Turli asoslar bilan logarifmlarning farqi misollar. Logarifm formulalari. Logarifmlar yechimlariga misollar

Jamiyat rivojlanib, ishlab chiqarish murakkablashgan sari matematika ham rivojlandi. Oddiydan murakkabga o'tish. Qo'shish va ayirish usulidan foydalangan holda oddiy buxgalteriya hisobidan ularning takroriy takrorlanishi bilan biz ko'paytirish va bo'lish tushunchasiga keldik. Ko'paytirishning takroriy amalini qisqartirish ko'rsatkich tushunchasiga aylandi. Raqamlarning asosga va ko'rsatkichlar soniga bog'liqligining birinchi jadvallari 8-asrda hind matematigi Varasena tomonidan tuzilgan. Ulardan logarifmlarning paydo bo'lish vaqtini hisoblashingiz mumkin.

Tarixiy eskiz

16-asrda Yevropaning tiklanishi ham mexanikaning rivojlanishiga turtki boʻldi. T katta hajmdagi hisoblashni talab qildi ko'p xonali sonlarni ko'paytirish va bo'lish bilan bog'liq. Qadimgi stollar katta xizmat qilgan. Ular murakkab amallarni oddiyroq - qo'shish va ayirish bilan almashtirishga imkon berdi. Oldinga katta qadam 1544 yilda nashr etilgan matematik Maykl Stifelning ishi bo'lib, unda u ko'plab matematiklarning g'oyasini amalga oshirdi. Bu jadvallardan nafaqat tub sonlar ko'rinishidagi darajalar uchun, balki o'zboshimchalik bilan ratsional bo'lganlar uchun ham foydalanishga imkon berdi.

1614 yilda shotlandiyalik Jon Nepier ushbu g'oyalarni ishlab chiqib, birinchi marta yangi "sonning logarifmi" atamasini kiritdi. Sinuslar va kosinuslarning logarifmlarini, shuningdek, tangenslarni hisoblash uchun yangi murakkab jadvallar tuzildi. Bu astronomlarning ishini ancha qisqartirdi.

Uch asr davomida olimlar tomonidan muvaffaqiyatli qo'llanilgan yangi jadvallar paydo bo'la boshladi. Algebra bo'yicha yangi operatsiya tugallangan shaklga ega bo'lgunga qadar ko'p vaqt o'tdi. Logarifmning ta’rifi berildi va uning xossalari o‘rganildi.

Faqat 20-asrda, kalkulyator va kompyuterning paydo bo'lishi bilan insoniyat 13-asr davomida muvaffaqiyatli ishlagan qadimiy jadvallardan voz kechdi.

Bugun biz b ning logarifmini a asosi bo'lgan x soni deb ataymiz, ya'ni a ning b ni tashkil qiladi. Bu formula sifatida yoziladi: x = log a(b).

Misol uchun, log 3(9) 2 ga teng bo'ladi. Agar ta'rifga amal qilsangiz, bu aniq. Agar 3 ni 2 ning darajasiga oshirsak, biz 9 ni olamiz.

Shunday qilib, tuzilgan ta'rif faqat bitta cheklovni o'rnatadi: a va b raqamlari haqiqiy bo'lishi kerak.

Logarifmlarning turlari

Klassik ta'rif haqiqiy logarifm deb ataladi va aslida a x = b tenglamaning yechimidir. Variant a = 1 chegara chizig'idir va qiziqish uyg'otmaydi. Diqqat: har qanday kuchga 1 1 ga teng.

Logarifmning haqiqiy qiymati faqat asos va argument 0 dan katta bo'lganda aniqlanadi va asos 1 ga teng bo'lmasligi kerak.

Matematika sohasida alohida o'rin tutadi logarifmlarni o'ynang, ular bazasining o'lchamiga qarab nomlanadi:

Qoidalar va cheklovlar

Logarifmlarning asosiy xususiyati qoidadir: mahsulotning logarifmi logarifmik yig'indiga teng. log abp = log a(b) + log a(p).

Ushbu bayonotning varianti sifatida quyidagilar bo'ladi: log c(b/p) = log c(b) - log c(p), bo'linish funktsiyasi funktsiyalarning farqiga teng.

Oldingi ikkita qoidadan shuni ko'rish oson: log a(b p) = p * log a(b).

Boshqa xususiyatlarga quyidagilar kiradi:

Izoh. Umumiy xatoga yo'l qo'yishning hojati yo'q - yig'indining logarifmi logarifmalar yig'indisiga teng emas.

