Вневременная формулировка квантовой механики. Квантовая механика. иной взгляд

Под квантовой механикой понимают физическую теорию динамического поведения форм излучения и вещества. Это на которой построена современная теория физических тел, молекул и элементарных частиц. Вообще, квантовая механика была создана учеными, которые стремились понять строение атома. В течении многих годов легендарные физики изучали особенности и направления химии и следовали историческому времени развития событий.

Такое понятие, как квантовая механика, зарождалось в течение долгих лет. В 1911 году ученые Н. Бор и предложили ядерную модель атома, которая напоминала модель Коперника с его солнечной системой. Ведь солнечная система имела в своем центре ядро, вокруг которого вращались элементы. На основе этой теории начались расчеты физических и химических свойств некоторых веществ, которые были построены из простых атомов.

Одним из важных вопросов в такой теории, как квантовая механика - это природа сил, которая связывала атом. Благодаря закону Кулона, Э. Резерфорд показал, что данный закон справедлив в огромных масштабах. Затем необходимо было определить, каким образом электроны движутся по своей орбите. В этом пункте помог

На самом деле, квантовая механика нередко противоречит таким понятиям, как здравый смысл. Наряду с тем, что наш здравый смысл действует и показывает только такие вещи, которые можно взять из повседневного опыта. А, в свою очередь, повседневный опыт имеет дело только с явлениями макромира и крупными объектами, в то время как материальные частицы на субатомном и атомарном уровне ведут себя совсем по-другому. Например, в макромире мы с легкостью способны определить нахождение любого объекта при помощи измерительных приборов и методов. А если мы будем измерять координаты микрочастицы электрона, то пренебречь взаимодействием объекта измерения и измерительного прибора просто недопустимо.

Другими словами можно сказать, что квантовая механика представляет собой физическую теорию, которая устанавливает законы движения различных микрочастиц. От классической механики, которая описывает движение микрочастиц, квантовая механика отличается двумя показателями:

Вероятный характер некоторых физических величин, например, скорость и положение микрочастицы определить точно невозможно, можно рассчитать только вероятность их значений;

Дискретное изменение например, энергия какой-либо микрочастицы имеет только определенные некоторые значения.

Квантовая механика еще сопряжена с таким понятием, как квантовая криптография , которая представляет собой быстроразвивающуюся технологию, способную изменить мир. Квантовая криптография направлена на то, чтобы защитить коммуникации и секретность информации. Основана эта криптография на определенных явлениях и рассматривает такие случаи, когда информация может переноситься при помощи объектом квантовой механики. Именно здесь с помощью электронов, фотонов и других физических средств определяется процесс приема и отправки информации. Благодаря квантовой криптографии можно создать и спроектировать систему связи, которая может обнаружить подслушивание.

На сегодняшний момент достаточно много материалов, где предлагается изучение такого понятия, как квантовая механика основы и направления, а также деятельности квантовой криптографии. Чтобы обрести знания в этой непростой теории, необходимо досконально изучать и вникать в эту область. Ведь квантовая механика - это далеко не легкое понятие, которое изучалось и доказывалось величайшими учеными многими годами.

Отправить

Квантовая механика

Что такое квантовая механика?

Квантовая механика (КМ (QM); также известная как квантовая физика или квантовая теория), включая квантовую теорию поля, является областью физики, которая изучает законы природы, проявляющиеся на малых расстояниях и при малых энергиях атомов и субатомных частиц. Классическая физика - физика, существовавшая до квантовой механики, вытекает из квантовой механики как её предельный переход, справедливый только при больших (макроскопических) масштабах. Квантовая механика отличается от классической физики тем, что энергия, импульс и другие величины, часто ограничиваются дискретными значениями (квантование), объекты имеют характеристики и частиц, и волн (корпускулярно-волновой дуализм), и существуют ограничения на точность, с которой величины могут быть определены (принцип неопределенности).

Квантовая механика последовательно вытекает из решения Максом Планком в 1900 году задачи излучения черного тела (опубликовано в 1859 году) и работы Альберта Эйнштейна 1905 года, в которой была предложена квантовая теория для объяснения фотоэлектрического эффекта (опубликована в 1887 году). Ранняя квантовая теория, была глубоко переосмыслена в середине 1920-х годов.

Переосмысленная теория формулируется на языке специально разработанных математических формализмов. В одном из них, математическая функция (волновая функция) предоставляет информацию об амплитуде вероятности положения, импульса и других физических характеристиках частицы.

Важными областями применения квантовой теории являются: квантовая химия, сверхпроводящие магниты, светоизлучающие диоды, а также лазер, транзистор и полупроводниковые устройства, такие как микропроцессор, медицинские и исследовательские изображения, такие как магнитно-резонансная томография и электронная микроскопия, и объяснения многих биологических и физических явлений.

История квантовой механики

Научное исследование волновой природы света началось в XVII и XVIII веках, когда ученые Роберт Хук, Кристиан Гюйгенс и Леонард Эйлер предложили волновую теорию света, основанную на экспериментальных наблюдениях. В 1803 году Томас Янг, английский учёный широкого профиля, провел знаменитый эксперимент с двойной щелью, который он позже описал в работе, озаглавленной "Природа света и цветов". Этот эксперимент сыграл важную роль во всеобщем признании волновой теории света.

В 1838 году Майкл Фарадей открыл катодные лучи. За этими исследованиями последовала формулировка Густавом Кирхгофом проблемы излучения абсолютно черного тела в 1859 году, предположение Людвига Больцмана в 1877 году того, что энергетические состояния физической системы могут быть дискретными, и квантовая гипотеза Макса Планка в 1900 году. Гипотеза Планка о том, что энергия излучается и поглощается дискретным "квантом" (или энергетическими пакетами), точно соответствует наблюдаемым моделям излучения абсолютно черного тела.

В 1896 году Вильгельм Вин эмпирически определил закон распределения излучения абсолютно черного тела, названный в его честь, законом Вина. Людвиг Больцман самостоятельно пришел к этому результату, анализируя уравнения Максвелла. Однако закон действовал только на высоких частотах и занижал излучение на низких частотах. Позже Планк исправил эту модель с помощью статистической интерпретации термодинамики Больцмана и предложил то, что в настоящее время называется законом Планка, что привело к развитию квантовой механики.

После решения Максом Планком в 1900 году проблемы излучения черного тела (опубликовано 1859), Альберт Эйнштейн предложил квантовую теорию, чтобы объяснить фотоэлектрический эффект (1905, опубликовано 1887). В 1900-1910 годы атомная теория и корпускулярная теория света впервые стали широко признаваться в качестве научного факта. Соответственно, эти последние теории можно рассматривать как квантовые теории материи и электромагнитного излучения.

Среди первых изучавших квантовые явления в природе были Артур Комптон, Ч. В. Раман и Питер Зееман, в честь каждого из которых названы некоторые квантовые эффекты. Роберт Эндрюс Милликен исследовал фотоэффект экспериментально, а Альберт Эйнштейн разработал теорию для него. В то же время, Эрнест Резерфорд экспериментально обнаружил ядерную модель атома, по которой Нильс Бор разработал свою теорию строения атома, которая впоследствии была подтверждена опытами Генри Мозли. В 1913 году Петер Дебай расширил теорию Нильса Бора о строении атома, введя эллиптические орбиты, эту же концепцию также предложил и Арнольд Зоммерфельд. Этот этап развития физики известен под названием старая квантовая теория.

Согласно Планку, энергия (Е) кванта излучения пропорциональна частоте излучения (v):

где h - постоянная Планка.

Планк осторожно настаивал на том, что это просто математическое выражение процессов поглощения и испускания излучения и не имеет ничего общего с физической реальностью самого излучения. Фактически, он считал свою квантовую гипотезу математическим трюком, совершенным для того, чтобы получить правильный ответ, а не крупным фундаментальным открытием. Однако в 1905 году Альберт Эйнштейн дал квантовой гипотезе Планка физическую интерпретацию и использовал ее для объяснения фотоэлектрического эффекта, при котором освещение светом определенных веществ может вызывать испускание электронов из вещества. За эту работу Эйнштейн получил Нобелевскую премию по физике 1921 года.

Эйнштейн затем доработал эту идею, чтобы показать, что электромагнитная волна, какой и является свет, также может быть описана как частица (позже названная фотоном), с дискретной квантовой энергией, которая зависит от частоты волны.

На протяжении первой половины 20-го века Максом Планком, Нильсом Бором, Вернером Гейзенбергом, Луи де Бройлем, Артуром Комптоном, Альбертом Эйнштейном, Эрвином Шредингером, Максом Борном, Джоном фон Нейманом, Полем Дираком, Энрико Ферми, Вольфгангом Паули, Максом фон Лауэ, Фрименом Дайсоном, Давидом Гильбертом, Вильгельмом Вином, Шать­енд­ра­натом Бозе, Арнольдом Зоммерфельдом и другими закладывались основы квантовой механики. Копенгагенская интерпретация Нильса Бора получила всеобщее признание.

В середине 1920-х годов развитие квантовой механики привело к тому, что она стала стандартной формулировкой для атомной физики. Летом 1925 года Бор и Гейзенберг опубликовали результаты, которые закрыли старую квантовую теорию. Из уважения к их частицеподобному поведению в определенных процессах и измерениях, кванты света стали называть фотонами (1926). Из простого постулата Эйнштейна зародился шквал обсуждений, теоретических построений и экспериментов. Таким образом, появились целые области квантовой физики, что привело к её широкому признанию на пятом Сольвеевском конгрессе в 1927 году.

Было установлено, что субатомные частицы и электромагнитные волны не являются ни просто частицами, ни волнами, а имеют определенные свойства каждой из них. Так возникло понятие корпускулярно–волнового дуализма.

К 1930 году квантовая механика была дополнительно унифицирована и сформулирована в работах Дэвида Гильберта, Поля Дирака и Джона фон Неймана, в которых уделялось большое внимание измерению, статистическому характеру наших знаний о реальности и философским размышлениям о "наблюдателе". Впоследствии она проникла во многие дисциплины, включая квантовую химию, квантовую электронику, квантовую оптику и квантовую информационную науку. Её теоретические современные разработки включают теорию струн и теории квантовой гравитации. Она также предоставляет удовлетворяющее объяснение многих особенностей современной периодической таблицы элементов и описывает поведение атомов при химических реакциях и движение электронов в компьютерных полупроводниках, и поэтому играет решающую роль во многих современных технологиях.

Хотя квантовая механика была построена для описания микромира, она также необходима для объяснения некоторых макроскопических явлений, таких как сверхпроводимость и сверхтекучесть.

Что означает слово квант?

Слово квант происходит от латинского "quantum", что означает "насколько много" или "сколько". В квантовой механике квант означает дискретную единицу, закрепленную за определенными физическими величинами, такими как энергия атома в состоянии покоя. Открытие того, что частицы представляют собой дискретные пакеты энергии с волноподобными свойствами привело к созданию занимающегося атомными и субатомными системами раздела физики, который сегодня называют квантовой механикой. Она закладывает фундамент математической основы для многих областей физики и химии, в том числе физики конденсированных сред, физики твердого тела, атомной физики, молекулярной физики, вычислительной физики, вычислительной химии, квантовой химии, физики элементарных частиц, ядерной химии и ядерной физики. Некоторые фундаментальные аспекты теории до сих пор активно изучаются.

Значение квантовой механики

Квантовая механика имеет важное значение для понимания поведения систем в атомных и меньших масштабах расстояний. Если бы физическая природа атома описывалась исключительно классической механикой, то электроны не должны были вращаться вокруг ядра, так как орбитальные электроны должны испускать излучение (вследствие кругового движения) и в конечном итоге сталкиваться с ядром из-за потери энергии на излучение. Такая система не могла объяснить устойчивость атомов. Вместо этого электроны находятся в неопределенных, недетерминистических, размазанных, вероятностных корпускулярно-волновых орбиталях около ядра, вопреки традиционным представлениям классической механики и электромагнетизма.

Первоначально квантовая механика была разработана для лучшего объяснения и описания атома, особенно различий в спектрах света, излучаемых различными изотопами одного и того же химического элемента, а также описания субатомных частиц. Короче говоря, квантово-механическая модель атома оказалась поразительно успешной в той области, где классическая механика и электромагнетизм оказались беспомощны.

