обусловлена прямолинейностью распространения световых лучей в оптически однородных средах.Рис 7.1Астрономической иллюстрацией прямолинейного распространения света и, в частности, образования тени и полутени может служить затенение одних планет другими, например затмение Луны , когда Луна попадает в тень Земли (рис. 7.1). Вследствие взаимного движения Луны и Земли тень Земли перемещается по поверхности Луны, и лунное затмение проходит через несколько частных фаз (рис. 7.2).

Закон независимости световых пучков эффект, производимый отдельным пучком, не зависит от того , действуют ли одновременно остальные пучки или они устранены. Разбивая световой поток на отдельные световые пучки (например, с помощью диафрагм), можно показать, что действие выделенных световых пучков независимо.Закон отражения (рис. 7.3):· отраженный луч лежит в одной плоскости с падающим лучом и перпендикуляром , проведенным к границе раздела двух сред в точке падения угол падения α равен углу отражения γ: α = γ

Для вывода закона отражения воспользуемся принципом Гюйгенса. Предположим, что плоская волна (фронт волны АВ с , падает на границу раздела двух сред (рис. 7.4). Когда фронт волны АВ достигнет отражающей поверхности в точке А , эта точка начнет излучать вторичную волну .· Для прохождения волной расстояния ВС требуется время Δt = BC / υ . За это же время фронт вторичной волны достигнет точек полусферы, радиус AD которой равен: υ Δt = ВС. Положение фронта отраженной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление распространения этой волны – лучом II. Из равенства треугольников ABC и ADC вытекает закон отражения : угол падения α равен углу отражения γ. Закон преломления (закон Снелиуса ) (рис. 7.5):· луч падающий, луч преломленный и перпендикуляр, проведенный к границе раздела в точке падения, лежат в одной плоскости; · отношение синуса угла падения к синусу угла преломления есть величина постоянная для данных сред .

Вывод закона преломления. Предположим, что плоская волна (фронт волны АВ ), распространяющаяся в вакууме вдоль направления I со скоростью с , падает на границу раздела со средой, в которой скорость ее распространения равна u (рис. 7.6).Пусть время, затрачиваемое волной для прохождения пути ВС , равно Dt . Тогда ВС = с Dt . За это же время фронт волны, возбуждаемой точкой А в среде со скоростью u , достигнет точек полусферы, радиус которой AD = u Dt . Положение фронта преломленной волны в этот момент времени в соответствии с принципом Гюйгенса задается плоскостью DC , а направление ее распространения – лучом III. Из рис. 7.6 видно, что , т.е. .Отсюда следует закон Снелиуса : .Несколько иная формулировка закона распространения света была дана французским математиком и физиком П. Ферма.

Физические исследования относятся большей частью к оптике, где он установил в 1662 г. основной принцип геометрической оптики (принцип Ферма). Аналогия между принципом Ферма и вариационными принципами механики сыграла значительную роль в развитии современной динамики и теории оптических инструментов.Согласно принципу Ферма , свет распространяется между двумя точками по пути, для прохождения которого необходимо наименьшее время . Покажем применение этого принципа к решению той же задачи о преломлении света.Луч от источника света S , расположенного в вакууме идет до точки В , расположенной в некоторой среде за границей раздела (рис. 7.7).

В каждой среде кратчайшим путем будут прямые SA и AB . Точку A охарактеризуем расстоянием x от перпендикуляра, опущенного из источника на границу раздела. Определим время, затраченное на прохождение пути SAB : .Для нахождения минимума найдем первую производную от τ по х и приравняем ее к нулю: ,отсюда приходим к тому же выражению, что получено исходя из принципа Гюйгенса: .Принцип Ферма сохранил свое значение до наших дней и послужил основой для общей формулировки законов механики (в том числе теории относительности и квантовой механики).Из принципа Ферма вытекает несколько следствий.Обратимость световых лучей : если обратить луч III (рис. 7.7), заставив его падать на границу раздела под углом β, то преломленный луч в первой среде будет распространяться под углом α, т. е. пойдет в обратном направлении вдоль луча I. Другой пример – мираж , который часто наблюдают путешественники на раскаленных солнцем дорогах. Они видят впереди оазис, но когда приходят туда, кругом оказывается песок. Сущность в том, что мы видим в этом случае свет, прошедший над песком. Воздух сильно раскален над самой дорогой, а в верхних слоях холоднее. Горячий воздух, расширяясь, становится более разреженным и скорость света в нем больше, чем в холодном. Поэтому свет проходит не по прямой, а по траектории с наименьшим временем, заворачивая в теплые слои воздуха.Если свет распространяется из среды с большим показателем преломления (оптически более плотной) в среду с меньшим показателем преломления (оптически менее плотной) ( > ), например из стекла в воздух, то, согласно закону преломления, преломленный луч удаляется от нормали и угол преломления β больше, чем угол падения α (рис. 7.8 а ).