Ko'p asrlar davomida logarifmni topish juda ko'p vaqt talab qiladigan ish edi. Matematiklar ko'p nomli kengayishning logarifmik nazariyasining mashhur formulasidan foydalanganlar:

ln (1 + x) = x — (x^2)/2 + (x^3)/3 — (x^4)/4 + … + ((-1)^(n + 1))*(( x^n)/n), bu erda n - 1 dan katta natural son, bu hisoblashning to'g'riligini belgilaydi.

Boshqa asosli logarifmlar bir asosdan ikkinchisiga o'tish teoremasi va ko'paytma logarifmining xossasi yordamida hisoblangan.

Chunki bu usul juda ko'p mehnat talab qiladi va amaliy muammolarni hal qilishda amalga oshirish qiyin, biz logarifmlarning oldindan tuzilgan jadvallaridan foydalandik, bu esa barcha ishlarni sezilarli darajada tezlashtirdi.

Ba'zi hollarda logarifmlarning maxsus tuzilgan grafiklaridan foydalanilgan, bu kamroq aniqlik bergan, ammo kerakli qiymatni izlashni sezilarli darajada tezlashtirgan. Bir necha nuqtalar ustida tuzilgan y = log a(x) funktsiyaning egri chizig'i istalgan boshqa nuqtadagi funktsiya qiymatini topish uchun oddiy o'lchagichdan foydalanish imkonini beradi. Uzoq vaqt davomida muhandislar ushbu maqsadlar uchun grafik qog'oz deb ataladigan qog'ozdan foydalanganlar.

17-asrda 19-asrga kelib toʻliq shaklga ega boʻlgan birinchi yordamchi analog hisoblash sharoitlari paydo boʻldi. Eng muvaffaqiyatli qurilma slayd qoidasi deb nomlandi. Qurilmaning soddaligiga qaramay, uning ko'rinishi barcha muhandislik hisob-kitoblari jarayonini sezilarli darajada tezlashtirdi va buni ortiqcha baholash qiyin. Hozirda bu qurilma bilan kam odam tanish.

Kalkulyatorlar va kompyuterlarning paydo bo'lishi boshqa har qanday qurilmalardan foydalanishni ma'nosiz qildi.

Tenglamalar va tengsizliklar

Logarifmlar yordamida turli xil tenglamalar va tengsizliklarni yechish uchun quyidagi formulalar qo'llaniladi:

  • Bir bazadan ikkinchisiga o'tish: log a(b) = log c(b) / log c(a);
  • Oldingi variantning natijasi sifatida: log a (b) = 1 / log b (a).

Tengsizliklarni yechish uchun quyidagilarni bilish foydalidir:

  • Logarifmning qiymati faqat asos va argument bittadan katta yoki kichik bo'lsagina ijobiy bo'ladi; agar kamida bitta shart buzilgan bo'lsa, logarifm qiymati salbiy bo'ladi.
  • Agar tengsizlikning o‘ng va chap tomonlariga logarifm funksiyasi qo‘llanilsa va logarifmning asosi birdan katta bo‘lsa, tengsizlik belgisi saqlanib qoladi; aks holda u o'zgaradi.

Namuna muammolar

Keling, logarifmlar va ularning xossalarini ishlatishning bir nechta variantlarini ko'rib chiqaylik. Tenglamalarni echishga misollar:

Logarifmni bir darajaga joylashtirish variantini ko'rib chiqing:

  • Masala 3. 25^log 5(3) ni hisoblang. Yechish: muammoning shartlarida yozuv quyidagiga o'xshaydi (5^2)^log5(3) yoki 5^(2 * log 5(3)). Buni boshqacha yozamiz: 5^log 5(3*2) yoki funktsiya argumenti sifatidagi raqamning kvadrati funksiyaning o'zi (5^log 5(3))^2 kvadrati sifatida yozilishi mumkin. Logarifmlarning xossalaridan foydalanib, bu ifoda 3^2 ga teng. Javob: hisoblash natijasida biz 9 ni olamiz.

Amaliy foydalanish

Sof matematik vosita bo'lganligi sababli, logarifm to'satdan haqiqiy dunyodagi ob'ektlarni tasvirlash uchun katta ahamiyatga ega bo'lganligi haqiqiy hayotdan uzoq bo'lib tuyuladi. Undan foydalanilmagan fanni topish qiyin. Bu nafaqat tabiiy, balki gumanitar bilim sohalariga ham to'liq taalluqlidir.