Квантовая механика включает в себя четыре класса явлений, которые классическая физика не может объяснить:

  • квантование отдельных физических свойств
  • квантовая запутанность
  • принцип неопределенности
  • корпускулярно-волновой дуализм

Математические основы квантовой механики

В математически строгой формулировке квантовой механики, разработанной Полем Дираком, Давидом Гильбертом, Джоном фон Нейманом и Германом Вейлем, возможные состояния квантово-механической системы символизируются единичными векторами (называемые векторы состояния). Формально они принадлежат комплексному сепарабельному гильбертову пространству - иначе, пространству состояний или связанному с ним гильбертову пространству системы, и определены с точностью до произведения на комплексное число с единичным модулем (фазовый множитель). Другими словами, возможные состояния являются точками в проективном пространстве гильбертова пространства, как правило, называемом комплексным проективным пространством. Точный характер этого гильбертова пространства зависит от системы - например, пространство состояний положения и импульса является пространством квадратно-интегрируемых функций, в то время как пространство состояний для спина одного протона является всего лишь прямым произведением двух комплексных плоскостей. Каждая физическая величина представлена ​​гипермаксимально эрмитовым (точнее: самосопряженным) линейным оператором, действующим на пространстве состояний. Каждое собственное состояние физической величины соответствует собственному вектору оператора, и связанное с ним собственное значение соответствует значению физической величины в этом собственном состоянии. Если спектр оператора является дискретным, физическая величина может принимать только дискретные собственные значения.

В формализме квантовой механики состояние системы в данный момент описывается сложной волновой функцией, также называемой вектором состояния в комплексном векторном пространстве. Данный абстрактный математический объект позволяет рассчитать вероятности исходов конкретных экспериментов. Например, позволяет вычислить вероятность нахождения электрона в определенной области вокруг ядра в определенное время. В отличие от классической механики, здесь никогда нельзя сделать одновременного предсказания с произвольной точностью для сопряженных переменных, таких как положение и импульс. Например, можно считать, что электроны (с некоторой вероятностью) находятся где-то в пределах заданной области пространства, но их точное местоположение неизвестно. Можно нарисовать вокруг ядра атома области постоянной вероятности, часто называемые «облаками», чтобы представлять, где электрон может находиться с наибольшей вероятностью. Принцип неопределенности Гейзенберга количественно оценивает неспособность точной локализации частицы с заданным импульсом, являющимся сопряженной к положению величиной.

Согласно одной из интерпретаций, в результате измерения волновая функция, содержащая информацию о вероятности состояния системы, распадается из заданного начального состояния до определенного собственного состояния. Возможными результатами измерения являются собственные значения оператора, представляющего физическую величину - что объясняет выбор эрмитового оператора, у которого все собственные значения являются действительными числами. Распределение вероятностей физической величины в данном состоянии, можно найти путем вычисления спектрального разложения соответствующего оператора. Принцип неопределенности Гейзенберга представляется формулой, в которой операторы, соответствующие определенным величинам не коммутируют.

Измерение в квантовой механике

Вероятностный характер квантовой механики, таким образом, вытекает из акта измерения. Это один из самых сложных для понимания аспектов квантовых систем, и он был центральной темой в знаменитых дебатах Бора с Эйнштейном, в ходе которых оба ученых попытались прояснить эти фундаментальные принципы посредством мысленных экспериментов. В течение десятилетий после формулирования квантовой механики широко изучался вопрос о том, что представляет собой "измерение". Новые интерпретации квантовой механики были сформулированы, чтобы покончить с понятием "коллапс волновой функции". Основная идея заключается в том, что когда квантовая система взаимодействует с измерительным аппаратом, их соответствующие волновые функции становятся запутанными, так что исходная квантовая система перестает существовать как самостоятельная сущность.

Вероятностный характер предсказаний квантовой механики

Как правило, квантовая механика не ставит в соответствие определенные значения. Вместо этого она делает предсказание, используя распределение вероятностей; то есть, она описывает вероятность получения возможных результатов от измерения физической величины. Часто эти результаты деформированы, как облака плотности вероятности, многими процессами. Облака плотности вероятности являются приближением (но лучшим, чем модель Бора), в котором расположение электрона задается функцией вероятности, волновыми функциями, соответствующими собственным значениям, таким образом, что вероятность является квадратом модуля комплексной амплитуды, или квантового состояния ядерного притяжения. Естественно, что эти вероятности будут зависеть от квантового состояния в "момент" измерения. Следовательно, неопределенность вносится в измеренное значение. Есть, однако, некоторые состояния, которые связаны с определенными значениями конкретной физической величины. Они называются собственными состояниями (eigenstates) физической величины ("eigen" можно перевести с немецкого как "присущий" или "свойственный").

Естественно и интуитивно понятно, что все в повседневной жизни (все физические величины) имеют собственные значения. Кажется, что всё имеет определенное положение, определенный момент, определенную энергию, и определенное время события. Однако квантовая механика не указывает точных значений положения и импульса частицы (поскольку это сопряженные пары) или ее энергии и времени (поскольку они тоже сопряженные пары); точнее, она предоставляет только диапазон вероятностей, с которыми эта частица может иметь заданный импульс и вероятность импульса. Поэтому целесообразно различать состояния, имеющие неопределенные значения, и состояния, имеющие определенные значения (собственные состояния). Как правило, мы не интересуемся системой, в которой частица не имеет собственного значения физической величины. Однако, при измерении физической величины, волновая функция мгновенно принимает собственное значение (или "обобщенное" собственное значение) этой величины. Этот процесс называют коллапсом волновой функции, спорный и много обсуждаемый процесс, в котором происходит расширение изучаемой системы добавлением в неё измерительного устройства. Если знать соответствующую волновую функцию непосредственно перед измерением, то можно вычислить вероятность того, что волновая функция перейдёт в каждое из возможных собственных состояний. Например, свободная частица в предыдущем примере, как правило, имеют волновую функцию, которая представляет собой волновой пакет, сосредоточенный вокруг некоторого среднего положения x0 (не имеющий собственных состояний положения и импульса). Когда происходит измерение положения частицы, то невозможно с уверенностью предсказать результат. Вполне вероятно, но не точно, что оно будет вблизи х0, где амплитуда волновой функции велика. После выполнения измерения, получив какой-то результат х, волновая функция коллапсирует в собственную функцию оператора положения с центром в х.

Уравнение Шредингера в квантовой механике

Временная эволюция квантового состояния описывается уравнением Шредингера, в котором гамильтониан (оператор, соответствующий полной энергии системы) порождает временную эволюцию. Временная эволюция волновых функций является детерминированной в том смысле, что - с учетом того, какой волновая функция была в начальный момент времени - можно сделать четкое предсказание того, какой будет волновая функция в любое время в дальнейшем.

С другой стороны, во время измерения, изменение исходной волновой функции в другую, более позднюю волновую функцию не будет являться детерминированным, а будет непредсказуемым (т. е. случайным). Эмуляцию временной эволюции можно увидеть здесь.

Волновые функции изменяются с течением времени. Уравнение Шредингера описывает изменение волновых функций во времени, и играет роль, аналогичную роли второго закона Ньютона в классической механике. Уравнение Шредингера, применяемое к вышеупомянутому примеру свободной частицы, предсказывает, что центр волнового пакета будет перемещаться по пространству с постоянной скоростью (как классическая частица в отсутствие сил, действующих на него). Тем не менее, волновой пакет также будет расплываться с течением времени, что означает, что позиция становится более неопределенной со временем. Это также имеет эффект превращения собственной функции положения (которую можно рассматривать как бесконечно острый пик волнового пакета) в расширенный волновой пакет, который больше не представляет (определенного) собственного значения положения.

Некоторые волновые функции порождают распределения вероятностей, которые являются постоянными или независимыми от времени - например, когда в стационарном состоянии с постоянной энергией время исчезает из модуля квадрата волновой функции. Многие системы, которые рассматриваются как динамические в классической механике, описываются в квантовой механике такими "статическими" волновыми функциями. Например, один электрон в невозбужденном атоме представляется классически как частица, движущаяся по круговой траектории вокруг атомного ядра, в то время как в квантовой механике он описывается статической, сферически симметричной волновой функцией, окружающей ядро ​​(рис. 1) (отметим, однако, что только самые низкие состояния орбитального момента импульса, обозначенные как s, являются сферически симметричными).

Уравнение Шредингера действует на всю амплитуду вероятности, а не только на ее абсолютное значение. В то время как в абсолютное значение амплитуды вероятности заложена информация о вероятностях, в ее фазу заложена информация о взаимовлиянии между квантовыми состояниями. Это порождает "волнообразное" поведение квантовых состояний. Как выясняется, аналитические решения уравнения Шредингера возможны только для очень небольшого числа гамильтонианов относительно простых моделей, таких как квантовый гармонический осциллятор, частица в ящике, ион молекулы водорода и атом водорода - это важнейшие представители таких моделей. Даже атом гелия, который содержит всего на один электрон больше, чем в атом водород, не поддался ни одной попытке чисто аналитического решения.

Однако существует несколько методов получения приближенных решений. В важном методе, известном как теория возмущений, используется аналитический результат, полученный для простой квантово-механической модели, и на его основе генерируется результат для более сложной модели, которая отличается от более простой модели (например) добавлением энергии слабого потенциального поля. Другим подходом является метод "квазиклассического приближения", который применяется к системам, для которых квантовая механика применяется только к слабым (малым) отклонениям от классического поведения. Затем эти отклонения можно вычислить на основе классического движения. Этот подход особенно важен при изучении квантового хаоса.

Математически эквивалентные формулировки квантовой механики

Существуют многочисленные математически эквивалентные формулировки квантовой механики. Одной из старейших и наиболее часто используемых формулировок является "теория преобразований", предложенная Полем Дираком, которая объединяет и обобщает две самые ранние формулировки квантовой механики - матричную механику (созданную Вернером Гейзенбергом) и волновую механику (созданную Эрвином Шредингером).

С учетом того, что Вернер Гейзенберг был удостоен Нобелевской премии по физике в 1932 году за создание квантовой механики, роль Макса Борна в развитии КМ была упущена из виду до вручения ему Нобелевской премии в 1954 году. Эта роль упоминается в биографии Борна 2005 года, в которой рассказывается о его роли в матричной формулировке квантовой механики, а также использовании амплитуд вероятности. В 1940 году сам Гейзенберг признает в юбилейном сборнике в честь Макса Планка, что узнал о матрицах от Борна. В матричной формулировке, мгновенное состояние квантовой системы определяет вероятности её измеримых свойств или физических величин. Примеры величин включают в себя энергию, положение, импульс и орбитальный момент. Физические величины могут быть либо непрерывными (например, положение частицы) или дискретными (например, энергия электрона, связанного с атомом водорода). Фейнмановские интегралы по траекториям - альтернативная формулировка квантовой механики, в которой квантовомеханическая амплитуда рассматривается как сумма по всем возможным классическим и неклассическим траекториям между начальным и конечным состояниями. Это квантово-механический аналог принципа наименьшего действия в классической механике.

Законы квантовой механики

Законы квантовой механики имеют основополагающее значение. Утверждается, что пространство состояний системы является гильбертовым, и физические величины этой системы являются эрмитовыми операторами, действующими в этом пространстве, хотя не говорится, какие именно эти гильбертовы пространства или какие именно эти операторы. Они могут быть выбраны соответствующим образом, чтобы получить количественную характеристику квантовой системы. Важным ориентиром для принятия этих решений является принцип соответствия, который гласит, что предсказания квантовой механики сводятся к классической механике, когда система переходит в область высоких энергий или, что то же самое, в область больших квантовых чисел, то есть в то время как отдельная частица обладает определенной степенью случайности, в системах, содержащих миллионы частиц, преобладают усредненные значения и, при устремлении к высокоэнергетическому пределу, статистическая вероятность случайного поведения стремится к нулю. Другими словами, классическая механика является просто квантовой механикой больших систем. Этот "высокоэнергетический" предел известен как классический или предел соответствия. Таким образом, решение можно даже начать с устоявшейся классической модели той или иной системы, и затем попытаться угадать базовую квантовую модель, которая породила бы такую классическую модель при переходу к пределу соответствия.

Когда квантовая механика была изначально сформулирована, она применялась к моделям, пределом соответствия которых была нерелятивистская классическая механика. Например, известная модель квантового гармонического осциллятора использует явно нерелятивистское выражение для кинетической энергии осциллятора и, таким образом, является квантовой версией классического гармонического осциллятора.