С увеличением угла падения увеличивается угол преломления (рис. 7.8 б , в ), до тех пор, пока при некотором угле падения () угол преломления не окажется равным π/2.Угол называется предельным углом . При углах падения α > весь падающий свет полностью отражается (рис. 7.8 г ). · По мере приближения угла падения к предельному, интенсивность преломленного луча уменьшается, а отраженного – растет.· Если , то интенсивность преломленного луча обращается в нуль, а интенсивность отраженного равна интенсивности падающего (рис. 7.8 г ). · Таким образом , при углах падения в пределах от до π/2 , луч не преломляется , а полностью отражается в первую среду , причем интенсивности отраженного и падающего лучей одинаковы. Это явление называется полным отражением. Предельный угол определим из формулы: ; .Явление полного отражения используется в призмах полного отражения (Рис. 7.9).

Показатель преломления стекла равен n » 1,5, поэтому предельный угол для границы стекло – воздух = arcsin (1/1,5) = 42°.При падении света на границу стекло – воздух при α > 42° всегда будет иметь место полное отражение.На рис. 7.9 показаны призмы полного отражения, позволяющие:а) повернуть луч на 90°;б) повернуть изображение;в) обернуть лучи.Призмы полного отражения применяются в оптических приборах (например, в биноклях, перископах), а также в рефрактометрах, позволяющих определять показатели преломления тел (по закону преломления, измеряя , определяем относительный показатель преломления двух сред, а также абсолютный показатель преломления одной из сред, если показатель преломления второй среды известен).

Явление полного отражения используется также в световодах , представляющих собой тонкие, произвольным образом изогнутые нити (волокна) из оптически прозрачного материала.Рис. 7.10В волоконных деталях применяют стеклянное волокно, световедущая жила (сердцевина) которого окружается стеклом – оболочкой из другого стекла с меньшим показателем преломления. Свет, падающий на торец световода под углам больше предельного , претерпевает на поверхности раздела сердцевины и оболочки полное отражение и распространяется только по световедущей жиле.Световоды используются при создании телеграфно-телефонных кабелей большой емкости . Кабель состоит из сотен и тысяч оптических волокон тонких, как человеческий волос. По такому кабелю, толщиной в обычный карандаш, можно одновременно передавать до восьмидесяти тысяч телефонных разговоров.Кроме того, световоды используются в оптоволоконных электронно-лучевых трубках, в электронно-счетных машинах, для кодирования информации, в медицине (например, диагностика желудка), для целей интегральной оптики.

Геометрическая оптика

Геометри́ческая о́птика - раздел оптики , изучающий законы распространения света в прозрачных средах и принципы построения изображений при прохождении света в оптических системах без учёта его волновых свойств.

Краеугольным приближением геометрической оптики является понятие светового луча . В этом определении подразумевается, что направление потока лучистой энергии (ход светового луча) не зависит от поперечных размеров пучка света.

В силу того, что свет представляет собой волновое явление, имеет место интерференция , в результате которой ограниченный пучок света распространяется не в каком-то одном направлении, а имеет конечное угловое распределение т.е имеет место дифракция . Однако в тех случаях, когда характерные поперечные размеры пучков света достаточно велики по сравнению с длиной волны, можно пренебречь расходимостью пучка света и считать, что он распространяется в одном единственном направлении: вдоль светового луча.

