Виды гармонических колебаний. Уравнение гармонических колебаний

Простейшим видом колебаний являются гармонические колебания - колебания, при которых смещение колеблющейся точки от положения равновесия изменяется с течением времени по закону синуса или косинуса.

Так, при равномерном вращении шарика по окружности его проекция (тень в параллельных лучах света) совершает на вертикальном экране (рис. 13.2) гармо-ническое колебательное движение.

Смещение от положения равновесия при гармонических колебаниях описывается уравнением (его называют кинематическим законом гармонического движения) вида:

\(x = A \cos \Bigr(\frac{2 \pi}{T}t + \varphi_0 \Bigl)\) или \(x = A \sin \Bigr(\frac{2 \pi}{T}t + \varphi"_0 \Bigl)\)

где х - смешение - величина, характеризующая положение колеблющейся точки в момент времени t относительно положения равновесия и измеряемая расстоянием от положения равновесия до положения точки в заданный момент времени; А - амплитуда колебаний - максимальное смещение тела из положения равновесия; Т - период колебаний - время совершения одного полного колебания; т.е. наименьший промежуток времени, по истечении которого повторяются значения физических величин, характеризующих колебание; \(\varphi_0\) - начальная фаза; \(\varphi = \frac{2 \pi}{T}t + \varphi"_0\) - фаза колебании в момент времени t . Фаза колебаний - это аргумент периодической функции, который при заданной амплитуде колебаний определяет состояние колебательной системы (смещение, скорость, ускорение) тела в любой момент времени.

Если в начальный момент времени t 0 = 0 колеблющаяся точка максимально смещена от положения равновесия, то \(\varphi_0 = 0\), а смещение точки от положения равновесия изменяется по закону

\(x = A \cos \frac{2 \pi}{T}t.\)

Если колеблющаяся точка при t 0 = 0 находится в положении устойчивого равновесия, то смещение точки от положения равновесия изменяется по закону

\(x = A \sin \frac{2 \pi}{T}t.\)

Величину V , обратную периоду и равную числу полных колебаний, совершаемых за 1 с, называют частотой колебаний:

\(\nu = \frac{1}{T} \)(в СИ единицей частоты является герц, 1Гц = 1с -1).

Если за время t тело совершает N полных колебаний, то

\(T = \frac{t}{N} ; \nu = \frac{N}{t}.\)

Величину \(\omega = 2 \pi \nu = \frac{2 \pi}{T}\) , показывающую, сколько колебаний совершает тело за 2 \(\pi\) с , называют циклической (круговой) частотой.

Кинематический закон гармонического движения можно записать в виде:

\(x = A \cos(2\pi \nu t + \varphi_0), x = A \cos(\omega t + \varphi_0).\)

Графически зависимость смещения колеблющейся точки от времени изображается косинусоидой (или синусоидой).

На рисунке 13.3, а представлен график зависимости от времени смещения колеблющейся точки от положения равновесия для случая \(\varphi_0=0\), т.е. \(~x=A\cos \omega t.\)

Выясним, как изменяется скорость колеблющейся точки со временем. Для этого найдем производную по времени от этого выражения:

\(\upsilon_x = x" A \sin \omega t = \omega A \cos \Bigr(\omega t + \frac{\pi}{2} \Bigl) ,\)

где \(~\omega A = |\upsilon_x|_m\)- амплитуда проекции скорости на ось х .

Эта формула показывает, что при гармонических колебаниях проекция скорости тела на ось х изменяется тоже по  гармоническому закону с той же частотой, с другой амплитудой и опережает по фазе смешение на \(\frac{\pi}{2}\) (рис. 13.3, б).

Для выяснения зависимости ускорения a x (t) найдем производную по времени от проекции скорости:

\(~ a_x = \upsilon_x" = -\omega^2 A \cos \omega t = \omega^2 \cos(\omega t + \pi),\)

где \(~\omega^2 A = |a_x|_m\) - амплитуда проекции ускорения на ось х.

При гармонических колебаниях проекция ускорения опережает смещение по фазе на к (рис. 13,3, в).

Аналогично можно построить графики зависимостей \(~x(t), \upsilon_x (t)\) и \(~a_x(t),\) если \(~x = A \sin \omega t\) при \(\varphi_0=0.\)

Учитывая, что \(A \cos \omega t = x\), формулу для ускорения можно записать

\(~a_x = - \omega^2 x,\)

т.е. при гармонических колебаниях проекция ускорения прямо пропорциональна смещению и противоположна ему по знаку, т.е. ускорение направлено в сторону, противоположную смещению.