Взаимодействие с другими научными теориями

Ранние попытки объединить квантовую механику со специальной теорией относительности предусматривали замену уравнения Шредингера ковариантными уравнениеми, такими как уравнение Клейна-Гордона или уравнение Дирака. Хотя эти теории были успешными в объяснении многих экспериментальных результатов, они имели определенные неудовлетворительные качества, вытекающие из того, что в них не учитывалось релятивистское рождение и уничтожением частиц. Полностью релятивистская квантовая теория требовала развития квантовой теории поля, в которой применяется квантование поля (а не фиксированного набора частиц). Первая полноценная квантовая теория поля - квантовая электродинамика, обеспечивает полное квантовое описание электромагнитного взаимодействия. Полный аппарат квантовой теории поля часто не требуется для описания электродинамических систем. Более простой подход, применяемый с момента создания квантовой механики, заключается в том, чтобы рассматривать заряженные частицы как квантово-механические объекты, на которые действует классическое электромагнитное поле. Например, элементарная квантовая модель атома водорода описывает электрическое поле атома водорода, используя классическое выражение для кулоновского потенциала:

E2/(4πε0r)

Такой "квазиклассический" подход не работает, если квантовые флуктуации электромагнитного поля играют важную роль, например, при излучении фотонов заряженными частицами.

Также были разработаны квантовые теории поля для сильных и слабых ядерных сил. Квантовая теория поля для сильных ядерных взаимодействий называется квантовой хромодинамикой и описывает взаимодействие субядерных частиц, таких как кварки и глюоны. Слабые ядерные и электромагнитные силы были объединены в их квантованных формах в единую квантовую теорию поля (известная как теория электрослабого взаимодействия), физиками Абдусом Саламом, Шелдоном Глэшоу и Стивеном Вайнбергом. За эту работу все трое получили Нобелевскую премию по физике в 1979 году.

Трудно оказалось построить квантовые модели для четвертой оставшейся фундаментальной силы - гравитации. Выполнены полуклассические приближения, которые привели к предсказаниям, таким как излучение Хокинга. Тем не менее, формулировке полной теории квантовой гравитации мешают очевидные несовместимости между общей теорией относительности (которая является наиболее точной теорией гравитации, известной в настоящее время) и некоторыми из основных положений квантовой теории. Разрешение этих несовместимостей является направлением активных исследований и теорий, таких как теория струн - одна из возможных кандидатур на будущую теорию квантовой гравитации.

Классическая механика была также расширена в комплексную область, при этом комплексная классическая механика стала проявлять себя подобно квантовой механике.

Cвязь квантовой механики с классической механикой

Предсказания квантовой механики были подтверждены экспериментально с очень высокой степенью точности. Согласно принципу соответствия между классической и квантовой механиками, все объекты подчиняются законам квантовой механики, а классическая механика является лишь приближением для больших систем объектов (или статистической квантовой механикой для большого набора частиц). Таким образом, законы классической механики вытекают из законов квантовой механики как статистическое среднее при устремлении к очень большому предельному значению числа элементов системы или значений квантовых чисел. Однако в хаотических системах отсутствуют хорошие квантовые числа, и квантовый хаос изучает связь между классическим и квантовым описаниями этих систем.

Квантовая когерентность является существенным различием между классической и квантовой теориями, иллюстрируемая парадоксом Эйнштейна–Подольского–Розена (EPR) , она стала выпадом против известной философской интерпретации квантовой механики посредством обращения к локальному реализму. Квантовая интерференция предполагает сложение амплитуд вероятности, в то время как классические"волны" подразумевают сложение интенсивностей. Для микроскопических тел, протяженность системы значительно меньше, чем длина когерентности, что приводит к запутанности на далеких расстояниях и другим нелокальным явлениям, характерным для квантовых систем. Квантовая когерентность обычно не проявляется в макроскопических масштабах, хотя исключение из этого правила может возникать при крайне низких температурах (т. е. при приближении к абсолютному нулю), при которых квантовое поведение может проявляться в макроскопическом масштабе. Это находится в соответствии со следующими наблюдениями:

Многие макроскопические свойства классической системы являются прямым следствием квантового поведения его частей. Например, устойчивость основной части материи (состоящей из атомов и молекул, которые под действием одних лишь электрических сил быстро бы разрушались), жесткость твердых тел, а также механические, термические, химические, оптические и магнитные свойства материи являются результатом взаимодействия электрических зарядов в соответствии с правилами квантовой механики.

В то время как кажущееся "экзотическим" поведение материи, постулируемое квантовой механикой и теорией относительности, становится более очевидным при работе с частицами очень малого размера или при перемещении со скоростями, приближающимися к скорости света, законы классической, часто называемой "ньютоновской", физики остаются точными при прогнозировании поведения подавляющего числа "больших" объектов (порядка размера крупных молекул или ещё больших) и при скоростях гораздо меньших, чем скорость света.

В чем заключается отличие квантовой механики от классической?

Классическая и квантовая механика сильно отличаются тем, что они используют очень разные кинематические описания.

По устоявшемуся мнению Нильса Бора, для изучения квантово-механических явлений требуются эксперименты, с полным описанием всех устройств системы, подготовительного, промежуточного и конечного измерений. Описания представляются в макроскопических терминах, выраженных на обычном языке, дополненных понятиями классической механики. Начальные условия и конечное состояние системы соответственно описывается положением в конфигурационном пространстве, например, в пространстве кординат, или некотором эквивалентном пространстве, таком как импульсное пространстве. Квантовая механика не допускает полностью точного описания, как с точки зрения положения, так и импульса, точного детерминированного и причинно-следственного предсказания конечного состояния исходя из начальных условий или "состояния" (в классическом смысле этого слова). В этом смысле, пропагандируемом Бором в его зрелых трудах, квантовое явление - это процесс перехода от начального к конечному состоянию, а не мгновенное "состояние" в классическом смысле этого слова. Таким образом, существуют два вида процессов в квантовой механике: стационарные и переходные. Для стационарных процессов, начальное и конечное положение одинаковы. Для переходных - они различны. Очевидно по определению, что, если задано только начальное условие, то процесс не определен. Учитывая начальные условия, предсказание конечного состояния возможно, но только на вероятностном уровне, поскольку уравнение Шредингера детерминировано для эволюции волновой функции, а волновая функция описывает систему только в вероятностном смысле.

Во многих экспериментах можно принимать начальное и конечное состояние системы за частицу. В некоторых случаях оказывается, что существует потенциально несколько пространственно различимых путей или траекторий, по которым частица может переходить от начального к конечному состоянию. Важной особенностью квантового кинематического описания является то, что оно не позволяет однозначно определить, каким из этих путей производится переход между состояниями. Определены только начальные и конечные условия, и, как указано в предыдущем абзаце, они определены только с такой точностью, насколько это разрешает описание пространственной конфигурацией или её эквивалентом. В каждом случае, для которого необходимо квантовое кинематическое описание, всегда есть веская причина такого ограничения кинематической точности. Причина заключается в том, что для экспериментального нахождения частицы в определенном положении она должна быть неподвижной; для экспериментального нахождения частицы с определенным импульсом она должна находиться в свободном движении; эти два требования логически несовместимы.

Изначально классическая кинематика не требуют экспериментального описания её явлений. Это позволяет полностью точно описать мгновенное состояние системы положением (точкой) в фазовом пространстве - декартовом произведении конфигурационного и импульсного пространств. Это описание просто предполагает, или представляет себе состояние как физическую сущность, не беспокоясь о ее экспериментальной измеримости. Такое описание начального состояния вместе с законами движения Ньютона позволяет точно сделать детерминированное и причинно-следственное предсказание конечного состояния вместе с определенной траекторией эволюции системы. Для этого может быть использована гамильтоновская динамика. Классическая кинематика также позволяет описать процесс, аналогично описанию начального и конечного состояния, используемому квантовой механикой. Лагранжева механика позволяет это сделать. Для процессов, в которых необходимо учитывать величину действия порядка нескольких планковских констант, классическая кинематика не годится; здесь требуется использовать квантовую механику.

Общая теория относительности

Даже при том, что определяющие постулаты теории общей относительности и квантовой теории Эйнштейна безоговорочно подкрепляются строгими и повторяющимися эмпирическими доказательствами, и хотя они не противоречат друг другу теоретически (по крайней мере, в отношении своих первичных утверждений), их оказалось крайне трудно интегрировать в одну последовательную, единую модель.

Гравитацией можно пренебречь во многих областях физики элементарных частиц, так что объединение между общей теорией относительности и квантовой механикой не является насущным вопросом в этих частных приложениях. Однако, отсутствие правильной теории квантовой гравитации является важным вопросом в физической космологии и поиске физиками элегантной "Теории всего" (TВ). Следовательно, решение всех несоответствий между обеими теориями является одной из основных целей для физики 20 и 21 века. Многие видные физики, в том числе Стивен Хокинг, трудился на протяжении многих лет в попытке открыть теорию, лежащую в основе всего. Эта ТВ будет объединять не только разные модели субатомной физики, но и выводить четыре фундаментальные силы природы - сильное взаимодействие, электромагнетизм, слабое взаимодействие и гравитацию - из одной силы или явления. В то время как Стивен Хокинг изначально верил в ТВ, но после рассмотрения теорема Геделя о неполноте, он пришел к выводу, что создание такой теории неосуществимо, и заявил об этом публично в своей лекции "Гёдель и конец физики" (2002).

Основные теории квантовой механики

Стремление объединить фундаментальные силы с помощью квантовой механики все еще продолжается. Квантовая электродинамика (или "квантовый электромагнетизм"), которая в настоящее время (по крайней мере, в пертурбативном режиме) является наиболее точной проверенной физической теорией в соперничестве с общей теорией относительности, успешно объединяет слабые ядерные взаимодействия в электрослабое взаимодействие и в настоящее время ведется работа по объединению электрослабого и сильного взаимодействия в электросильное взаимодействие. Текущие прогнозы утверждают, что в районе 1014 ГэВ три вышеупомянутых силы сливаются в единое унифицированное поле. Помимо этой "грандиозной унификации", предполагается, что гравитацию можно объединить с другими тремя калибровочными симметриями, что, как ожидается, произойдёт на уровне примерно 1019 ГэВ. Однако - и в то время как специальная теория относительности бережно включена в квантовую электродинамику - расширенная общая теория относительности, в настоящее время лучшая теория, описывающая силы гравитации, не в полной мере включена в квантовую теорию. Один из тех, кто разрабатывает согласованную теорию всего, - Эдвард Виттен, - физик-теоретик, сформулировал М-теорию, которая представляет собой попытку изложить суперсимметрию на основе теории суперструн. М-теория предполагает, что наше видимое 4-мерное пространство - это на самом деле 11 - мерный пространственно-временной континуум, содержащий десять пространственных измерений и одно временное измерение, хотя 7 пространственных измерений при низких энергиях полностью "уплотнены" (или бесконечно изогнуты) и не легко поддаются измерению или исследованию.

Другая популярная теория петлевой квантовой гравитации (Loop quantum gravity (LQG)) - теория, впервые предложенная Карло Ровелли, которая описывает квантовые свойства гравитации. Она также является теорией квантового пространства и квантового времени, так как в общей теории относительности геометрические свойства пространства-времени являются проявлением гравитации. LQG - это попытка объединить и адаптировать стандартную квантовую механику и стандартную общую теорию относительности. Основным результатом теории является физическая картина, в которой пространство является зернистым. Зернистость является прямым следствием квантования. Она имеет тот же характер зернистости фотонов в квантовой теории электромагнетизме или дискретных уровней энергии атомов. Но здесь само пространство является дискретным. Точнее, пространство можно рассматривать как чрезвычайно тонкую ткань или сеть, "сотканную" из конечных петель. Эти петлевые сети называются спиновые сети. Эволюция спиновой сети во времени называется спиновой пеной. Прогнозируемый размер данной структуры является длиной Планка, что составляет приблизительно 1,616 × 10-35 м. Согласно теории, нет никакого смысла в более короткой длине, чем эта. Следовательно, LQG предсказывает, что не только материя, но и само пространство, имеет атомарную структуру.

Философские аспекты квантовой механики

С момента своего создания, многие парадоксальные аспекты и результаты квантовой механики вызвали бурные философские диспуты и множество интерпретаций. Даже фундаментальным вопросам, таким как основные правила Макса Борна относительно амплитуды вероятности и распределения вероятности, потребовались десятилетия, чтобы они могли быть оценены обществом и многими ведущими учеными. Ричард Фейнман однажды сказал: "Думаю, я могу смело утверждать, что никто не понимает квантовую механику. По словам Стивена Вайнберга, "сейчас, на мой взгляд, не существует абсолютно удовлетворительной интерпретации квантовой механики.