Кроме отсутствия волновых эффектов, в геометрической оптике пренебрегают также квантовыми эффектами. Как правило, скорость распространения света считается бесконечной (вследствие чего динамическая физическая задача превращается в геометрическую), однако учёт конечной скорости света в рамках геометрической оптики (например, в астрофизических приложениях) не представляет трудности. Кроме того, как правило, не рассматриваются эффекты, связанные с откликом среды на прохождение лучей света. Эффекты такого рода, даже формально лежащие в рамках геометрической оптики, относят к нелинейной оптике . В случае, когда интенсивность светового пучка, распространяющегося в данной среде, достаточно мала для того, чтобы можно было пренебречь нелинейными эффектами, геометрическая оптика базируется на общем для всех разделов оптики фундаментальном законе о независимом распространении лучей. Согласно нему лучи при встрече с другими лучами продолжает распространяться в том же направлении, не изменив амплитуды, частоты, фазы и плоскости поляризации электрического вектора световой волны. В этом смысле лучи света не влияют друг на друга и распространяются независимо. Результирующая картина распределения интенсивности поля излучения во времени и пространстве при взаимодействии лучей может быть объяснена явлением интерференции.

Не учитывает геометрическая оптика также и поперечного характера световой волны. Вследствие этого в геометрической оптике не рассматривается поляризация света и связанные с ней эффекты.

Законы геометрической оптики

В основе геометрической оптики лежат несколько простых эмпирических законов:

  1. Закон преломления света (Закон Снелла)
  2. Закон обратимости светового луча. Согласно ему, луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости , создаваемые ими, складываются.

Однако наиболее последовательным является вывод законов геометрической оптики из волновой оптики в эйкональном приближении. В этом случае, основным уравнением геометрической оптики становится уравнение эйконала , которое допускает также словесную интерпретацию в виде принципа Ферма , из которого и выводятся перечисленные выше законы.

Частным видом геометрической оптики является матричная оптика .

Разделы геометрической оптики

Среди разделов геометрической оптики стоит отметить

  • расчёт оптических систем в параксиальном приближении
  • распространение света вне параксиального приближения, формирование каустик и прочих особенностей световых фронтов.
  • распространение света в неоднородных и неизотропных средах (градиентная оптика)
  • распространение света в волноводах и оптоволокне
  • распространение света в гравитационных полях массивных астрофизических объектов, гравитационное линзирование .

История исследований


Wikimedia Foundation . 2010 .

  • Дюнкерк
  • Арамейское письмо

Смотреть что такое "Геометрическая оптика" в других словарях:

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в к ром изучаются законы распространения оптического излучения (света) на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль к рой распространяется поток световой энергии. Понятием луча можно… … Физическая энциклопедия

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА Современная энциклопедия

    Геометрическая оптика - ГЕОМЕТРИЧЕСКАЯ ОПТИКА, раздел оптики, в котором распространение света в прозрачных средах описывается с помощью представления о световых лучах, а волновые и квантовые свойства не учитываются. Основные законы геометрической оптики отражения света… … Иллюстрированный энциклопедический словарь

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчетов… … Большой Энциклопедический словарь

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел физики, в котором изучаются законы распространения (см.) в прозрачных средах на основе его прямолинейного распространения в однородной среде, отражения и преломления. Результаты, к которым приводит Г. о., часто бывают достаточными и… … Большая политехническая энциклопедия

    геометрическая оптика - geometrinė optika statusas T sritis fizika atitikmenys: angl. geometrical optics; ray optics vok. geometrische Optik, f; Strahlenoptik, f rus. геометрическая оптика, f; лучевая оптика, f pranc. optique géométrique, f … Fizikos terminų žodynas

    геометрическая оптика - раздел оптики, в котором распространение света в прозрачных средах рассматривается на основе представления о световом луче как линии, вдоль которой распространяется световая энергия. Законы геометрической оптики применяются для расчётов… … Энциклопедический словарь

    Геометрическая оптика - раздел оптики (См. Оптика), в котором изучаются законы распространения света на основе представлений о световых лучах. Под световым лучом понимают линию, вдоль которой распространяется поток световой энергии. Понятие луча не противоречит… … Большая советская энциклопедия

    геометрическая оптика - ▲ распространение луч света преломление. лучепреломление. преломить, ся. аберрация. астигматизм. дисторсия. кома. каустика, каустическая поверхность. фокус. фокальный. диоптрия. диоптрика. увеличительный (# линза). < > уменьшительный.… … Идеографический словарь русского языка

    ГЕОМЕТРИЧЕСКАЯ ОПТИКА - раздел оптики, в к ром законы распространения света в прозрачных средах рассматриваются на основе представлений о световых лучах линиях, вдоль к рых распространяется световая энергия. Г. о. предельный случай волновой оптики при Лямбда > 0, где… … Большой энциклопедический политехнический словарь

Геометрическая оптика – предельно простой случай оптики. По сути, это упрощенная версия волновой оптики, которая не рассматривает и просто не предполагает таких явлений, как интерференция и дифракция. Тут все упрощено до предела. И это хорошо.