Так, проекция ускорения - это вторая производная от смещения а x =х" " , то полученное соотношение можно записать в виде:

\(~a_x + \omega^2 x = 0\) или \(~x"" + \omega^2 x = 0.\)

Последнее равенство называют уравнением гармонических колебаний.

Физическую систему, в которой могут существовать гармонические колебания, называют гармоническим осциллятором, а уравнение гармонических колебаний - уравнением гармонического осциллятора.

Литература

Аксенович Л. А. Физика в средней школе: Теория. Задания. Тесты: Учеб. пособие для учреждений, обеспечивающих получение общ. сред, образования / Л. А. Аксенович, Н.Н.Ракина, К. С. Фарино; Под ред. К. С. Фарино. - Мн.: Адукацыя i выхаванне, 2004. - С. 368-370.

Колебательным называется любое периодически повторяющееся движение. Поэтому зависимости координаты и скорости тела от времени при колебаниях описываются периодическими функциями времени. В школьном курсе физики рассматриваются такие колебания, в которых зависимости и скорости тела представляют собой тригонометрические функции , или их комбинацию, где - некоторое число. Такие колебания на-зываются гармоническими (функции и часто называют гармоническими функциями). Для решения задач на колебания, входящих в программу единого государственного экзамена по физике, нужно знать определения основных характеристик колебательного движения: амплитуды, периода, частоты, круговой (или циклической) частоты и фазы колебаний. Дадим эти определения и свяжем перечисленные величины с параметрами зависимости координаты тела от времени , которая в случае гармонических колебаний всегда может быть представлена в виде

где , и - некоторые числа.

Амплитудой колебаний называется максимальное отклонение колеблющегося тела от положения равновесия. Поскольку максимальное и минимальное значение косинуса в (11.1) равно ±1, то амплитуда колебаний тела, совершающего колебания (11.1), равна величине . Период колебаний - это минимальное время, через которое движение тела повторяется. Для зависимости (11.1) период можно установить из следующих соображений. Косинус - периодическая функция с периодом . Поэтому движение полностью повторяется через такое значение , что . Отсюда получаем

Круговой (или циклической) частотой колебаний называется число колебаний, совершаемых за единиц времени. Из формулы (11.3) заключаем, что круговой частотой является величина из формулы (11.1).

Фазой колебаний называется аргумент тригонометрической функции, описывающей зависимость координаты от времени. Из формулы (11.1) видим, что фаза колебаний тела, движение которого описывается зависимостью (11.1), равна . Значение фазы колебаний в момент времени = 0 называется начальной фазой. Для зависимости (11.1) начальная фаза колебаний равна величине . Очевидно, начальная фаза колебаний зависит от выбора начала отсчета времени (момента = 0), которое всегда является условным. Изменением начала отсчета времени начальная фаза колебаний всегда может быть «сделана» равной нулю, а синус в формуле (11.1) «превращен» в косинус или наоборот.

В программу единого государственного экзамена входит также знание формул для частоты колебаний пружинного и математического маятников. Пружинным маятником принято называть тело, которое может совершать колебания на гладкой горизонтальной поверхности под действием пружины, второй конец которой закреплен (левый рисунок). Математическим маятником называется массивное тело, размерами которого можно пренебречь, совершающее колебания на длинной, невесомой и нерастяжимой нити (правый рисунок). Название этой системы – «математический маятник» связано с тем, что она представляет собой абстрактную математическую модель реального (физического ) маятника. Необходимо помнить формулы для периода (или частоты) колебаний пружинного и математического маятников. Для пружинного маятника

где - длина нити, - ускорение свободного падения. Рассмотрим применение этих определений и законов на примере решения задач.

Чтобы найти циклическую частоту колебаний груза в задаче 11.1.1 найдем сначала период колебаний, а затем воспользуемся формулой (11.2). Поскольку 10 м 28 с - это 628 с, и за это время груз совершает 100 колебаний, период колебаний груза равен 6,28 с. Поэтому циклическая частота колебаний равна 1 c -1 (ответ 2 ). В задаче 11.1.2 груз за 600 с совершил 60 колебаний, поэтому частота колебаний - 0,1 с -1 (ответ 1 ).