Копенгагенская интерпретация - во многом благодаря Нильсу Бору и Вернеру Гейзенбергу - на протяжении 75 лет после её провозглашения остается наиболее приемлемой среди физиков. Согласно этой интерпретации вероятностный характер квантовой механики не является временной особенностью, которая в конечном итоге будет заменена детерминированной теорией, а должна рассматриваться как окончательный отказ от классической идеи "причинно-следственной связи". Кроме того считается, что в ней любые четко определенные применения квантово-механического формализма всегда должны делать ссылку на схему эксперимента из-за сопряженного характера доказательств, полученных в различных экспериментальных ситуациях.

Альберт Эйнштейн, будучи одним из основателей квантовой теории, сам не принял некоторые из более философских или метафизических интерпретаций квантовой механики, таких как отказ от детерминизма и причинно-следственной связи. Его самый цитируемый знаменитый ответ на такой подход звучит так: "Бог не играет в кости". Он отверг концепцию о том, что состояние физической системы зависит от экспериментальной измерительной установки. Он считал, что явления природы происходят по своим законам, независимо от того, происходит ли за ними наблюдение и каким образом. В этой связи его поддерживает принятое в настоящее время определение квантового состояния, которое остается инвариантным при произвольном выборе конфигурационного пространства для его представления, то есть способа наблюдения. Он также счел, что в основе квантовой механики должна лежать теория, которая тщательно и непосредственно выражает правило, отвергающее принцип дальнодействия; другими словами, он настаивал на принципе локальности. Он рассматривал, но теоретически обоснованно отклонил частное представление о скрытых переменных, чтобы избежать неопределенности или отсутствия причинно-следственных связей в квантово-механических измерениях. Он считал, что квантовая механика была в то время действующей, но не окончательной и не незыблемой теорией квантовых явлений. Он считал, что её будущая замена потребует глубоких концептуальных достижений, и что это произойдет не так быстро и легко. Дискуссии Бора-Эйнштейна дают яркую критику копенгагенской интерпретации с гносеологической точки зрения.

Джон Белл показал, что этот парадокс "EPR" приводил к экспериментально проверяемым различиям между квантовой механикой и теориями, которые опираются на добавление скрытых переменных. Проведены эксперименты, подтверждающие точность квантовой механики, тем самым демонстрируя, что квантовая механика не может быть улучшена путем добавления скрытых переменных. Первоначальные эксперименты Алена Аспекта в 1982 году и многие последующие эксперименты с тех пор окончательно подтвердили квантовую запутанность.

Запутанность, как показали белловские эксперименты, не нарушает причинно-следственных связей, поскольку никакой передачи информации не происходит. Квантовая запутанность формирует основу квантовой криптографии, которая предлагается для использования в высокобезопасных коммерческих приложениях в банковской и государственной сферах.

Многомировая интерпретация Эверетта, сформулированная в 1956 году, полагает, что все возможности, описываемые квантовой теорией, одновременно возникают в мультиверсе, состоящем, главным образом, из независимых параллельных вселенных. Это не достигается введением некоторой "новой аксиомы" в квантовую механику, а наоборот, достигается удалением аксиомы распада волнового пакета. Все возможные последовательные состояния измеряемой системы и измерительного устройства (включая наблюдателя) присутствуют в реальной физической - а не только в формальной математической, как в других интерпретациях - квантовой суперпозиции. Такая суперпозиция последовательных комбинаций состояний различных систем называется запутанным состоянием. В то время как мультиверс является детерминированным, мы воспринимаем недетерминированное поведение, случайного характера, поскольку можем наблюдать только ту вселенную (т. е. вклад совместимого состояния в вышеупомянутую суперпозицию), в которой мы, как наблюдатели, обитаем. Интерпретация Эверетта идеально согласуется с экспериментами Джона Белла и делает их интуитивно понятными. Однако, согласно теории квантовой декогеренции, эти "параллельные вселенные" никогда не будут доступны нам. Недоступность можно понимать следующим образом: как только измерение будет сделано, измеряемая система запутывается как с физиком, измерявшим её, так и с огромным количеством других частиц, некоторые из которых являются фотонами, улетающими со скоростью света к другому концу вселенной. Чтобы доказать, что волновая функция не распалась, необходимо вернуть все эти частицы обратно и измерить их снова вместе с системой, которая изначально была измерена. Это не только совершенно непрактично, но даже если теоретически можно было бы это сделать, то пришлось бы уничтожить любые доказательства того, что первоначальное измерение имело место (в том числе и память физика). В свете этих белловских экспериментов Крамер в 1986 году сформулировал свою транзакционную интерпретацию. В конце 1990-х годов появилась реляционная квантовая механика как современная производная копенгагенской интерпретации.

Квантовая механика имела огромный успех в объяснении многих особенностей нашей Вселенной. Квантовая механика часто является единственным доступным инструментом, способным выявить индивидуальное поведение субатомных частиц, составляющих все формы материи (электроны, протоны, нейтроны, фотоны и др.). Квантовая механика сильно повлияла на теорию струн - претендента на теорию всего (а Theory of Everything).

Квантовая механика также критически важна для понимания того, как индивидуальные атомы создают ковалентные связи для формирования молекул. Применение квантовой механики в химии называется квантовой химией. Релятивистская квантовая механика может, в принципе, математически описать большую часть химии. Квантовая механика также может дать количественное представление о процессах ионного и ковалентного связывания, явным образом показывая, какие молекулы к другим молекулам энергетически подходят и при каких величинах энергии. Кроме того, большинство расчетов в современной вычислительной химии опираются на квантовую механику.

Во многих отраслях современные технологии работают в масштабах, где квантовые эффекты значительно проявляются.

Квантовая физика в электронике

Многие современные электронные устройства разработаны с использованием квантовой механики. Например, лазер, транзистор (и таким образом микрочип), электронный микроскоп и магнитно-резонансная томография (МРТ). Изучение полупроводников привело к изобретению диода и транзистора, которые являются незаменимыми компонентами современных электронных систем, компьютерных и телекоммуникационных устройств. Ещё одно приложение - это светоизлучающий диод, который представляет собой высокоэффективный источник света.

Многие электронные устройства работают под действием квантового туннелирования. Оно даже присутствует в простом выключателе. Переключатель не сработал бы, если бы электроны не могли квантово тунеллировать через слой окисла на металлических контактных поверхностях. Чипы флэш-памяти, основной детали USB-накопителей, используют квантовое туннелирование, чтобы стирать информацию в своих ячейках. Некоторые устройства с отрицательным дифференциальным сопротивлением, такие как резонансный туннельный диод, также используют квантовый туннельный эффект. В отличие от классических диодов, ток в нём протекает под действием резонансного туннелирования через два потенциальных барьера. Его режим работы с отрицательным сопротивлением может быть объяснён только квантовой механикой: при приближении энергии состояния связанных носителей к уровню Ферми, туннельный ток возрастает. При отдалении от уровня Ферми, ток уменьшается. Квантовая механика имеет жизненно важное значение для понимания и разработки таких типов электронных устройств.

Квантовая криптография

Исследователи в настоящее время ищут надежные методы непосредственного манипулирования квантовыми состояниями. Предпринимаются усилия по полноценному развитию квантовой криптографии, которая теоретически позволит гарантировать безопасную передачу информации.

Квантовые вычисления

Более отдаленной целью является разработка квантовых компьютеров, которые, как ожидается, будут выполнять определенные вычислительные задачи экспоненциально быстрее классических компьютеров. Вместо классических битов, квантовые компьютеры используют кубиты, которые могут находиться в суперпозиции состояний. Другой активной темой исследования является квантовая телепортация, которая имеет дело с методами передачи квантовой информации на произвольные расстояния.

Квантовые эффекты

В то время как квантовая механика в первую очередь применяется к атомным системам с меньшим количеством вещества и энергии, некоторые системы демонстрируют квантово-механические эффекты в больших масштабах. Сверхтекучесть - способность движения потока жидкости без трения при температуре вблизи абсолютного нуля, является одним известным примером таких эффектов. Тесным образом связанно с этим явлением и явление сверхпроводимости - поток электронного газа (электрический ток), движущийся без сопротивления в проводящем материале при достаточно низких температурах. Дробный квантовый эффект Холла является топологическим упорядоченным состоянием, которое соответствует моделям квантового запутывания, действующего на большие расстояния. Состояния с различным топологическим порядком (или различной конфигурацией дальнедиапазонного запутывания) не могут вносить изменения в состояния друг в друга без фазовых превращений.

Квантовая теория

Квантовая теория также содержит точные описания многих ранее необъяснимых явлений, таких как излучение абсолютно черного тела и стабильность орбитальных электронов в атомах. Она также дала представление о работе многих различных биологических систем, в том числе обонятельных рецепторов и белковых структур. Недавнее исследование фотосинтеза показало, что квантовые корреляции играют важную роль в этом фундаментальном процессе, протекающем в растениях и многих других организмах. Тем не менее, классическая физика часто может обеспечить хорошие приближения к результатам, полученным квантовой физикой, как правило, в условиях большого количества частиц или больших квантовых чисел. Поскольку классические формулы гораздо проще и легче вычислять, чем квантовые формулы, использование классических аппроксимаций предпочтительнее, когда система достаточно велика, чтобы сделать эффекты квантовой механики незначительными.

Движение свободной частицы

Для примера, рассмотрим свободную частицу. В квантовой механике наблюдается корпускулярно–волновой дуализм, так что свойства частицы могут быть описаны как свойства волны. Таким образом, квантовое состояние может быть представлено в виде волны произвольной формы и простирающейся в пространстве в виде волновой функции. Положение и импульс частицы являются физическими величинами. Принцип неопределенности утверждает, что положение и импульс не могут одновременно быть точно измерены. Тем не менее, можно измерить положение (без измерения импульса) движущейся свободной частицы, создав собственное состояние положения с волновой функцией (дельта-функция Дирака), которая имеет очень большое значение в определенном положении х, и ноль в остальных положениях. Если выполнить измерение положения при такой волновой функции, то в результате х будет получен с вероятностью 100% (то есть, с полной уверенностью, или с полной точностью). Это называется собственное значение (состояние) положения или, указанного в математических терминах, собственное значение обобщенной координаты (eigendistribution). Если частица находится в собственном состоянии положения, то ее импульс абсолютно не определяем. С другой стороны, если частица находится в собственном состоянии импульса, то её положение совершенно неизвестно. В собственном состоянии импульса, собственная функция которого имеет форму плоской волны, можно показать, что длина волны равна h/p, где h - постоянная Планка, а р - импульс собственного состояния.

Прямоугольный потенциальный барьер

Это модель квантового туннельного эффекта, который играет важную роль в производстве современных технологических устройств, таких как флэш-память и сканирующий туннельный микроскоп. Квантовое туннелирование является центральным физическим процессом, протекающим в сверхрешетках.

Частица в одномерном потенциальном ящике

Частица в одномерном потенциальном ящике является самым простым математическим примером, в котором пространственные ограничения приводят к квантованию уровней энергии. Ящик определяется как наличие нулевой потенциальной энергии везде внутри определенной области и бесконечной потенциальной энергии всюду за пределами этой области.

Конечная потенциальная яма

Конечная потенциальная яма является обобщением задачи бесконечной потенциальной ямы, имеющей конечную глубину.

Задача конечной потенциальной ямы является математически более сложной, чем задача частицы в бесконечном потенциальном ящике, так как волновая функция не обращается в нуль на стенках ямы. Вместо этого, волновая функция должна удовлетворять более сложным математическим граничным условиям, так как она отлична от нуля в области за пределами потенциальной ямы.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.

Наименование параметра Значение
Тема статьи: ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ.
Рубрика (тематическая категория) Механика

В 1900 ᴦ. немецкий физик Макс Планк предположил, что излучение и поглощение света веществом происходит конечными порциями – квантами, причем энергия каждого кванта пропорциональна частоте испускаемого излучения:

где - частота испускаемого (или поглощаемого) излучения, а h – универсальная постоянная, называемая постоянной Планка. По современным данным

h = (6,62618 0,00004)∙ 10 -34 Дж∙с.