Logarifmik bog'liqliklar

Raqamli bog'liqliklarga ba'zi misollar:

Mexanika va fizika

Tarixan mexanika va fizika har doim matematik tadqiqot usullaridan foydalangan holda rivojlangan va shu bilan birga matematikaning, jumladan, logarifmlarning rivojlanishi uchun rag'bat bo'lib xizmat qilgan. Fizikaning aksariyat qonunlari nazariyasi matematika tilida yozilgan. Logarifm yordamida fizik qonunlarni tavsiflashga ikkita misol keltiramiz.

Raketa tezligi kabi murakkab miqdorni hisoblash muammosini Tsiolkovskiy formulasi yordamida hal qilish mumkin, bu koinotni o'rganish nazariyasiga asos solgan:

V = I * ln (M1/M2), bu erda

  • V - samolyotning oxirgi tezligi.
  • I - dvigatelning o'ziga xos impulsi.
  • M 1 - raketaning boshlang'ich massasi.
  • M 2 - yakuniy massa.

Yana bir muhim misol- bu boshqa buyuk olim Maks Plankning termodinamikadagi muvozanat holatini baholashga xizmat qiluvchi formulasida qo'llaniladi.

S = k * ln (Ō), bu erda

  • S – termodinamik xususiyat.
  • k – Boltsman doimiysi.
  • Ō - turli holatlarning statistik og'irligi.

Kimyo

Kimyoda logarifmlar nisbatini o'z ichiga olgan formulalardan foydalanish unchalik aniq emas. Keling, ikkita misol keltiraylik:

  • Nernst tenglamasi, muhitning oksidlanish-qaytarilish potentsialining moddalarning faolligiga va muvozanat konstantasiga nisbatan sharti.
  • Avtoliz indeksi va eritmaning kislotaligi kabi konstantalarni hisoblash ham bizning funktsiyamizsiz amalga oshirilmaydi.

Psixologiya va biologiya

Va psixologiyaning bunga qanday aloqasi borligi umuman aniq emas. Ma'lum bo'lishicha, sezish kuchi bu funktsiya tomonidan ogohlantiruvchi intensivlik qiymatining quyi intensivlik qiymatiga teskari nisbati sifatida yaxshi tasvirlangan.

Yuqoridagi misollardan so'ng, logarifmlar mavzusi biologiyada keng qo'llanilishi ajablanarli emas. Logarifmik spirallarga mos keladigan biologik shakllar haqida butun jildlarni yozish mumkin edi.

Boshqa hududlar

Ko'rinadiki, dunyoning mavjudligi bu funktsiya bilan bog'liqsiz mumkin emas va u barcha qonunlarni boshqaradi. Ayniqsa, tabiat qonunlari geometrik progressiya bilan bog'liq bo'lsa. MatProfi veb-saytiga murojaat qilish arziydi va quyidagi faoliyat sohalarida bunday misollar ko'p:

Ro'yxat cheksiz bo'lishi mumkin. Ushbu funktsiyaning asosiy tamoyillarini o'zlashtirib, siz cheksiz donolik dunyosiga sho'ng'ishingiz mumkin.

Logarifmlar, har qanday raqamlar kabi, har qanday usulda qo'shilishi, ayirilishi va o'zgartirilishi mumkin. Ammo logarifmlar oddiy raqamlar emasligi sababli, bu erda qoidalar mavjud, ular chaqiriladi asosiy xususiyatlar.

Siz, albatta, ushbu qoidalarni bilishingiz kerak - ularsiz biron bir jiddiy logarifmik muammoni hal qilib bo'lmaydi. Bundan tashqari, ular juda oz - siz bir kunda hamma narsani o'rganishingiz mumkin. Shunday qilib, keling, boshlaylik.

Logarifmlarni qo‘shish va ayirish

Bir xil asoslarga ega ikkita logarifmni ko'rib chiqing: log a x va jurnal a y. Keyin ularni qo'shish va ayirish mumkin, va:

  1. jurnal a x+ jurnal a y=log a (x · y);
  2. jurnal a x− jurnal a y=log a (x : y).

Demak, logarifmlar yig‘indisi ko‘paytmaning logarifmiga, ayirmasi esa bo‘lakning logarifmiga teng. Iltimos, diqqat qiling: bu erda asosiy nuqta bir xil asoslar. Agar sabablar boshqacha bo'lsa, bu qoidalar ishlamaydi!