Основные понятия

Геометрическая оптика – раздел оптики, в котором рассматриваются законы распространения света в прозрачных средах, законы отражения света от зеркальных поверхностей, принципы построения изображений при прохождении света через оптические системы.

Важно! Все эти процессы рассматриваются без учета волновых свойств света!

В жизни геометрическая оптика, являясь крайне упрощенной моделью, тем не менее, находит широкое применение. Это как классическая механика и теория относительности. Произвести нужный расчет чаще всего гораздо легче в рамках классической механики.

Основное понятие геометрической оптики – световой луч .

Отметим, что реальный световой пучок не распространяется вдоль линии, а имеет конечное угловое распределение, которое зависит от поперечного размера пучка. Геометрическая оптика пренебрегает поперечными размерами пучка.

Закон прямолинейного распространения света

Этот закон говорит нам о том, что в однородной среде свет распространяется прямолинейно. Иными словами, из точки А в точку Б свет движется по тому пути, который требует минимального времени на преодоление.

Закон независимости световых лучей

Распространение световых лучей происходит независимо друг от друга. Что это значит? Это значит, что геометрическая оптика предполагает, что лучи не влияют друг на друга. И распространяются так, будто других лучей и вовсе нет.

Закон отражения света

Когда свет встречается с зеркальной (отражающей) поверхностью, происходит отражение, то есть изменение направления распространения светового луча. Так вот, закон отражения гласит, что падающий и отраженный луч лежат в одной плоскости вместе с проведенной к точке падения нормалью. Причем угол падения равен углу отражения, т.е. нормаль делит угол между лучами на две равные части.

Закон преломления (Снеллиуса)

На границе раздела сред наряду с отражением происходит и преломление, т.е. луч разделяется на отраженный и преломленный.

Кстати! Для всех наших читателей сейчас действует скидка 10% на .


Отношение синусов углов падения и преломления является постоянной величиной и равняется отношению показателей преломления этих сред. Еще эта величина называется показателем преломления второй среды относительно первой.

Здесь стоит отдельно рассмотреть случай полного внутреннего отражения. При распространении света из оптически более плотной среды в менее плотную угол преломления по величине больше угла падения. Соответственно, при увеличении угла падения будет увеличиваться и угол преломления. При некотором предельном угле падения угол преломления станет равным 90 градусов. При дальнейшем увеличении угла падения свет не будет преломляться во вторую среду, а интенсивность падающего и отраженного лучей будут равны. Это называется полным внутренним отражением.

Закон обратимости световых лучей

Представим, что луч, распространяясь в каком-то направлении, претерпел ряд изменений и преломлений. Закон обратимости световых лучей гласит, что если пустить навстречу этому лучу другой луч, то он пойдет по тому же пути, что и первый, но в обратном направлении.

Мы продолжим изучать основы геометрической оптики, а в будущем мы обязательно рассмотрим примеры решения задач на применение различных законов. Ну а если сейчас у вас имеются какие-либо вопросы, добро пожаловать за верными ответами к специалистам студенческого сервиса . Мы поможем решить любую задачу!

Основные законы геометрической оптики. Полное отражение

Световой луч - это направленная линия, вдоль которой распространяется световая энергия. При этом ход светового луча не зависит от поперечных размеров пучка света. Говорят, что он распространяется в одном единственном направлении: вдоль светового луча.

В основе геометрической оптики лежат несколько простых эмпирических законов:

1)Закон прямолинейного распространения света : в прозрачной однородной среде свет распространяется по прямым линиям.

Отсюда - понятие световой луч, которое имеет геометрический смысл как линия, вдоль которой распространяется свет. Реальный физический смысл имеют световые пучки конечной ширины. Световой луч можно рассматривать как ось светового пучка. Поскольку свет, как и всякое излучение, переносит энергию, то можно говорить, что световой луч указывает направление переноса энергии световым пучком.

Наблюдения за распространением света во многих случаях свидетельствуют о том, что свет распространяется прямолинейно. Это и тень от предмета͵ освещаемого уличным фонарем, и движение тени Луны по Земле во время солнечных затмений, и лазерная юстировка приборов, и многие другие факты. Во всех случаях мы подразумеваем, что свет движется по прямой линии.