Гипотеза Планка явилась отправным пунктом возникновения квантовых представлений, положенных в основу принципиально новой физики – физики микромира, называемой квантовой физикой. Огромную роль в ее становлении сыграли глубокие идеи датского физика Нильса Бора и его школы. В корне квантовой механики лежит непротиворечивый синтез корпускулярных и волновых свойств материи. Волна – весьма протяженный в пространстве процесс (вспомните волны на воде), а частица - ϶ᴛᴏ намного более локальный, чем волна, объект. Свет при определœенных условиях ведет себя не как волна, а как поток частиц. В то же время элементарные частицы обнаруживают подчас волновые свойства. В рамках классической теории невозможно объединить волновые и корпускулярные свойства. По этой причине создание новой теории, описывающей закономерности микромира, привело к отказу от обычных представлений, справедливых для макроскопических объектов.

С квантовой точки зрения и свет, и частицы представляют из себясложные объекты, обнаруживающие как волновые, так и корпускулярные свойства (так называемый корпускулярно-волновой дуализм). Создание квантовой физики было стимулировано попытками осмыслить строение атома и закономерности спектров излучения атомов.

В конце 19 века было обнаружено, что при падении света на поверхность металла, из последней испускаются электроны. Это явление назвали фотоэффектом.

В 1905 ᴦ. Эйнштейн объяснил фотоэффект на базе квантовой теории. Он ввел предположение о том, что энергия в пучке монохроматического света состоит из порций, величина которых равна h . Физическая размерность величины h равна время∙энергия=длина∙импульс=момент количества движения. Такой размерностью обладает величина, называемая действием, и в связи с этим h называют элементарным квантом действия. Согласно Эйнштейну, электрон в металле, поглотив такую порцию энергии, совершает работу выхода из металла и приобретает кинœетическую энергию

Е к =h − А вых.

Это уравнение Эйнштейна для фотоэффекта.

Дискретные порции света позже (в 1927 ᴦ.) были названы фотонами .

В науке при определœении математического аппарата всœегда следует исходить из характера наблюдаемых экспериментальных явлений. Немецкий физик Шредингер добился грандиозных достижений, попробовав другую стратегию научного поиска: сначала математика, а затем понимание ее физического смысла и в результате интерпретация природы квантовых явлений.

Было ясно, что уравнения квантовой механики должны быть волновыми (ведь квантовые объекты обладают волновыми свойствами). Эти уравнения должны иметь дискретные решения (квантовым явлениям присущи элементы дискретности). Такого рода уравнения были известны в математике. Ориентируясь на них, Шредингер предложил использовать понятие волновой функции ʼʼψʼʼ. Для частицы, свободно движущейся вдоль оси Х, волновая функция ψ=е - i|h(Et-px) , где р - импульс, х - координата͵ Е-энергия, h-постоянная Планка. Функция ʼʼψʼʼ принято называть волновой потому, что для ее описания используется экспоненциальная функция.

Состояние частицы в квантовой механике описывается волновой функцией, позволяющей определить лишь вероятность нахождения частицы в данной точке пространства. Волновая функция описывает не сам объект и даже не его потенциальные возможности. Операции с волновой функцией позволяют вычислить вероятности квантово-механических событий.

Основополагающими принципами квантовой физики являются принципы суперпозиции, неопределœенности, дополнительности и тождественности.

Принцип суперпозиции в классической физике позволяет получить результирующий эффект от наложения (суперпозиции) нескольких независимых воздействий как сумму эффектов, вызываемых каждым воздействие в отдельности. Он справедлив для систем или полей, описываемых линœейными уравнениями. Этот принцип очень важен в механике, теории колебаний и волновой теории физических полей. В квантовой механике принцип суперпозиции относится к волновым функциям: если физическая система может находиться в состояниях, описываемых двумя или несколькими волновыми функциями ψ 1, ψ 2 ,…ψ ń , то она может находиться в состоянии, описываемом любой линœейной комбинацией этих функций:

Ψ=c 1 ψ 1 +c 2 ψ 2 +….+с n ψ n ,

где с 1 , с 2 ,…с n – произвольные комплексные числа.

Принцип суперпозиции является уточнением соответствующих представлений классической физики. Согласно последней, в среде, не меняющей свои свойства под действием возмущений, волны распространяются независимо друг от друга. Следовательно, результирующее возмущение в какой-либо точке среды при распространении в ней нескольких волн равно сумме возмущений, соответствующих каждой из этих волн:

S = S 1 +S 2 +….+S n ,

где S 1 , S 2,….. S n – возмущения, вызываемые волной. В случае негармонической волны ее можно представить как сумму гармонических волн.

Принцип неопределœенности состоит в том, что невозможно одновременно определить две характеристики микрочастицы, к примеру, скорости и координаты. Он отражает двойственную корпускулярно-волновую природу элементарных частиц. Погрешности, неточности, ошибки при одновременном определœении в эксперименте дополнительных величин связаны соотношением неопределœенностей, установленным в 1925ᴦ. Вернером Гейзенбергом. Соотношение неопределœенностей состоит в том, что произведение неточностей любых пар дополнительных величин (к примеру, координаты и проекции импульса на нее, энергии и времени) определяется постоянной Планка h. Соотношения неопределœенностей свидетельствуют о том, что чем определœеннее значение одного из параметров, входящих в соотношения, тем неопределœеннее значение другого параметра и наоборот. Имеется в виду, что параметры измеряются одновременно.

Классическая физика приучила к тому, что всœе параметры объектов и происходящих с ними процессов бывают измерены одновременно с какой угодно точностью. Это положение опровергается квантовой механикой.

Датский физик Нильс Бор пришел к выводу, что квантовые объекты относительны к средствам наблюдения. О параметрах квантовых явлений можно судить лишь после их взаимодействия со средствами наблюдения, ᴛ.ᴇ. с приборами. Поведение атомных объектов невозможно резко отграничить от их взаимодействия с измерительными приборами, фиксирующими условия, при которых происходят эти явления. При этом приходится учитывать, что приборы, которые используются для измерения параметров, разнотипны. Данные, полученные при разных условиях опыта͵ должны рассматриваться как дополнительные в том смысле, что только совокупность разных измерений может дать полное представление о свойствах объекта. В этом и состоит содержание принципа дополнительности.

В классической физике измерение считалось не возмущающим объект исследования. Измерение оставляет объект неизменным. Согласно квантовой механике, каждое отдельно проведенное измерение разрушает микрообъект. Чтобы провести новое измерение, приходится заново готовить микрообъект. Это усложняет процесс синтеза измерений. В этой связи Бор утверждает взаимодополнительность квантовых измерений. Данные классических измерений не взаимодополнительны, они имеют самостоятельный смысл независимо друг от друга. Взаимодополнение имеет место там, где исследуемые объекты неотличимы друг от друга и взаимосвязаны между собой.

Бор соотносил принцип дополнительности не только с физическими науками: ʼʼцельность живых организмов и характеристики людей, обладающих сознанием, а также и человеческих культур представляют черты целостности, отображение которых требует типично дополнительного способа описанияʼʼ. По мысли Бора, возможности живых существ столь многообразны и так тесно взаимосвязаны, что при их изучении вновь приходится обращаться к процедуре взаимодополнения данных наблюдений. При этом, эта мысль Бора не получила должного развития.

Особенности и специфика взаимодействий между компонентами сложных микро- и макросистем. а также внешних взаимодействий между ними приводит к громадному их многообразию. Для микро- и макросистем характерна индивидуальность, каждая система описывается присущей только ей совокупностью всœевозможных свойств. Можно назвать различия между ядром водорода и урана, хотя оба относятся к микросистемам. Не меньше различий между Землей и Марсом, хотя эти планеты принадлежат одной и той же Солнечной системы.

При этом можно говорить о тождественности элементарных частиц. Тождественные частицы обладают одинаковыми физическими свойствами: массой, электрическим зарядом и другими внутренними характеристиками. К примеру, всœе электроны Вселœенной считаются тождественными. Тождественные частицы подчиняются принципу тождественности – фундаментальному принципу квантовой механики, согласно которому: состояния системы частиц, получающихся друг из друга перестановкой тождественных частиц местами, нельзя различить ни в каком эксперименте.

Этот принцип – основное различие между классической и квантовой механикой. В квантовой механике тождественные частицы лишены индивидуальности.

СТРОЕНИЕ АТОМА И АТОМНОГО ЯДРА. ЭЛЕМЕНТАРНЫЕ ЧАСТИЦЫ.

Первые представления о строении вещества возникли в Древней Греции в 6-4 в.в. до н.э. Аристотель считал вещество непрерывным, ᴛ.ᴇ. его можно дробить на сколько угодно малые части, но так и не дойти до мельчайшей частицы, которая дальше не делилась бы. Демокрит считал, что всœе в мире состоит из атомов и пустоты. Атомы – мельчайшие частицы вещества, значит ʼʼнеделимыеʼʼ, и в представлении Демокрита атомы это сферы с зубчатой поверхностью.

Такое мировоззрение существовало вплоть до конца 19 века. В 1897ᴦ. Джозеф Джон Томсон (1856-1940ᴦ.ᴦ.), родной сын У.Томсона, дважды лауреат Нобелœевской премии открыл элементарную частицу, которая была названа электроном. Было установлено, что электрон вылетает из атомов и имеет отрицательный электрический заряд. Величина заряда электрона е =1,6.10 -19 Кл (Кулон), масса электрона m =9,11.10 -31 кᴦ.

После открытия электрона Томсон в 1903 году выдвинул гипотезу о том, что атом представляет собой сферу, по которой размазан положительный заряд, и в виде изюминок вкраплены электроны с отрицательными зарядами. Положительный заряд равен отрицательному, в целом атом электрически нейтрален (суммарный заряд равен 0).

В 1911 году проводя опыт, Эрнст Резерфорд установил, что положительный заряд не размазан по объёму атома, а занимает лишь небольшую его часть. После этого им была выдвинута модель атома, которая впоследствии получила название планетарной. Согласно этой модели атом действительно представляет собой сферу, в центре которой расположен положительный заряд, занимая малую часть этой сферы – порядка 10 -13 см. Отрицательный заряд находится на внешней, так называемой электронной оболочке.

Более совершенную квантовую модель атома предложил датский физик Н.Бор в 1913 году, работавший в лаборатории Резерфорда. Он взял за основу модель атома Резерфорда и дополнил ее новыми гипотезами, которые противоречат классическим представлениям. Эти гипотезы известны как постулаты Бора. Οʜᴎ сводятся к следующему.

1. Каждый электрон в атоме может совершать устойчивое орбитальное движение по определœенной орбите, с определœенным значением энергии, не испуская и не поглощая электромагнитного излучения. В этих состояниях атомные системы обладают энергиями, образующими дискретный ряд: Е 1 , Е 2 ,…Е n . Всякое изменение энергии в результате испускания или поглощения электромагнитного излучения может происходить скачком из одного состояния в другое.

2. При переходе электрона с одной стационарной орбиты на другую, происходит испускание или поглощение энергии. В случае если при переходе электрона с одной орбиты на другую энергия атома изменяется от Е m до Е n , то hv = Е m - Е n , где v – частота излучения.

Эти постулаты Бор использовал для расчета простейшего атома водорода,

Область, в которой сосредоточен положительный заряд, принято называть ядром. Было предположение, что ядро состоит из положительных элементарных частиц. Эти частицы, названные протонами (в переводе с греческого протон означает первый), были обнаружены Резерфордом в 1919 году. Их заряд по модулю равен заряду электрона (но положительный), масса протона равна 1,6724.10 -27 кᴦ. Существование протона было подтверждено в результате проведения искусственной ядерной реакции превращения азота в кислород. Атомы азота облучались ядрами гелия. В результате получался кислород и протон. Протон это стабильная частица.

В 1932 году Джеймсом Чадвиком была открыта частица, которая не имела электрического заряда и обладала массой, почти равной массе протона. Эта частица была названа нейтроном. Масса нейтрона равна 1,675.10 -27 кᴦ. Нейтрон был открыт в результате облучения α-частицами пластинки из бериллия. Нейтрон является нестабильной частицей. Отсутствие заряда объясняет его легкую способность проникать в ядра атомов.

Открытие протона и нейтрона привело к созданию протонно-нейтронной модели атома. Она была предложена в 1932 году советскими физиками Иваненко, Гапоном и немецким физиком Гейзенбергом. Согласно этой модели ядро атома состоит из протонов и нейтронов, за исключением ядра водорода, ĸᴏᴛᴏᴩᴏᴇ состоит из одного протона.