Чтобы понять, какой путь пройдет груз за 2,5 периода (задача 11.1.3 ), проследим за его движением. Через период груз вернется назад в точку максимального отклонения, совершив полное колебание. Поэтому за это время груз пройдет расстояние, равное четырем амплитудам: до положения равновесия - одна амплитуда, от положения равновесия до точки максимального отклонения в другую сторону - вторая, назад в положение равновесия - третья, из положения равновесия в начальную точку - четвертая. За второй период груз снова пройдет четыре амплитуды, а за оставшиеся половину периода - две амплитуды. Поэтому пройденный путь равен десяти амплитудам (ответ 4 ).

Величина перемещения тела - расстояние от начальной точки до конечной. За 2,5 периода в задаче 11.1.4 тело успеет совершить два полных и половину полного колебания, т.е. окажется на максимальном отклонении, но с другой стороны от положения равновесия. Поэтому величина перемещения равна двум амплитудам (ответ 3 ).

По определению фаза колебаний - это аргумент тригонометрической функции, которой описывается зависимость координаты колеблющегося тела от времени. Поэтому правильный ответ в задаче 11.1.5 - 3 .

Период - это время полного колебания. Это значит, что возвращение тела назад в ту же точку, из которой тело начало движение, еще не означает, что прошел период: тело должно вернуться в ту же точку с той же скоростью. Например, тело, начав колебания из положения равновесия, за период успеет отклониться на максимальную величину в одну сторону, вернуться назад, отклонится на максимум в другую сторону и снова вернуться назад. Поэтому за период тело успеет два раза отклониться на максимальную величину от положения равновесия и вернуться обратно. Следовательно, на прохождение от положения равновесия до точки максимального отклонения (задача 11.1.6 ) тело затрачивает четвертую часть периода (ответ 3 ).

Гармоническими называются такие колебания, при которых зависимость координаты колеблющегося тела от времени описывается тригонометрической (синус или косинус) функцией времени. В задаче 11.1.7 таковыми являются функции и , несмотря на то, что входящие в них параметры обозначены как 2 и 2 . Функция же - тригонометрическая функция квадрата времени. Поэтому гармоническими являются колебания только величин и (ответ 4 ).

При гармонических колебаниях скорость тела изменяется по закону , где - амплитуда колебаний скорости (начало отсчета времени выбрано так, чтобы начальная фаза колебаний равнялась бы нулю). Отсюда находим зависимость кинетической энергии тела от времени
(задача 11.1.8 ). Используя далее известную тригонометрическую формулу, получаем

Из этой формулы следует, что кинетическая энергия тела изменяется при гармонических колебаниях также по гармоническому закону, но с удвоенной частотой (ответ 2 ).

За соотношением между кинетической энергий груза и потенциальной энергией пружины (задача 11.1.9 ) легко проследить из следующих соображений. Когда тело отклонено на максимальную величину от положения равновесия, скорость тела равна нулю, и, следовательно, потенциальная энергия пружины больше кинетической энергии груза. Напротив, когда тело проходит положение равновесия, потенциальная энергия пружины равна нулю, и, следовательно, кинетическая энергия больше потенциальной. Поэтому между прохождением положения равновесия и максимальным отклонением кинетическая и потенциальная энергия один раз сравниваются. А поскольку за период тело четыре раза проходит от положения равновесия до максимального отклонения или обратно, то за период кинетическая энергия груза и потенциальная энергия пружины сравниваются друг с другом четыре раза (ответ 2 ).

Амплитуду колебаний скорости (задача 11.1.10 ) проще всего найти по закону сохранения энергии. В точке максимального отклонения энергия колебательной системы равна потенциальной энергии пружины , где - коэффициент жесткости пружины, - амплитуда колебаний. При прохождении положения равновесия энергия тела равна кинетической энергии , где - масса тела, - скорость тела при прохождении положения равновесия, которая является максимальной скоростью тела в процессе колебаний и, следовательно, представляет собой амплитуду колебаний скорости. Приравнивая эти энергии, находим

(ответ 4 ).

Из формулы (11.5) заключаем (задача 11.2.2 ), что от массы математического маятника его период не зависит, а при увеличении длины в 4 раза период колебаний увеличивается в 2 раза (ответ 1 ).