В геометрической оптике рассматриваются законы распространения света в прозрачных средах на основе представления о свете как о совокупности световых лучей – прямых или искривленных линий , которые начинаются на источнике света и продолжаются бесконечно. В случае если среда однородная, то лучи распространяются по прямым линиям. Эта закономерность и известна как закон прямолинейного распространения света. Прямолинейность распространения света проявляется в образовании тени от непрозрачного тела, если его освещают точечным источником света. В случае если тот же предмет освещают двумя точечными источниками света S 1 и S 2 (рис.1) или одним протяженным источником, то на экране возникают участки, которые освещены частично и носят название полутени. Примером образования тени и полутени в природе является солнечное затмение. Область применения этого закона ограничена. При малых размерах отверстия, через ĸᴏᴛᴏᴩᴏᴇ проходит свет (порядка 10 -5 м), как уже отмечалось выше, наблюдается явление отклонения света от прямой траектории, ĸᴏᴛᴏᴩᴏᴇ получило название дифракции света.

Рис.1.1.1 Образование тени и полутени.

В неоднородной среде лучи распространяются по криволинейным траекториям. Примеров неоднородной среды – разогретый песок в пустыне. Вблизи него воздух имеет высокую температуру, которая с высотой уменьшается. Соответственно плотность воздуха ближе к поверхности пустыни уменьшается. По этой причине лучи, идущие от реального объекта͵ преломляются в слоях воздуха, имеющих различную температуру, и искривляются. Как результат – формируется ложное представление о местоположении объекта. Возникает мираж, то есть изображение вблизи поверхности может казаться расположенным высоко на небе. По сути, это явление аналогично преломлению света в воде. К примеру, конец шеста͵ опущенного в воду, нам будет казаться расположенным ближе к ее поверхности, чем на самом деле.

2)Закон независимого распространения лучей : световые лучи распространяются независимо друг от друга.

Так, например, при установке непрозрачного экрана на пути пучка световых лучей экранируется (исключается) из состава пучка некоторая его часть. Однако, по свойству независимости необходимо считать, что действие лучей оставшихся незаэкранированными от этого не изменится. То есть предполагается, что лучи не влияют друг на друга, и распространяются так, как будто других лучей, кроме рассматриваемого, не существует.

Закон независимости световых пучков означает, что эффект, производимый отдельным пучком, не зависит от того, действуют ли одновременно остальные пучки. Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, пучки света можно складывать и расщеплять. Сложенные пучки будут ярче. Хорошо известный пример из истории сложения пучков солнечного света͵ когда при защите города от нападения вражеских судов с моря пучки света от Солнца множеством зеркал направлялись на судно в одну точку, так что в жаркое лето на деревянном судне возникал пожар. Многие из нас в детстве с помощью увеличительного стекла, собирающего свет, пробовали выжигать буквы на деревянной поверхности.

3) Закон отражения света

Отраже́ние - физический процесс взаимодействия волн или частиц с поверхностью, изменение направления волнового фронта на границе двух сред с разными свойствами, в котором волновой фронт возвращается в среду, из которой он пришёл. Одновременно с отражением волн на границе раздела сред, как правило, происходит преломление волн (за исключением случаев полного внутреннего отражения).

В акустике отражение является причиной эха и используется в гидролокации. В геологии оно играет важную роль в изучении сейсмических волн. Отражение наблюдается на поверхностных волнах в водоёмах. Отражение наблюдается со многими типами электромагнитных волн, не только для видимого света. Отражение УКВ и радиоволн более высоких частот имеет важное значение для радиопередач и радиолокации. Даже жёсткое рентгеновское излучение и гамма-лучи могут быть отражены на малых углах к поверхности специально изготовленными зеркалами. В медицине отражение ультразвука на границах раздела тканей и органов используется при проведении УЗИ-диагностики.

Закон отражения света:

падающий и отражённый лучи лежат в одной плоскости с нормалью к отражающей поверхности в точке падения, «угол падения α равен углу отражения γ».

Рис.1.1.2 Закон преломления

Отражение света может быть зеркальным (то есть таким, как наблюдается при использовании зеркал) или диффузным (в этом случае при отражении не сохраняется путь лучей от объекта, а только энергетическая составляющая светового потока) в зависимости от природы поверхности.