Заряд ядра определяется количеством в нем протонов и обозначается символом Z . Вся масса атома заключена в массе его ядра и определяется массой входящих в него протонов и нейтронов, поскольку масса электрона ничтожно мала по сравнению с массами протона и нейтрона. Порядковый номер в периодической таблице Менделœеева соответствует заряду ядра данного химического элемента. Массовое число атома А равно массе нейтронов и протонов: А=Z+N , где Z – количество протонов, N – количество нейтронов. Условно любой элемент обозначается символом: А Х z .

Существуют ядра, которые содержат одинаковое число протонов, но разное число нейтронов, ᴛ.ᴇ. отличающиеся массовым числом. Такие ядра называются изотопами. К примеру, 1 Н 1 - обычный водород, 2 Н 1 - дейтерий, 3 Н 1 - тритий. Наибольшей устойчивостью обладают ядра, в которых число протонов равно числу нейтронов или тех и других одновременно = 2, 8, 20, 28, 50, 82, 126 – магические числа.

Размеры атома приблизительно 10 -8 см. Атом состоит из ядра размером в 10-13 см. Между ядром атома и границей атома находится огромное пространство по масштабам в микромире. Плотность в ядре атома огромна, приблизительно 1,5·108 т/см 3 . Химические элементы с массой А<50 называются легкими, а с А>50 – тяжелыми. В ядрах тяжелых элементов тесновато, ᴛ.ᴇ. создается энергетическая предпосылка для их радиоактивного распада.

Энергия, необходимая для расщепления ядра на составляющие его нуклоны, называют энергией связи. (Нуклоны – обобщенное название протонов и нейтронов и в переводе на русский язык означает ʼʼядерные частицыʼʼ):

Е св = Δm∙с 2 ,

где Δm – дефект массы ядра (разница между массами нуклонов, образующих ядро, и массой ядра).

В 1928ᴦ. физиком-теоретиком Дираком была предложена теория электрона. Элементарные частицы могут вести себя подобно волне – они обладают корпускулярно-волновым дуализмом. Теория Дирака дала возможность определить, когда электрон ведет себя как волна, а когда – как частица. Он заключил, что должна существовать элементарная частица, обладающая такими же свойствами, как и электрон, но с положительным зарядом. Такая частица позже была обнаружена в 1932 году и названа позитроном. Американский физик Андерсен на фотографии космических лучей обнаружил след частицы, аналогичный электрону, но с положительным зарядом.

Из теории следовало, что электрон и позитрон, взаимодействуя между собой (реакция аннигиляции), образуют пару фотонов, ᴛ.ᴇ. квантов электромагнитного излучения. Возможен и обратный процесс, когда фотон, взаимодействуя с ядром, превращается в пару электрон – позитрон. Каждой частице сопоставляется волновая функция, квадрат амплитуды которой равен вероятности обнаружить частицу в определœенном объёме.

В 50-х годах ХХ века было доказано существование антипротона и антинœейтрона.

Еще 30 лет назад полагали, что нейтроны и протоны – элементарные частицы, но эксперименты по взаимодействию движущихся с большими скоростями протонов и электронов показали, что протоны состоят из еще более мелких частиц. Эти частицы впервые исследовал Гелл Манн и назвал их кварками. Известно несколько разновидностей кварков. Предполагают, что существует 6 ароматов: U – кварк (up), d-кварк (down), странный кварк(strange), очарованный кварк (charm), b - кварк (beauty) , t-кварк (truth)..

Кварк каждого аромата имеет один из трех цветов: красный, зелœеный, синий. Это просто обозначение, т.к. размер кварков намного меньше длины волны видимого света и в связи с этим цвета у них нет.

Рассмотрим некоторые характеристики элементарных частиц. В квантовой механике каждой частице приписывают особый собственный механический момент, который не связан ни с перемещением ее в пространстве, ни с ее вращением. Этот собственный механический момент наз. спином . Так, в случае если повернуть электрон на 360 о, то следовало бы ожидать, что он вернется в исходное состояние. При этом исходное состояние будет достигнуто только при еще одном повороте на 360 о. Т.е., чтобы вернуть электрон в исходное состояние, его нужно повернуть на 720 о, по сравнению со спином мы воспринимаем мир лишь наполовину. Пример, на двойной проволочной петле бусинка вернется в исходное положение при повороте на 720 о. Такие частицы обладают полуцелым спином ½. Спин дает нам сведения, как выглядит частица, в случае если смотреть на нее с разных сторон. К примеру, частица со спином ʼʼ0ʼʼ похожа на точку: она выглядит одинаково со всœех сторон. Частицу со спином ʼʼ1ʼʼ можно сравнить со стрелой: с разных сторон она выглядит по-разному и принимает прежний вид при повороте на 360 о. Частицу со спином ʼʼ2ʼʼ можно сравнить со стрелой, заточенной с обеих сторон: любое ее положение повторяется с полуоборота (180 о). Частицы с более высоким спином возвращаются в исходное состояние при повороте на еще меньшую часть полного оборота.

Частицы с полуцелым спином называются фермионами, а частицы с целым спином – бозонами. До недавнего времени считалось, что бозоны и фермионы есть единственно возможные виды неразличимых частиц. На самом делœе существует ряд промежуточных возможностей, а фермионы и бозоны - лишь два предельных случая. Такой класс частиц называют энионами.

Частицы вещества подчиняются принципу запрета Паули, открытому в 1923 году австрийским физиком Вольфганом Паули. Принцип Паули гласит: в системе двух одинаковых частиц с полуцелыми спинами в одном и том же квантовом состоянии не может находиться более одной частицы. Для частиц с целым спином ограничений нет. Это значит, что две одинаковые частицы не могут иметь координаты и скорости, одинаковые с той точностью, которая задается принципом неопределœенности. В случае если частицы вещества имеют очень близкие значения координат, то их скорости должны быть разными, и, следовательно, они не могут находиться долго в точках с этими координатами.

В квантовой механике предполагается, что всœе силы и взаимодействия между частицами переносятся частицами с целочисленным спином, равным 0,1,2. Это происходит следующим образом: к примеру, частица вещества испускает частицу, которая является переносчиком взаимодействия (к примеру, фотон). В результате отдачи скорость частицы меняется. Далее частица-переносчик ʼʼналетаетʼʼ на другую частицу вещества и поглощается ею. Это соударение изменяет скорость второй частицы, как-будто между этими двумя частицами вещества действует сила. Частицы–переносчики, которыми обмениваются частицы вещества, называются виртуальными, потому что, в отличие от реальных, их нельзя зарегистрировать при помощи детектора частиц. При этом они существуют, потому что они создают эффект, поддающийся измерению.

Частицы-переносчики можно классифицировать на 4 типа исходя из величины переносимого ими взаимодействия и от того, с какими частицами они взаимодействуют и от того, с какими частицами они взаимодействуют:

1) Гравитационная сила. Всякая частица находится под действием гравитационной силы, величина которой зависит от массы и энергии частицы. Это слабая сила. Гравитационные действуют на больших расстояниях и всœегда являются силами притяжения. Так, к примеру, гравитационное взаимодействие удерживает планеты на их орбитах и нас на Земле.

В квантовомеханическом подходе к гравитационному полю считается, что сила, действующая между частицами материи, переносится частицей со спином ʼʼ2ʼʼ, которая принято называть гравитоном. Гравитон не обладает собственной массой и в связи с этим переносимая им сила, является дальнодействующей. Гравитационное взаимодействие между Солнцем и Землей объясняется тем, что частицы, из которых состоят Солнце и Земля обмениваются гравитонами. Эффект от обмена этими виртуальными частицами поддается измерению, потому что данный эффект – вращение Земли вокруг Солнца.

2) Следующий вид взаимодействия создается электромагнитными силами , которые действуют между электрически заряженными частицами. Электромагнитное взаимодействие намного сильнее гравитационного: электромагнитная сила, действующая между двумя электронами, примерно в 10 40 раз больше гравитационной силы. Электромагнитное взаимодействие обуславливает существование стабильных атомов и молекул (взаимодействие между электронами и протонами). Переносчиком электромагнитного взаимодействия выступает фотон.

3) Слабое взаимодействие . Оно отвечает за радиоактивность и существует между всœеми частицами вещества со спином ½ . Слабое взаимодействие обеспечивает долгое и ровное горение нашего Солнца, дающего энергию для протекания всœех биологических процессов на Земле. Переносчиками слабого взаимодействия являются три частицы - W ± и Z 0 -бозоны. Οʜᴎ были открыты лишь в 1983ᴦ. Радиус слабого взаимодействия чрезвычайно мал, в связи с этим его переносчики должны обладать большими массами. В соответствии с принципом неопределœенности время жизни частиц с такой большой массой должно быть чрезвычайно коротким-10 -26 с.

4) Сильное взаимодействие представляет собой взаимодействие, ĸᴏᴛᴏᴩᴏᴇ удерживает кварки внутри протонов и нейтронов, а протоны и нейтроны внутри атомного ядра. Переносчиком сильного взаимодействия считается частица со спином ʼʼ1ʼʼ, которая принято называть глюоном. Глюоны взаимодействуют только с кварками и с другими глюонами. Кварки, благодаря глюонам, связываются парами или тройками. Сильное взаимодействие при высоких энергиях ослабевает и кварки и глюоны начинают вести себя как свободные частицы. Это свойство называют асимптотической свободой. В результате экспериментов на мощных ускорителях получены фотографии треков (следов) свободных кварков, родившихся в результате столкновения протонов и антипротонов высокой энергии. Сильное взаимодействие обеспечивает относительную стабильность и существование ядер атомов. Сильное и слабое взаимодействие характерно для процессов микромира, ведущих к взаимопревращениям частиц.

Сильные и слабые взаимодействия стали известны человеку только в первой трети 20 века в связи с изучением радиоактивности и осмыслением результатов бомбардировок атомов различных элементов α-частицами. α-частицы выбивают и протоны, и нейтроны. Цель рассуждений привела физиков к убеждению, что протоны и нейтроны сидят в ядрах атомов, будучи крепко связанными друг с другом. Налицо сильные взаимодействия. С другой стороны, радиоактивные вещества испускают α-, β- и γ-лучи. Когда в 1934 году Ферми создал первую достаточно адекватную экспериментальным данным теорию, то ему пришлось предположить наличие в ядрах атомов незначительных по своим интенсивностям взаимодействий, которые и стали называть слабыми.

Сейчас принимаются попытки объединœения электромагнитного, слабого и сильного взаимодействия, чтобы в результате получилась так называемая ТЕОРИЯ ВЕЛИКОГО ОБЪЕДИНЕНИЯ . Эта теория проливает свет на само наше существование. Не исключено, что наше существование есть следствие образования протонов. Такая картина начала Вселœенной представляется наиболее естественной. Земное вещество в основном состоит из протонов, но в нем нет ни антипротонов, ни антинœейтронов. Эксперименты с космическими лучами показали, что то же самое справедливо и для всœего вещества в нашей Галактике.

Характеристики сильного, слабого, электромагнитного и гравитационного взаимодействий приведена в таблице.

Порядок интенсивности каждого взаимодействия, указанный в таблице, определœен по отношению к интенсивности сильного взаимодействия, принятого за 1.

Приведем классификацию наиболее известных в настоящее время элементарных частиц.

ФОТОН. Масса покоя и электрический заряд его равны 0. Фотон имеет целочисленный спин и является бозоном.

ЛЕПТОНЫ. Этот класс частиц не участвует в сильном взаимодействии, но обладает электромагнитными, слабыми и гравитационными взаимодействиями. Лептоны имеют полуцелый спин и относятся к фермионам. Элементарным частицам, входящим в эту группу, приписывается некоторая характеристика, называемая лептонным зарядом. Лептонный заряд, в отличие от электрического, не является источником какого-либо взаимодействия, его роль пока полностью не выяснена. Значение лептонного заряда у лептонов L=1, у антилептонов L= -1, всœех остальных элементарных частиц L=0.

МЕЗОНЫ. Это нестабильные частицы, которым присуще сильное взаимодействие. Название ʼʼмезоныʼʼ означает ʼʼпромежуточныйʼʼ и обусловлено тем, что первоначально открытые мезоны имели массу большую, чем у электрона, но меньшую, чем у протона. Сегодня известны мезоны, массы которых больше массы протонов. Все мезоны имеют целый спин и, следовательно являются бозонами.