Часы - это колебательный процесс, который используется для измерения интервалов времени (задача 11.2.3 ). Слова часы «спешат» означают, что период этого процесса меньше того, каким он должен быть. Поэтому для уточнения хода этих часов необходимо увеличить период процесса. Согласно формуле (11.5) для увеличения периода колебаний математического маятника необходимо увеличить его длину (ответ 3 ).

Чтобы найти амплитуду колебаний в задаче 11.2.4 , необходимо представить зависимость координаты тела от времени в виде одной тригонометрической функции. Для данной в условии функции это можно сделать с помощью введения дополнительного угла. Умножая и деля эту функцию на и используя формулу сложения тригонометрических функций, получим

где - такой угол, что . Из этой формулы следует, что амплитуда колебаний тела - (ответ 4 ).

Меняется во времени по синусоидальному закону:

где х — значение колеблющейся величины в момент времени t , А — амплитуда , ω — круговая частота, φ — начальная фаза колебаний, (φt + φ ) — полная фаза колебаний . При этом величины А , ω и φ — постоянные.

Для механических колебаний колеблющейся величиной х являются, в частности, смещение и скорость , для электрических колебаний — напряжение и сила тока .

Гармонические колебания занимают особое место среди всех видов колебаний, т. к. это единственный тип колебаний, форма которых не искажается при прохождении через любую однородную среду, т. е. волны, распространяющиеся от источника гармонических колебаний, также будут гармоническими. Любое негармоническое колебание может быть представлено в виде сумм (интеграла) различных гармонических колебаний (в виде спектра гармонических колебаний).

Превращения энергии при гармонических колебаниях.

В процессе колебаний происходит переход потенциальной энергии W p в кинетическую W k и наоборот. В положении максимального отклонения от положения равновесия потенциальная энергия максимальна, кинетическая равна нулю. По мере возвращения к положению равновесия скорость колеблющегося тела растет, а вместе с ней растет и кинетическая энергия, достигая максимума в положении равновесия. Потенциальная энергия при этом падает до нуля. Дальней-шее движение происходит с уменьшением скорости, которая падает до нуля, когда отклонение достигает своего второго максимума. Потенциальная энергия здесь увеличивается до своего перво-начального (максимального) значения (при отсутствии трения). Таким образом, колебания кинетической и потенциальной энергий происходят с удвоенной (по сравнению с колебаниями самого маятника) частотой и находятся в противофазе (т. е. между ними существует сдвиг фаз, равный π ). Полная энергия колебаний W остается неизменной. Для тела, колеблющегося под действием силы упругости , она равна:

где v m — максимальная скорость тела (в положении равновесия), х m = А — амплитуда.

Из-за наличия трения и сопротивления среды свободные колебания затухают: их энергия и амплитуда с течением времени уменьшаются. Поэтому на практике чаще используют не свободные, а вынужденные колебания.

Это периодическое колебание, при котором координата, скорость, ускорение, характеризующие движение, изменяются по закону синуса или косинуса. Уравнение гармонического колебания устанавливает зависимость координаты тела от времени

График косинуса в начальный момент имеет максимальное значение, а график синуса имеет в начальный момент нулевое значение. Если колебание начинаем исследовать из положения равновесия, то колебание будет повторять синусоиду. Если колебание начинаем рассматривать из положения максимального отклонения, то колебание опишет косинус. Или такое колебание можно описать формулой синуса с начальной фазой .

Математический маятник

Колебания математического маятника.

Математический маятник – материальная точка, подвешенная на невесомой нерастяжимой нити (физическая модель).

Будем рассматривать движение маятника при условии, что угол отклонения мал, тогда, если измерять угол в радианах, справедливо утверждение: .

На тело действуют сила тяжести и сила натяжения нити. Равнодействующая этих сил имеет две составляющие: тангенциальную, меняющую ускорение по величине, и нормальную, меняющую ускорение по направлению (центростремительное ускорение, тело движется по дуге).

Т.к. угол мал, то тангенциальная составляющая равна проекции силы тяжести на касательную к траектории: . Угол в радианах равен отношению длины дуги к радиусу (длине нити), а длина дуги приблизительно равна смещению (x ≈ s ): .

Сравним полученное уравнение с уравнением колебательного движения .

Видно, что или- циклическая частота при колебаниях математического маятника.