Ushbu formulalar, hatto uning alohida qismlari hisobga olinmagan taqdirda ham logarifmik ifodani hisoblashda yordam beradi ("Logarifm nima" darsiga qarang). Misollarni ko'rib chiqing va qarang:

Jurnal 6 4 + jurnal 6 9.

Logarifmlar bir xil asosga ega bo'lgani uchun biz yig'indi formulasidan foydalanamiz:
log 6 4 + log 6 9 = log 6 (4 9) = log 6 36 = 2.

Vazifa. Ifodaning qiymatini toping: log 2 48 − log 2 3.

Asoslar bir xil, biz farq formulasidan foydalanamiz:
log 2 48 − log 2 3 = log 2 (48: 3) = log 2 16 = 4.

Vazifa. Ifodaning qiymatini toping: log 3 135 − log 3 5.

Yana asoslar bir xil, shuning uchun bizda:
log 3 135 − log 3 5 = log 3 (135: 5) = log 3 27 = 3.

Ko'rib turganingizdek, asl iboralar "yomon" logarifmlardan iborat bo'lib, ular alohida hisoblanmaydi. Ammo transformatsiyalardan so'ng butunlay normal raqamlar olinadi. Ko'pgina testlar ushbu faktga asoslanadi. Ha, testga o'xshash iboralar Yagona davlat imtihonida barcha jiddiylik bilan (ba'zan deyarli hech qanday o'zgarishlarsiz) taklif etiladi.

Logarifmadan ko'rsatkichni chiqarish

Endi vazifani biroz murakkablashtiramiz. Agar logarifmning asosi yoki argumenti kuch bo'lsa-chi? Keyin ushbu daraja ko'rsatkichini quyidagi qoidalarga muvofiq logarifm belgisidan chiqarish mumkin:

Oxirgi qoida birinchi ikkitasiga amal qilishini ko'rish oson. Ammo baribir buni eslab qolish yaxshiroqdir - ba'zi hollarda bu hisob-kitoblar miqdorini sezilarli darajada kamaytiradi.

Albatta, agar logarifmning ODZ kuzatilsa, ushbu qoidalarning barchasi mantiqiy bo'ladi: a > 0, a ≠ 1, x> 0. Va yana bir narsa: barcha formulalarni nafaqat chapdan o'ngga, balki aksincha qo'llashni o'rganing, ya'ni. Logarifmning o'ziga logarifm belgisidan oldingi raqamlarni kiritishingiz mumkin. Bu eng ko'p talab qilinadigan narsa.

Vazifa. Ifodaning qiymatini toping: log 7 49 6 .

Keling, birinchi formuladan foydalanib, argumentdagi darajadan xalos bo'laylik:
log 7 49 6 = 6 log 7 49 = 6 2 = 12

Vazifa. Ifodaning ma'nosini toping:

[Rasm uchun sarlavha]

E'tibor bering, maxraj logarifmadan iborat bo'lib, uning asosi va argumenti aniq darajalardir: 16 = 2 4 ; 49 = 7 2. Bizda ... bor:

[Rasm uchun sarlavha]

O'ylaymanki, oxirgi misol biroz tushuntirishni talab qiladi. Logarifmlar qayerga ketdi? Biz oxirgi daqiqagacha faqat maxraj bilan ishlaymiz. Biz u erda turgan logarifmning asosini va argumentini kuchlar shaklida taqdim etdik va ko'rsatkichlarni olib tashladik - biz "uch qavatli" kasrni oldik.

Endi asosiy kasrni ko'rib chiqaylik. Numerator va maxraj bir xil sonni o'z ichiga oladi: log 2 7. Log 2 7 ≠ 0 bo'lgani uchun biz kasrni kamaytirishimiz mumkin - 2/4 maxrajda qoladi. Arifmetika qoidalariga ko'ra, to'rttani hisoblagichga o'tkazish mumkin, bu bajarilgan. Natijada javob bo'ldi: 2.

Yangi poydevorga o'tish

Logarifmlarni qo'shish va ayirish qoidalari haqida gapirganda, ular faqat bir xil asoslar bilan ishlashini alohida ta'kidladim. Agar sabablar boshqacha bo'lsa-chi? Agar ular bir xil sonning aniq kuchlari bo'lmasa-chi?