БАРИОНЫ. В данный класс входит группа тяжелых элементарных частиц с полуцелым спином (фермионы) и массой, не меньшей массы протона. Единственным стабильным барионом является протон, нейтрон стабилен лишь внутри ядра. Для барионов характерны 4 вида взаимодействия. В любых ядерных реакциях и взаимодействиях их общее число остается неизменным.

ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ. - понятие и виды. Классификация и особенности категории "ОСНОВНЫЕ ПРИНЦИПЫ КВАНТОВОЙ МЕХАНИКИ." 2017, 2018.

Основными принципами квантовой механика являются принцип неопределенности В. Гейзенберга и принцип дополнительности Н. Бора.

Согласно принципу неопределенности невозможно одновременно точно определить местоположение частицы и ее импульс. Чем точнее определяется местоположение, или координата, частицы, тем более неопределенным становится ее импульс. И наоборот, чем точнее определен импульс, тем более неопределенным остается ее местоположение.

Проиллюстрировать этот принцип можно при помощи опыта Т. Юнга по интерференции. Этот опыт показывает, что при прохождении света через систему двух близкорасположенных малых отверстий в непрозрачном экране он ведет себя не как прямолинейно распространяющиеся частицы, а как взаимодействующие волны, в результате чего на поверхности, расположенной за экраном, возникает интерференционная картина в виде чередующихся светлых и темных полос. Если же оставить поочередно открытым только одно отверстие, то интерференционная картина распределения фотонов исчезает.

Проанализировать результаты этого опыта можно при помощи следующего мысленного эксперимента. Для того чтобы определить местоположение электрона, его надо осветить, т. е. направить на него фотон. В случае столкновения двух элементарных частиц мы сможем точно рассчитать координаты электрона (определяется место, где он был в момент столкновения). Однако вследствие столкновения электрон неизбежно изменит свою траекторию, так как в результате столкновения ему будет передан импульс от фотона. Поэтому если мы точно определим координату электрона, то одновременно мы лишимся знания о траектории его последующего движения. Мысленный эксперимент по столкновению электрона и фотона аналогичен закрытию одного из отверстий в опыте Юнга: столкновение с фотоном аналогично закрытию одного из отверстий в экране: в случае этого закрытия разрушается интерференционная картина или (что то же самое) траектория электрона становится неопределенной.

Значение принципа неопределенности. Соотношение неопределенности означает, что принципы и законы классической динамики Ньютона не могут использоваться для описания процессов с участием микрообъектов.

По существу этот принцип означает отказ от детерминированности и признание принципиальной роли случайности в процессах с участием микрообъектов. В классическом описании понятие случайности используется для описания поведения элементов статистических ансамблей и является лишь сознательной жертвой полноты описания во имя упрощения решения задачи. В микромире же точный прогноз поведения объектов, дающий значения его традиционных для классического описания параметров, вообще невозможен. По этому поводу до сих пор ведутся оживленные дискуссии: приверженцы классического детерминизма, не отрицая возможности использования уравнений квантовой механики для практических расчетов, видят в учитываемой ими случайности результат нашего неполного понимания законов, управляющих пока непредсказуемым для нас поведением микрообъектов. Приверженцем такого подхода был А. Эйнштейн. Являясь основоположником современного естествознания, отважившимся на пересмотр казавшихся незыблемыми позиций классического подхода, он не счел возможным отказаться от принципа детерминизма в естествознании. Позиция А. Эйнштейна и его сторонников по данному вопросу может быть сформулирована в хорошо известном и весьма образном высказывании о том, что очень трудно поверить в существование Бога, каждый раз бросающего кости для принятия решения о поведении микрообъектов. Однако до настоящего времени не обнаружено никаких экспериментальных фактов, которые указывают на существование внутренних механизмов, управляющих «случайным» поведением микрообъектов.

Следует подчеркнуть, что принцип неопределенности не связан с какими-то недостатками в конструировании измерительных приборов. Принципиально невозможно создать прибор, который одинаково точно измерил бы координату и импульс микрочастицы. Принцип неопределенности проявляется корпускулярно-волновым дуализмом природы.

Из принципа неопределенности также следует, что в квантовой механике отвергается постулируемая в классическом естествознании принципиальная возможность выполнения измерений и наблюдений объектов и происходящих с ними процессов, не влияющих на эволюцию изучаемой системы.

Принцип неопределенности является частным случаем более общего по отношению к нему принципа дополнительности. Из принципа дополнительности следует, что если в каком-либо эксперименте мы можем наблюдать одну сторону физического явления, то одновременно мы лишены возможности наблюдать дополнительную к первой сторону явления. Дополнительными свойствами, которые проявляются только в разных опытах, проведенных при взаимно исключающих условиях, могут быть положение и импульс частицы, волновой и корпускулярный характер вещества или излучения.

Важное значение в квантовой механике имеет принцип суперпозиции. Принцип суперпозиции (принцип наложения) - это допущение, согласно которому результирующий эффект представляет сумму эффектов, вызываемых каждым воздействующим явлением в отдельности. Одним из простейших примеров является правило параллелограмма, в соответствии с которым складываются две силы, действующие на тело. В микромире принцип суперпозиции - фундаментальный принцип, который наряду с принципом неопределенности составляет основу математического аппарата квантовой механики. В релятивистской квантовой механике, предполагающей взаимное превращение элементарных частиц, принцип суперпозиции должен быть дополнен принципом суперотбора. Например, при аннигиляции электрона и позитрона принцип суперпозиции дополняется принципом сохранения электрического заряда - до и после превращения сумма зарядов частиц должна быть постоянной. Поскольку заряды электрона и позитрона равны и взаимно противоположны, должна возникнуть незаряженная частица, каковой и является рождающийся в этом процессе аннигиляции фотон.

Квантовая механика - фундаментальная физическая теория, что в описании микроскопических объектов расширяет, уточняет и объединяет результаты классической механики и классической электродинамики. Эта теория является базой для многих направлений физики и химии, включая физику твердого тела, квантовую химию и физику элементарных частиц. Термин «квантовая» (от лат. Quantum - «сколько») связан с дискретными порциями, которые теория присваивает определенным физическим величинам, например, энергии атома.

Механика - наука, описывающая движение тел и сопоставлены ему физические величины, такие как энергия или импульс. Она дает точные и достоверные результаты для многих явлений. Это касается как явлений микроскопического масштаба (здесь классическая механика не способна объяснить даже существование стабильного атома), так и некоторых макроскопических явлений, таких как сверхпроводимость, сверхтекучесть или излучения абсолютно черного тела. Уже на протяжении века существования квантовой механики ее предсказания никогда не были оспорены экспериментом. Квантовая механика объясняет крайней мере три типа явлений, которыx классическая механика и классическая электродинамика не может описать:

1) квантования некоторых физических величин;

2) корпускулярно-волнового дуализма;

3) существование смешанных квантовых состояний.

Квантовая механика может быть сформулирована как релятивистская или нерелявистська теория. Хотя релявистська квантовая механика является одной из самых фундаментальных теорий - нерелявистська квантовая механика также часто используется учитывая удобство.

Теоретическая база квантовой механики

Различные формулировки квантовой механики

Одно из первых формулировок квантовой механики - это «волновая механика», предложенная Эрвина Шредингера. В этой концепции состояние исследуемой системы определятся «волновой функцией», отражающую распределение вероятности всех измеряемых физических величин системы. Таких, как энергия, координаты, импульс или момент импульса. Волнового функция (с математической точки зрения) - это комплексная квадратично интегрируема функция координат и времени системы.

В квантовой механике физическим величинам не сопоставляются какие конкретные числовые значения. Зато, делаются предположения о распределении вероятности величин измеряемого параметра. Как правило, эти вероятности будут зависеть от вида вектора состояния в момент проведения измерения. Хотя, если быть точнее, каждому определенному значению измеряемой величины соответствует определенный вектор состояния, известный как «собственное состояние» измеряемой величины.

Возьмем конкретный пример. Представим себе свободную частицу. Ее вектор состояния произвольный. Наша задача - определить координату частицы. Собственное состояние координаты частицы в пространстве - это вектор состояния, норма якго в определенной точке х достаточно велика, в то же время в любом другом месте пространства - нулевая. Если мы теперь сделаем измерения, то со стопроцентной вероятностью получим самое значение х.

Иногда система, нас интересует, не находится в собственном состоянии ни измеряемой нами физической величины. Тем не менее, если мы попробуем провести измерения, волновая функция мгновенно станет собственным состоянием измеряемой величины. Этот процесс называется коллапса волновой функции. Если мы знаем волновую функцию в момент перед измерением, то в состоянии вычислить вероятность коллапса в каждый из возможных собственных состояний. Например, свободная частица в нашем предыдущем примере к измерению будет иметь волновой функции, является волновым пакетом с центром в некоторой точке х0, не является собственным состоянием координаты. Когда мы начинаем измерение координаты частицы, то невозможно предсказать результат, который мы получим. Вероятно, но не точно, что он будет находиться близко от х0, где амплитуда волновой функции велика. После проведения измерения, когда мы получим какой-то результат х, волновая функция коллапсирует в позицию с собственным состоянием, сосредоточенным именно в х.

Векторы состояния являются функциями времени. ψ = ψ (t) Уравнение Шредингера определяет изменение вектора состояния со временем.

Некоторые векторы состояния приводят к распределений вероятности, которые являются постоянными во времени. Многие системы, которые считаются динамическими в классической механике, в действительности описываются такими «статическими» функциями. Например, электрон в невозбужденном атоме в классической физике изображается как частица, которая движется по круговой траектории вокруг ядра атома, тогда как в квантовой механике он статичен, сферически-симметричной вероятностной облачком вокруг ядра.

Эволюция вектора состояния во времени является детерминистской в том смысле, что, имея определенный вектор состояния в начальный момент времени, можно сделать точное предсказание того, какой он будет в любой другой момент. В процессе измерения изменение конфигурации вектора состояния является вероятностной, а не детерминистский. Вероятностная природа квантовой механики, таким образом, проявляется именно в процессе выполнения измерений.

Существует несколько интерпретаций квантовой механики, которые вкладывают новое понятие в сам акт измерения в квантовой механике. Основной интерпретацией квантовой механики, является общепринятая на сегодня, является вероятностная интерпретация.

Физические основы квантовой механики

Принцип неопределенности, который утверждает, что существуют фундаментальные препятствия для точного одновременного измерения двух или более параметров системы с произвольной погрешностью. В примере со свободной частицей, это означает, что принципиально невозможно найти такую волновую функцию, которая была бы собственным состоянием одновременно и импульса, и координаты. Из этого и вытекает, что координата и импульс не могут быть одновременно определены с произвольной погрешностью. С повышением точности измерения координаты, максимальная точность измерения импульса уменьшается и наоборот. Те параметры, для которых такое утверждение справедливо, называются канонически сопряженными в классической физике.

Экспериментальные база квантовой механики

Существуют такие эксперимента, которые невозможно объяснить без привлечения квантовой механики. Первая разновидность квантовых эффектов - квантования определенных физических величин. Если локализовать свободную частицу из рассмотренного выше примера в прямоугольной потенциальной яме - области протору размером L, ограниченной с обеих сторон бесконечно высоким потенциальным барьером, то окажется, что импульс частицы может иметь только определенные дискретные значения, Где h - постоянная Планка, а n - произвольное натуральное число. О параметрах, которые могут приобретать лишь дискретных значений говорят, что они квантуются. Примерами квантованных параметров является также момент импульса, полная энергия ограниченной в пространстве системы, а также энергия электромагнитного излучения определенной частоты.

Еще один квантовый эффект - это корпускулярно-волновой дуализм. Можно показать, что при определенных условиях проведения эксперимента, микроскопические объекты, такие как атомы или электроны, приобретают свойства частиц (то есть могут быть локализованы в определенной области пространства). При других условиях, те же объекты приобретают свойства волн и демонстрируют такие эффекты, как интерференция.

Следующий квантовый эффект - это эффект спутанных квантовых состояний. В некоторых случаях, вектор состояния системы из многих частиц не может быть представлена как сумма отдельных волновых функций, соответствующих каждой из частиц. В таком случае говорят, что состояния частиц спутаны. И тогда, измерения, которое было проведено лишь для одной частицы, будет иметь результатом коллапс общей волновой функции системы, т.е. такое измерение будет иметь мгновенный влияние на волнового функции других частиц системы, пусть даже некоторые из них находятся на значительном расстоянии. (Это не противоречит специальной теории относительности, поскольку передача информации на расстояние таким образом невозможна.)