Период колебаний или(формула Галилея).

Формула Галилея

Важнейший вывод: период колебаний математического маятника не зависит от массы тела!

Аналогичные вычисления можно проделать с помощью закона сохранения энергии.

Учтем, что потенциальная энергия тела в поле тяготения равна , а полная механическая энергия равна максимальной потенциальной или кинетической:

Запишем закон сохранения энергии и возьмем производную от левой и правой частей уравнения: .

Т.к. производная от постоянной величины равна нулю, то .

Производная суммы равна сумме производных: и.

Следовательно: , а значит.

Уравнение состояния идеального газа

(уравнение Менделеева – Клапейрона).

Уравнением состояния называется уравнение, связывающее параметры физической системы и однозначно определяющее ее состояние.

В 1834 г. французский физик Б. Клапейрон , работавший дли тельное время в Петербурге, вывел уравнение состояния идеаль­ного газа для постоянной массы газа. В 1874 г. Д. И. Менделеев вывел уравнение для произвольного числа молекул.

В МКТ и термодинамике идеального газа макроскопическими параметрами являются: p, V, T, m.

Мы знаем, что . Следовательно,. Учитывая, что, получим:.

Произведение постоянных величин есть величина постоянная, следовательно: - универсальная газовая постоянная (универсальная, т.к. для всех газов одинаковая).

Таким образом, имеем:

Уравнение состояния (уравнение Менделеева – Клапейрона).

Другие формы записи уравнения состояния идеального газа.

1.Уравнение для 1 моля вещества.

Если n=1 моль, то, обозначив объем одного моля V м, получим: .

Для нормальных условий получим:

2. Запись уравнения через плотность: - плотность зависит от температуры и давления!

3. Уравнение Клапейрона.

Часто необходимо исследовать ситуацию, когда меняется состояние газа при его неизменном количестве (m=const) и в отсутствие химических реакций (M=const). Это означает, что количество вещества n=const. Тогда:

Эта запись означает, что для данной массы данного газа справедливо равенство:

Для постоянной массы идеального газа отношение произве­дения давления на объем к абсолютной температуре в данном состоянии есть величина постоянная: .

Газовые законы.

1. Закон Авогадро.

В равных объемах различных газов при одинаковых внешних условиях находится одинаковое число молекул (атомов).

Условие: V 1 =V 2 =…=V n ; p 1 =p 2 =…=p n ; T 1 =T 2 =…=T n

Доказательство:

Следовательно, при одинаковых условиях (давление, объем, температура) число молекул не зависит от природы газа и одинаково.

2. Закон Дальтона.

Давление смеси газов равно сумме парциальных (частных) давлений каждого газа.

Доказать: p=p 1 +p 2 +…+p n

Доказательство:

3. Закон Паскаля.

Давление, производимое на жидкость или газ, передается во все стороны без изменения.

Уравнение состояния идеального газа. Газовые законы.

Числа степеней свободы : это число независимых переменных (координат), которые полностью определяют положение системы в пространстве. В некоторых задачах молекулу одноатомного газа (рис. 1, а) рассматривают как материальную точку, которой задают три степени свободы поступательного движения. При этом не учитывается энергия вращательного движения. В механике молекула двухатомного газа в первом приближении считается совокупностью двух материальных точек, которые жестко связанны недеформируемой связью (рис. 1, б). Данная система кроме трех степеней свободы поступательного движения имеет еще две степени свободы вращательного движения. Вращение вокруг третьей оси, проходящей через оба атома, лишено смысла. Значит, у двухатомного газа пять степеней свободы (i = 5). У трехатомной (рис. 1, в) и многоатомной нелинейной молекулы шесть степеней свободы: три поступательных и три вращательных. Естественно считать, что жесткой связи между атомами не существует. Поэтому необходимо учитывать для реальных молекул также степени свободы колебательного движения.