Зеркальным называют отражение света͵ когда падающий параллельный пучок света сохраняет свою параллельность после отражения. В случае если размеры неровностей поверхности больше длины волны падающего света͵ то он рассеивается по всевозможным направлениям, такое отражение света называют рассеянным или диффузионным.

Зеркальное отражение света:

1) отражённый луч лежит в плоскости, проходящей через падающий луч и нормаль к отражающей поверхности, восстановленную в точке падения;

2) угол отражения равен углу падения. Интенсивность отражённого света (характеризуемая коэффициентом отражения) зависит от угла падения и поляризации падающего пучка лучей, а также от соотношения показателей преломления n2 и n1 2-й и 1-й сред. Количественно эту зависимость (для отражающей среды - диэлектрика) выражают формулы Френеля. Из них, в частности, следует, что при падении света по нормали к поверхности коэффициент отражения не зависит от поляризации падающего пучка и равен

Пример. В частном случае нормального падения из воздуха или стекла на границу их раздела (показатель преломления воздуха = 1,0; стекла = 1,5) он составляет 4 %.

4)Закон преломления света

На границе двух сред свет меняет направление своего распространения. Часть световой энергии возвращается в первую среду, т.е. происходит отражение света.

Если вторая среда прозрачна, то часть света при определенных условиях может пройти через границу сред, также меняя при этом, как правило, направление своего распространения. Это явление называется преломлением света.

Закон преломления света: Падающий луч, преломленный луч и перпендикуляр к границе раздела двух сред, восстановленный в точке падения луча, лежат в одной плоскости; отношение синуса угла падения к синусу угла преломления β есть величина постоянная для двух данных сред

Показатель преломления - постоянная величина, входящая в закон преломления света, называется относительным показателем преломления или показателем преломления одной среды относительно первой.

Показатель преломления среды относительно вакуума называют абсолютным показателем преломления этой среды. Он равен отношению синуса угла падения α к синусу угла преломления при переходе светового луча из вакуума в данную среду. Относительный показатель преломления n связан с абсолютными показателями n2 и n1 первой среды соотношением:

Поэтому закон преломления может быть записан следующим образом:

Физический смысл показателя преломления – это отношение скорости распространения волн в первой среде υ1 к скорости их распространения во второй среде υ2:

Абсолютный показатель преломления равен отношению скорости света c в вакууме к скорости света υ в среде:

Среду с меньшим абсолютным показателем преломления принято называть оптически менее плотной средой

Абсолютный показатель преломления среды связан со скоростью распространения света в данной среде и зависит от физического состояния среды, в которой распространяется свет, т.е. от температуры, плотности вещества, наличия в нем упругих натяжений. Показатель преломления зависит также и от характеристик самого света. Для красного света он меньше, чем для зеленого, а для зеленого меньше, чем для фиолетового.

5) Закон обратимости светового луча . Согласно нему луч света, распространившийся по определённой траектории в одном направлении, повторит свой ход в точности при распространении и в обратном направлении.

Поскольку геометрическая оптика не учитывает волновой природы света, в ней действует постулат, согласно которому если в какой-то точке сходятся две (или большее количество) систем лучей, то освещённости, создаваемые ими, складываются.

Полное (внутреннее) отражение

Наблюдается для электромагнитных или звуковых волн на границе раздела двух сред, когда волна падает из среды с меньшей скоростью распространения (в случае световых лучей это соответствует бо́льшему показателю преломления).

С увеличением угла падения , угол преломления также возрастает, при этом интенсивность отражённого луча растет, а преломленного - падает (их сумма равна интенсивности падающего луча). При некотором критическом значении интенсивность преломленного луча становится равной нулю и происходит полное отражение света. Значение критического угла падения можно найти, положив в законе преломления угол преломления β равным 90°:

Если n - показатель преломления стекла относительно воздуха (n>1), то показатель преломления воздуха относительно стекла будет равен 1/n. В данном случае стекло является первой средой, а воздух - второй. Закон преломления запишется так:

При этом угол преломления больше угла падения, Значит, переходя в оптически менее плотную среду, луч отклоняется в сторону от перпендикуляра к границе двух сред. Наибольшему возможному углу преломления β = 90° соответствует угол падения a0.

При угле падения a > a0 преломленный пучок исчезнет, и весь свет отражается от границы раздела, т.е. происходит полное отражение света. Тогда, если направить луч света из оптически более плотной среды в оптически менее плотную среду, то по мере увеличения угла падения преломленный луч будет приближаться к границе раздела двух сред, затем пойдет по границе раздела, а при дальнейшем увеличении угла падения преломленный луч исчезнет, т.е. падающий луч будет полностью отражаться границей раздела двух сред.