Yangi poydevorga o'tish uchun formulalar yordamga keladi. Keling, ularni teorema shaklida tuzamiz:

Logarifm jurnali berilsin a x. Keyin istalgan raqam uchun c shu kabi c> 0 va c≠ 1, tenglik to'g'ri:

[Rasm uchun sarlavha]

Xususan, agar biz qo'ysak c = x, biz olamiz:

[Rasm uchun sarlavha]

Ikkinchi formuladan kelib chiqadiki, logarifmning asosi va argumenti almashtirilishi mumkin, ammo bu holda butun ifoda "aylantiriladi", ya'ni. logarifm maxrajda ko'rinadi.

Bu formulalar oddiy sonli ifodalarda kam uchraydi. Ularning qanchalik qulay ekanligini faqat logarifmik tenglamalar va tengsizliklarni yechishdagina baholash mumkin.

Biroq, yangi poydevorga o'tishdan tashqari, umuman hal qilib bo'lmaydigan muammolar mavjud. Keling, ulardan bir nechtasini ko'rib chiqaylik:

Vazifa. Ifodaning qiymatini toping: log 5 16 log 2 25.

E'tibor bering, ikkala logarifmning argumentlari aniq kuchlarni o'z ichiga oladi. Keling, ko'rsatkichlarni chiqaramiz: log 5 16 = log 5 2 4 = 4log 5 2; log 2 25 = log 2 5 2 = 2log 2 5;

Endi ikkinchi logarifmni “teskari” qilaylik:

[Rasm uchun sarlavha]

Faktorlarni qayta tartibga solishda mahsulot o'zgarmasligi sababli, biz xotirjamlik bilan to'rt va ikkitani ko'paytirdik va keyin logarifmlar bilan ishladik.

Vazifa. Ifodaning qiymatini toping: log 9 100 lg 3.

Birinchi logarifmning asosi va argumenti aniq kuchlardir. Keling, buni yozamiz va ko'rsatkichlardan xalos bo'laylik:

[Rasm uchun sarlavha]

Endi yangi bazaga o'tish orqali o'nlik logarifmdan xalos bo'laylik:

[Rasm uchun sarlavha]

Asosiy logarifmik identifikatsiya

Ko'pincha yechim jarayonida raqamni berilgan asosga logarifm sifatida ko'rsatish kerak bo'ladi. Bunday holda, quyidagi formulalar bizga yordam beradi:

Birinchi holda, raqam n argumentda turgan daraja ko'rsatkichiga aylanadi. Raqam n mutlaqo hamma narsa bo'lishi mumkin, chunki bu faqat logarifm qiymati.

Ikkinchi formula aslida tarjima qilingan ta'rifdir. Bu shunday deyiladi: asosiy logarifmik identifikatsiya.

Aslida, raqam bo'lsa, nima bo'ladi b raqamni shunday kuchga ko'taring b bu kuchga raqamni beradi a? To'g'ri: siz xuddi shu raqamni olasiz a. Ushbu xatboshini yana diqqat bilan o'qing - ko'p odamlar unga yopishib olishadi.

Yangi bazaga o'tish formulalari singari, asosiy logarifmik identifikatsiya ba'zan yagona mumkin bo'lgan yechimdir.

Vazifa. Ifodaning ma'nosini toping:

[Rasm uchun sarlavha]

E'tibor bering, log 25 64 = log 5 8 - oddiygina kvadratni logarifmning asosi va argumentidan oldi. Quvvatlarni bir xil asos bilan ko'paytirish qoidalarini hisobga olgan holda, biz quyidagilarni olamiz:

[Rasm uchun sarlavha]

Agar kimdir bilmasa, bu yagona davlat imtihonidan olingan haqiqiy vazifa edi :)

Logarifmik birlik va logarifmik nol

Xulosa qilib aytganda, men xususiyatlar deb atash qiyin bo'lgan ikkita identifikatsiyani beraman - aksincha, ular logarifm ta'rifining oqibatlari. Ular doimo muammolarda paydo bo'ladi va ajablanarlisi shundaki, hatto "ilg'or" talabalar uchun ham muammolarni keltirib chiqaradi.

  1. jurnal a a= 1 - logarifmik birlik. Bir marta va umuman eslab qoling: har qanday bazaga logarifm a shu asosdan bittaga teng.
  2. jurnal a 1 = 0 - logarifmik nol. Baza a har qanday bo'lishi mumkin, lekin agar argument bitta bo'lsa, logarifm nolga teng! Chunki a 0 = 1 ta'rifning bevosita natijasidir.