Математический аппарат квантовой механики

В строгом математическом аппарате квантовой механики, который был разработан Полем Дираком и Джоном фон Нейманом, возможные состояния квантово-механической системы репрезентируются векторами состояний в комплексном сепарабельном гильбертовом пространстве. Эволюция квантового состояния описывается уравнением Шредингера, в котором оператор Гамильтона, или гамильтониан, соответствующий полной энергии системы, определяет ее эволюцию во времени.

Каждый вимирюваний параметр системы представляется эрмитовых операторов в пространстве состояний. Каждый собственное состояние измеряемого параметра соответствует собственному вектору оператора, а соответствующее собственное значение равно значению измеряемого параметра в данном собственном состоянии. В процессе измерения, вероятность перехода системы в один из собственных состояний определяется как квадрат скалярного произведения вектора собственного состояния и вектора состояния перед измерением. Возможные результаты измерения - это собственные значения оператора, объясняет выбор эрмитовых операторов, для которых все собственные значения являются действительными числами. Распределение вероятности измеряемого параметра может быть получен вычислением спектральной декомпозиции соответствующего оператора (здесь спектром оператора называется супупнисть всех возможных значений соответствующей физической величины). Принципа неопределенности Гейзенберга соответствует то, что операторы соответствующих Физический величин не коммутируют между собой. Детали математического аппарата изложены в специальной статье Математический аппарат квантовой механики.

Аналитическое решение уравнения Шредингера существует для небольшого количества гамильтониан, например для гармонического осциллятора, модели атома водорода. Даже атом гелия, который отличается от атома водорода на один электрон, не полностью аналитического решения уравнения Шредингера. Однако существуют определенные методы приближенного решения этих уравнений. Например, методы теории возмущений, где аналитический результат решения простой квантово-механической модели используется для получения решений для более сложных систем, добавлением определенного «возмущения» в виде, например, потенциальной энергии. Другой метод, «Квазиклассическое уравнения движения» прикладывается к системам, для которых квантовая механика производит лишь слабые отклонения от классической поведения. Такие отклонения могут быть вычислены методами классической физики. Этот подход важен в теории квантового хаоса, которая бурно развивается в последнее время.

Взаимодействие с другими теориями

Фундаментальные принципы квантовой механики достаточно абстрактные. Они утверждают, что пространство состояний системы является гильбертовом, а физические величины соответствуют эрмитовых операторов, действующих в этом пространстве, но не указывают конкретно, что это за гильбертово пространство и что это за операторы. Они должны быть выбраны соответствующим образом для получения количественного описания квантовой системы. Важный путеводитель здесь - это принцип соответствия, который утверждает, что квантовомеханическая эффекты перестают быть значительными, и система приобретает черты классической, с увеличением ее размеров. Такой лимит «большой системы» также называется классическим лимитом или лимитом соответствия. Кроме того, можно начать с рассмотрения классической модели системы, а затем пытаться понять, какая квантовая модель соответствует той классической, находящегося вне лимита соответствия.

Когда квантовая механика была впервые сформулирована, она применялась к моделям, которые отвечали классическим моделям нерелятивистской механики. Например, известная модель гармонического осциллятора использует откровенно нерелятивистских описание кинетической энергии осциллятора, как и соответствующая квантовая модель.

Первые попытки связать квантовую механику со специальной теорией относительности привели к замене уравнения Шредингера на уравнения Дирака. Эти теории были успешными в объяснении многих экспериментальных результатов, но игнорировали такие факты, как релятивистское создания и аннигиляция элементарный частиц. Полностью релятивистская квантовая теория требует разработки квантовой теории поля, которая будет применять понятие квантования в поле, а не к фиксированному списку частиц. Первая завершена квантовая теория поля, квантовая электродинамика, предоставляет полностью квантовый описание процессов электромагнитного взаимодействия.

Полный аппарат квантовой теории поля часто является чрезмерным для описания электромагнитных систем. Простой подход, взятый из квантовой механики, предлагает считать заряженные частицы квантовомеханических объектами в классическом электромагнитном поле. Например, элементарная квантовая модель атома водорода описывает электромагнитное поле атома с использованием классического потенциала Кулона (т.е. обратно пропорционального расстоянию). Такой «псевдоклассическим» подход не работает, если квантовые флуктуации электромагнитного поля, такие как эмиссия фотонов заряженными частицами, начинают играть весомую роль.

Квантовые теории поля для сильных и слабых ядерных взаимодействий также были разработаны. Квантовая теория поля для сильных взаимодействий называется квантовой хромодинамики и описывает взаимодействие субъядерных частиц - кварков и глюонов. Слабые ядерные и электромагнитные взаимодействия были объединены в их квантовой форме, в одну квантовую теорию поля, которая называется теорией электрослабых взаимодействий.

Построить квантовую модель гравитации, последней из фундаментальных сил, пока не удается. Псевдоклассическим приближения работают, и даже предусмотрели некоторые эффекты, такие как радиация Хоукинга. Но формулировка полной теории квантовой гравитации осложняется существующими противоречиями между общей теорией относительности, наиболее точной теорией гравитацией из известных сегодня, и некоторыми фундаментальными положениями квантовой теории. Пересечение этих противоречий - область активного научного поиска, и такие теории, как теория струн, являются возможными кандидатами на звание будущей теории квантовой гравитации.

Применение квантовой механики

Квантовая механика имела большой успех в объяснении многих феноменов из окружающей среды. Поведение микроскопических частиц, формирующих все формы материи электронов, протонов, нейтронов и т.д. - часто может быть удовлетворительно объяснена только методами квантовой механики.

Квантовая механика важна в понимании того, как индивидуальные атомы комбинируются между собой и формируют химические элементы и соединения. Применение квантовой механики к химическим процессам известно как квантовая химия. Квантовая механика может далее качественно нового понимания процессам формирования химических соединений, показывая, какие молекулы энергетически выгоднее других, и насколько. Большинство из проведенных вычислений, сделанных в вычислительной химии, основанные на квантовомеханических принципах.

Современные технологии уже достигли того масштаба, где квантовые эффекты становятся важными. Примерами являются лазеры, транзисторы, электронные микроскопы, магниторезонансная томография. Вивичення полупроводников привело к изобретению диода и транзистора, которые являются незаменимыми в современной электронике.

Исследователи сегодня находятся в поисках надежных методов прямого манипулирования квантовых состояний. Были сделаны успешные попытки создать основы квантовой криптографии, которая позволит гарантированно секретное передачи информации. Более отдаленная цель - разработка квантовых компьютеров, которые, как ожидается, смогут реализовывать определенные алгоритмы с гораздо большей эффективностью, чем классические компьютеры. Другая тема активных исследований - квантовая телепортация, которая имеет дело с технологиями передачи квантовых состояний на значительные расстояния.

Философский аспект квантовой механики

С самого момента создания квантовой механики, ее выводы, противоречили традиционной представлении о мироустройстве, имели следствием активную философскую дискуссию и возникновения многих интерпретаций. Даже такие фундаментальные положения, как сформулированы Максом Борном правила амплитуд вероятности и распределения вероятности, ждали десятилетия на восприятие научным сообществом.

Другая проблема квантовой механики состоит в том, что природа исследуемого ею объекта неизвестна. В том смысле, что координаты объекта, или пространственное распределение вероятности его присутствия, могут быть определены только при наличии у него определенных свойств (заряда, например) и окружающих условий (наличия электрического потенциала).

Копенгагенская интерпретация, благодаря прежде всего Нильсу Бору, является базовой интерпретацию квантовой механики с момента ее формулировки и до современности. Она утверждала, что вероятностная природа квантовомеханических предсказаний не могла быть объяснено в терминах иные детерминистических теорий и накладывает ограничения на наши знания об окружающей среде. Квантовая механика поэтому предоставляет лишь вероятностные результаты, сама природа Вселенной является вероятностной, хотя и детерминированной в новом квантовом смысле.

Альберт Эйнштейн, сам один из основателей квантовой теории, испытывал дискомфорт из того, что в этой теории происходит отход от классического детерминизма в определении значений физических величин объектов. Он считал что существующая теория незавершенная и должна была быть еще какая дополнительная теория. Поэтому он выдвинул серию замечаний к квантовой теории, наиболее известной из которых стал так называемый ЭПР-парадокс. Джон Белл показал, что этот парадокс может привести к появлению таких расхождений в квантовой теории, которые можно будет измерить. Но эксперименты показали, что квантовая механика является корректным. Однако некоторые «несоответствия» этих экспериментов оставляют вопросы, на которые до сих пор не дан ответ.

Интерпретация множественных миров Эверетта, сформулированная в 1956 году предлагает модель мира, в которой все возможности принятия физическими величинами тех или иных значений в квантовой теории, одновременно происходят на самом деле, в «мультивсесвити», собранном из преимущественно независимых параллельных вселенных. Мультивсесвит детерминистический, но мы получаем вероятностную поведение вселенной только потому, что не можем наблюдать за всеми вселенными одновременно.

История

Фундамент квантовой механики заложен в первой половине 20 века Максом Планком, Альбертом Эйнштейном, Вернером Гейзенбергом, Эрвина Шредингера, Максом Борном, Полем Дираком, Ричардом Фейнманом и другими. Некоторые фундаментальные аспекты теории все еще нуждаются в изучении. В 1900 г. Макс Планк предложил концепцию квантования энергии для того, чтобы получить правильную формулу для энергии излучения абсолютно черного тела. В 1905 Эйнштейн объяснил природу фотоэлектрического эффекта, постулируя, что энергия света поглощается не непрерывно, а порциями, которые он назвал квантами. В 1913 Бор объяснил конфигурацию спектральных линий атома водорода, опять же с помощью квантования. В 1924 Луи де Бройль предложил гипотезу корпоскулярно-волнового дуализма.

Эти теории, хотя и успешные, были слишком фрагментарными и вместе составляют так называемую старую квантовую теорию.

Современная квантовая механика родилась в 1925, когда Гейзенберг разработал матричную механику, а Шредингер предложил волновую механику и свое уравнение. Впоследствии Янош фон Нейман доказал, что оба подхода эквивалентны.

Следующий шаг произошел тогда, когда Гейзенберг сформулировал принцип неопределенности в 1927 году, и примерно тогда начала складываться вероятностная интерпретация. В 1927 году Поль Дирак объединил квантовую механику со специальной теорией относительности. Он также первым применил теорию операторов, включая популярную бра-кет нотацию. В 1932 Джон фон Нойман сформулировал математическое базис квантовой механики на основе теории операторов.

Эра квантовой химии была начата Вальтером Гайтлера и Фрицем Лондоном, которые опубликовали теорию образования ковалентных связей в молекуле водорода в 1927. В дальнейшем квантовая химия развивалась большой сообществом ученых во всем мире.

Начиная с 1927, начались попытки применения квантовой механики к багаточастинокових систем, следствием появление квантовой теории поля. Работы в этом направлении осуществлялись Дираком, Паули, Вайскопф, Жордану. Кульминацией этого направления исследований стала квантовая электродинамика, сформулированная Фейнманом, Дайсоном, Швингера и Томонагою течение 1940-х. Квантовая электродинамика - это квантовая теория электронов, позитронов и электромагнитного поля.

Теория квантовой хромодинамики была сформулирована в ранних 1960-х. Эта теория, такая какой ее мы знаем теперь, была предложена Полицтером, Гроссом и Вилчек в 1975. Опираясь на исследования Швингера, Хиггса, Голдстона и других, Глэшоу, Вайнберг и Салам независимо показали, что слабые ядерные взаимодействия и квантовая электродинамика могут быть объединены и рассматриваться как единая електрослаба сила.

Квантования

В квантовой механике срок квантования употребляется в нескольких близких, но разных значениях.

Квантованием называют дисктеризацию значений физической величины, что в классической физике является непрерывной. Например, электроны в атомах могут находиться только на определенных орбиталях с определенными значениями энергии. Другой пример - орбитальный момент квантовомеханической частицы может иметь только вполне определенные значения. Дискретизация энергетических уровней физической системы при уменьшении размеров называется размерным квантованием.
Квантованием называют также переход от классического описания физической системы к квантового. В частности, процедура разложения классических полей (например, электромагнитного поля) на нормальные моды и представления их в виде квантов поля (для электромагнитного поля - это фотоны) называется вторичным квантованием.