Рис.1.1.3 Полное отражение

Предельный угол (альфа нулевое)– это угол падения, которому соответствует угол преломления 90 градусов.

Сумма интенсивностей отраженного и преломленного лучей равна интенсивности падающего луча. При увеличении угла падения интенсивность отраженного луча растет, а интенсивность преломленного луча убывает и для предельного угла падения становится равной нулю.

Рис.1.1.4 Световод

Явление полного внутреннего отражения находит применение во многих оптических устройствах. Наиболее интересным и практически важным применением является создание волоконных световодов, которые представляют собой тонкие (от нескольких микрометров до миллиметров) произвольно изогнутые нити из оптически прозрачного материала (стекло, кварц). Свет, попадающий на торец световода, может распространяться по нему на большие расстояния за счет полного внутреннего отражения от боковых поверхностей. Научно-техническое направление, занимающееся разработкой и применением оптических световодов, называется волоконной оптикой.

Волокна собираются в жгуты. При этом по каждому из волокон передаётся какой-нибудь элемент изображения.

Жгуты из волокон используются в медицине для исследования внутренних органов. Два световода можно закинуть в любое малодоступое место организма. С помощью одного световода освещают нужный объект, посредством другого передают его изображение в фотокамеру или глаз. Например, опуская световоды в желудок, медикам удаётся получить прекрасное изображение интересующей их области, несмотря на то, что световоды приходится перекручивать и изгибать самым причудливым образом.

Волоконная оптика применяется в для передачи большого объема информации в компьютерных сетях, для освещения недоступных мест, в рекламе, бытовой осветительной технике.

В военном деле, на подводных лодках широко используются перископы. Периско́п (от греч. peri - «вокруг» и scopo - «смотрю») - прибор для наблюдения из укрытия. Простейшая форма перископа - труба, на обоих концах которой закреплены зеркала, наклоненные относительно оси трубы на 45° для изменения хода световых лучей. В более сложных вариантах для отклонения лучей вместо зеркал используются призмы, а получаемое наблюдателем изображение увеличивается с помощью системы линз. Луч света полностью отражается и попадает в глаз наблюдателя.

Отклонение лучей призмой

На рисунке изображено сечение стеклянной призмы плоскостью, перпендикулярной ее боковым ребрам. Луч в призме отклоняется к основанию, преломляясь на гранях ОА и 0В. Угол А между этими гранями называют преломляющим углом призмы. Угол φ отклонения луча зависит от преломляющего угла призмы А, показателя преломления п материала призмы и угла падения a1. Он может быть вычислен с помощью закона преломления.

φ = А (п-1)

Следовательно, угол отклонения лучей призмой тем больше, чем больше преломляющий угол призмы

Рис.1.1.5 Отклонение лучей призмой

Призмы используются в конструкциях многих оптических приборов, к примеру, телескопов, биноклей, перископов, спектрометров. Используя призму, И.Ньютон впервые разложил свет на составляющие, и увидел, что на выходе из призмы возникает разноцветный спектр, причем цвета расположены в том же порядке, как и в радуге. Оказалось, что естественный «белый» свет состоит из большого количества разноцветных пучков.

Контрольные вопросы и задания

1. Сформулируйте и поясните основные законы геометрической оптики.

2. В чем заключается физический смысл абсолютного показателя преломления среды? Что такое относительный показатель преломления?

3. Сформулируйте условия зеркального и диффузного отражений света.

4. При каком условии наблюдается полное отражение?

5. Чему равен угол падения луча, если луч падающий и луч отраженный образуют угол ?

6. Докажете обратимость направления световых лучей для случая отражения света.

7.Можно ли придумать такую систему зеркал и призм (линз) через которую один наблюдатель видел бы второго наблюдателя, а второй наблюдатель не видел бы первого?

8.Показатель преломления стекла относительно воды равен 1,182: показатель преломления глицерина относительно воды равен 1.105. Найдите показатель преломления стекла относительно глицерина.

9. Найдите предельный угол полного внутреннего отражения для алмаза на границе с водой.

10. Почему блестят воздушные пузыри в воде?(Ответ: за счет отражения света на границе «вода-воздух»)