Bu barcha xususiyatlar. Ularni amalda qo'llashni mashq qiling! Dars boshida cheat varaqini yuklab oling, uni chop eting va muammolarni hal qiling.

Natural logarifmning asosiy xossalari, grafigi, aniqlanish sohasi, qiymatlar to‘plami, asosiy formulalari, hosilaviy, integral, darajali qatorlarni kengaytirish va ln x funksiyani kompleks sonlar yordamida tasvirlash berilgan.

Ta'rif

Tabiiy logarifm y = funktsiyasidir ln x, ko‘rsatkichning teskarisi, x = e y va e soni asosining logarifmi: ln x = log e x.

Tabiiy logarifm matematikada keng qo'llaniladi, chunki uning hosilasi eng oddiy shaklga ega: (ln x)' = 1/ x.

Asoslangan ta'riflar, natural logarifmning asosi sondir e:
e ≅ 2,718281828459045...;
.

y = funksiyaning grafigi ln x.

Natural logarifm grafigi (y = ln x) ko'rsatkichli grafikdan y = x to'g'ri chiziqqa nisbatan oynada aks etish orqali olinadi.

Tabiiy logarifm x o'zgaruvchisining ijobiy qiymatlari uchun aniqlanadi. U o'z ta'rifi sohasida monoton ravishda ortadi.

x → da 0 natural logarifmning chegarasi minus cheksizlik (-∞).

X → + ∞ sifatida natural logarifmning chegarasi plyus cheksizlikdir (+ ∞). Katta x uchun logarifm juda sekin ortadi. Har qanday quvvat funktsiyasi x a musbat ko'rsatkichli a logarifmadan tezroq o'sadi.

Natural logarifmning xossalari

Ta'rif sohasi, qiymatlar to'plami, ekstremal, o'sish, pasayish

Tabiiy logarifm monoton ravishda ortib boruvchi funktsiyadir, shuning uchun uning ekstremasi yo'q. Tabiiy logarifmning asosiy xossalari jadvalda keltirilgan.

ln x qiymatlari

ln 1 = 0

Tabiiy logarifmlar uchun asosiy formulalar

Teskari funktsiya ta'rifidan kelib chiqadigan formulalar:

Logarifmlarning asosiy xossasi va uning oqibatlari

Asosiy almashtirish formulasi

Har qanday logarifm tabiiy logarifmlar bilan asosiy almashtirish formulasi yordamida ifodalanishi mumkin:

Ushbu formulalarning isbotlari "Logarifm" bo'limida keltirilgan.

Teskari funksiya

Natural logarifmning teskari ko‘rsatkichi ko‘rsatkichdir.

Agar , keyin

Agar, keyin.

Hosil ln x

Natural logarifmning hosilasi:
.
X modulining natural logarifmining hosilasi:
.
n-tartibning hosilasi:
.
Formulalarni chiqarish > > >

Integral

Integral qismlar bo'yicha integrallash orqali hisoblanadi:
.
Shunday qilib,

Kompleks sonlar yordamida ifodalar

z kompleks o‘zgaruvchining funksiyasini ko‘rib chiqing:
.
Kompleks o‘zgaruvchini ifodalaylik z modul orqali r va argument φ :
.
Logarifmning xususiyatlaridan foydalanib, biz quyidagilarga ega bo'lamiz:
.
Yoki
.
ph argumenti yagona aniqlanmagan. Agar qo'ysangiz
, bu yerda n butun son,
u har xil n uchun bir xil raqam bo'ladi.

Demak, natural logarifm murakkab o‘zgaruvchining funksiyasi sifatida bir qiymatli funksiya emas.

Quvvat seriyasining kengayishi

Kengaytirish qachon sodir bo'ladi:

Adabiyotlar:
I.N. Bronshteyn, K.A. Semendyaev, muhandislar va kollej talabalari uchun matematika bo'yicha qo'llanma, "Lan", 2009 yil.

Ibtidoiy darajadagi algebraning elementlaridan biri logarifmdir. Ism yunon tilidan "raqam" yoki "kuch" so'zidan kelib chiqqan va yakuniy raqamni topish uchun bazadagi raqamni ko'tarish kerak bo'lgan kuchni anglatadi.