При любом числе степеней свободы данной молекулы три степени свободы всегда поступательные. Ни одна из поступательных степеней свободы не имеет преимущества перед другими, значит на каждую из них приходится в среднем одинаковая энергия, равная 1/3 значения <ε 0 > (энергия поступательного движения молекул): В статистической физике выводится закон Больцмана о равномерном распределении энергии по степеням свободы молекул : для статистической системы, которая находится в состоянии термодинамического равновесия, на каждую поступательную и вращательную степени свободы приходится в среднем кинетическая энергия, равная kT/2, а на каждую колебательную степень свободы - в среднем энергия, равная kT. Колебательная степень обладает вдвое большей энергией, т.к. на нее приходится как кинетическая энергия (как в случае поступательного и вращательного движений), так и потенциальная, причем средние значения потенциальной и кинетической и энергии одинаковы. Значит, средняя энергия молекулы где i - сумма числа поступательных, числа вращательных в удвоенного числа колеба¬тельных степеней свободы молекулы:i =i пост +i вращ +2i колеб В классической теории рассматривают молекулы с жесткой связью между атомами; для них i совпадает с числом степеней свободы молекулы. Так как в идеальном газе взаимная потенциальная энергия взаимодействия молекул равна нулю (молекулы между собой не взаимодействуют), то внутренняя энергия для одного моля газа, будет равна сумме кинетических энергий N A молекул: (1) Внутренняя энергия для произвольной массы m газа. где М - молярная масса, ν - количество вещества.

Колебаниями называются движения или процессы, которые характеризуются определенной повторяемостью во времени. Колебания широко распространены в окружающем мире и могут иметь самую различную природу. Это могут быть механические (маятник), электромагнитные (колебательный контур) и другие виды колебаний.
Свободными , или собственными колебаниями, называются колебания, которые происходят в системе предоставленной самой себе, после того как она была выведена внешним воздействием из состояния равновесия. Примером могут служить колебания шарика, подвешенного на нити.

Особую роль в колебательных процессах имеет простейший вид колебаний - гармонические колебания. Гармонические колебания лежат в основе единого подхода при изучении колебаний различной природы, так как колебания, встречающиеся в природе и технике, часто близки к гармоническим, а периодические процессы иной формы можно представить как наложение гармонических колебаний.

Гармоническими колебаниями называются такие колебания, при которых колеблющаяся величина меняется от времени по закону синуса или косинуса .

Уравнение гармонических колебаний имеет вид:

где A - амплитуда колебаний (величина наибольшего отклонения системы от положения равновесия) ; - круговая (циклическая) частота. Периодически изменяющийся аргумент косинуса - называется фазой колебаний . Фаза колебаний определяет смещение колеблющейся величины от положения равновесия в данный момент времени t. Постоянная φ представляет собой значение фазы в момент времени t = 0 и называется начальной фазой колебания . Значение начальной фазы определяется выбором начала отсчета. Величина x может принимать значения, лежащие в пределах от -A до +A.

Промежуток времени T, через который повторяются определенные состояния колебательной системы, называется периодом колебаний . Косинус - периодическая функция с периодом 2π, поэтому за промежуток времени T, через который фаза колебаний получит приращение равное 2π, состояние системы, совершающей гармонические колебания, будет повторяться. Этот промежуток времени T называется периодом гармонических колебаний.

Период гармонических колебаний равен : T = 2π/ .

Число колебаний в единицу времени называется частотой колебаний ν.
Частота гармонических колебаний равна: ν = 1/T. Единица измерения частоты герц (Гц) - одно колебание в секунду.

Круговая частота = 2π/T = 2πν дает число колебаний за 2π секунд.

Графически гармонические колебания можно изображать в виде зависимости x от t (рис.1.1.А), так и методом вращающейся амплитуды (метод векторных диаграмм) (рис.1.1.Б).

Метод вращающейся амплитуды позволяет наглядно представить все параметры, входящие в уравнение гармонических колебаний. Действительно, если вектор амплитуды А расположен под углом φ к оси х (см. Рисунок 1.1. Б), то его проекция на ось х будет равна: x = Acos(φ). Угол φ и есть начальная фаза. Если вектор А привести во вращение с угловой скоростью , равной круговой частоте колебаний, то проекция конца вектора будет перемещаться по оси х и принимать значения, лежащие в пределах от -A до +A, причем координата этой проекции будет меняться со временем по закону:
.


Таким образом, длина вектора равна амплитуде гармонического колебания, направление вектора в начальный момент образует с осью x угол равный начальной фазе колебаний φ, а изменение угла направления от времени равно фазе гармонических колебаний. Время, за которое вектор амплитуды делает один полный оборот, равно периоду Т гармонических колебаний. Число оборотов вектора в секунду равно частоте колебаний ν.