Logarifmlarning turlari

  • log a b – b sonining a asosiga logarifmi (a > 0, a ≠ 1, b > 0);
  • log b - o'nlik logarifm (10 asosga logarifm, a = 10);
  • ln b – natural logarifm (e asosiga logarifm, a = e).

Logarifmlarni qanday yechish mumkin?

b ning a asosining logarifmi ko'rsatkich bo'lib, b ni a asosga ko'tarishni talab qiladi. Olingan natija shunday talaffuz qilinadi: “b ning a asosiga logarifmi”. Logarifmik masalalarning yechimi shundan iboratki, berilgan quvvatni ko'rsatilgan raqamlardan raqamlarda aniqlash kerak. Logarifmni aniqlash yoki echish, shuningdek, yozuvning o'zini o'zgartirish uchun ba'zi asosiy qoidalar mavjud. Ular yordamida logarifmik tenglamalar yechiladi, hosilalar topiladi, integrallar yechiladi va boshqa ko‘plab amallar bajariladi. Asosan, logarifmning o'zi yechimi uning soddalashtirilgan yozuvidir. Quyida asosiy formulalar va xususiyatlar keltirilgan:

Har qanday a uchun; a > 0; a ≠ 1 va har qanday x uchun; y > 0.

  • a log a b = b - asosiy logarifmik identifikatsiya
  • log a 1 = 0
  • loga a = 1
  • log a (x y) = log a x + log a y
  • log a x/ y = log a x – log a y
  • log a 1/x = -log a x
  • log a x p = p log a x
  • log a k x = 1/k log a x, k ≠ 0 uchun
  • log a x = log a c x c
  • log a x = log b x/ log b a – yangi bazaga o'tish formulasi
  • log a x = 1/log x a


Logarifmlarni qanday echish kerak - hal qilish bo'yicha bosqichma-bosqich ko'rsatmalar

  • Birinchidan, kerakli tenglamani yozing.

Iltimos, diqqat qiling: agar asosiy logarifm 10 bo'lsa, u holda yozuv qisqartiriladi, natijada o'nlik logarifm hosil bo'ladi. Agar e natural soni bo'lsa, biz uni natural logarifmaga tushirib yozamiz. Bu shuni anglatadiki, barcha logarifmlarning natijasi b sonini olish uchun asosiy raqam ko'tarilgan kuchdir.


To'g'ridan-to'g'ri, yechim bu darajani hisoblashda yotadi. Ifodani logarifm bilan yechishdan oldin uni qoida bo‘yicha, ya’ni formulalar yordamida soddalashtirish kerak. Maqolada bir oz orqaga qaytib, asosiy identifikatorlarni topishingiz mumkin.

Ikki xil sonli, lekin asoslari bir xil bo‘lgan logarifmlarni qo‘shish va ayirishda, mos ravishda b va c sonlarining ko‘paytmasi yoki bo‘linmasi bilan bitta logarifm bilan almashtiring. Bunday holda, siz boshqa bazaga o'tish uchun formulani qo'llashingiz mumkin (yuqoriga qarang).

Agar logarifmni soddalashtirish uchun ifodalardan foydalansangiz, ba'zi cheklovlarni hisobga olish kerak. Va bu: a logarifmning asosi faqat ijobiy son, lekin birga teng emas. b soni, a kabi, noldan katta bo'lishi kerak.

Shunday holatlar mavjudki, ifodani soddalashtirib, logarifmni sonli hisoblab bo'lmaydi. Bunday iboraning ma'nosi yo'q, chunki ko'p kuchlar irratsional sonlardir. Ushbu shartda raqamning kuchini logarifm sifatida qoldiring.



Ma'lumki, ifodalarni darajalar bilan ko'paytirishda ularning ko'rsatkichlari har doim qo'shiladi (a b *a c = a b+c). Bu matematik qonun Arximed tomonidan olingan bo'lib, keyinchalik 8-asrda matematik Virasen butun sonlar ko'rsatkichlari jadvalini yaratdi. Aynan ular logarifmlarning keyingi kashfiyoti uchun xizmat qilganlar. Ushbu funktsiyadan foydalanish misollarini oddiy qo'shish orqali noqulay ko'paytirishni soddalashtirish kerak bo'lgan deyarli hamma joyda topish mumkin. Agar siz ushbu maqolani o'qishga 10 daqiqa vaqt ajratsangiz, biz sizga logarifm nima ekanligini va ular bilan qanday ishlashni tushuntiramiz. Oddiy va tushunarli tilda.

Matematikada ta'rif

Logarifm quyidagi ko‘rinishdagi ifodadir: log a b=c, ya’ni har qanday manfiy bo‘lmagan (ya’ni har qanday musbat) “b” sonning “a” asosiga logarifmi “c” darajasi deb hisoblanadi. “b” qiymatini olish uchun “a” bazasini ko‘tarish kerak. Logarifmni misollar yordamida tahlil qilamiz, deylik log 2 ifodasi bor 8. Javobni qanday topish mumkin? Bu juda oddiy, siz shunday quvvat topishingiz kerakki, 2 dan kerakli quvvatga qadar siz 8 ga ega bo'lasiz. Boshingizdagi ba'zi hisob-kitoblarni amalga oshirgandan so'ng, biz 3 raqamini olamiz! Va bu to'g'ri, chunki 2 dan 3 ning kuchiga javob 8 ni beradi.

Logarifmlarning turlari

Ko'pgina o'quvchilar va talabalar uchun bu mavzu murakkab va tushunarsiz ko'rinadi, lekin aslida logarifmlar unchalik qo'rqinchli emas, asosiysi ularning umumiy ma'nosini tushunish va ularning xususiyatlarini va ba'zi qoidalarini eslab qolishdir. Logarifmik ifodalarning uchta alohida turi mavjud:

  1. Natural logarifm ln a, bu yerda asos Eyler soni (e = 2,7).
  2. O'nlik a, bu erda asos 10 ga teng.
  3. Har qanday b sonining a>1 asosiga logarifmi.

Ularning har biri logarifmik teoremalardan foydalangan holda soddalashtirish, qisqartirish va keyinchalik bitta logarifmaga qisqartirishni o'z ichiga olgan standart usulda hal qilinadi. Logarifmlarning to'g'ri qiymatlarini olish uchun siz ularni hal qilishda ularning xususiyatlarini va harakatlar ketma-ketligini eslab qolishingiz kerak.

Qoidalar va ba'zi cheklovlar

Matematikada aksioma sifatida qabul qilingan bir qancha qoida-cheklovlar mavjud, ya'ni ular muhokama qilinmaydi va haqiqatdir. Masalan, sonlarni nolga bo'lish mumkin emas, manfiy sonlarning juft ildizini ajratib olish ham mumkin emas. Logarifmlarning o'z qoidalari ham bor, ularga rioya qilgan holda siz hatto uzoq va sig'imli logarifmik iboralar bilan ishlashni osongina o'rganishingiz mumkin:

  • “A” bazasi har doim noldan katta bo'lishi kerak va 1 ga teng bo'lmasligi kerak, aks holda ifoda o'z ma'nosini yo'qotadi, chunki "1" va "0" har qanday darajada har doim ularning qiymatlariga teng;
  • a > 0 bo'lsa, a b >0 bo'lsa, "c" ham noldan katta bo'lishi kerakligi ma'lum bo'ladi.

Logarifmlarni qanday yechish mumkin?

Masalan, 10 x = 100 tenglamasining javobini topish vazifasi beriladi. Bu juda oson, biz 100 ni oladigan o'n sonni ko'tarib, kuch tanlash kerak. Bu, albatta, 10 2 =. 100.

Endi bu ifodani logarifmik shaklda ifodalaylik. Biz log 10 100 = 2 ni olamiz. Logarifmlarni echishda berilgan sonni olish uchun logarifm asosini kiritish zarur bo'lgan quvvatni topish uchun barcha amallar amalda birlashadi.

Noma'lum darajaning qiymatini aniq aniqlash uchun siz darajalar jadvali bilan ishlashni o'rganishingiz kerak. Bu shunday ko'rinadi:

Ko'rib turganingizdek, agar sizda texnik aqlingiz va ko'paytirish jadvalini bilsangiz, ba'zi eksponentlarni intuitiv ravishda taxmin qilish mumkin. Biroq, kattaroq qiymatlar uchun sizga quvvat jadvali kerak bo'ladi. Bundan hatto murakkab matematik mavzular haqida hech narsa bilmaydiganlar ham foydalanishlari mumkin. Chap ustunda raqamlar mavjud (a asosi), raqamlarning yuqori qatori a soni ko'tarilgan c kuchining qiymati. Chorrahada hujayralar javob bo'lgan raqamlar qiymatlarini o'z ichiga oladi (a c = b). Keling, masalan, 10 raqami bo'lgan birinchi katakchani olaylik va uning kvadratini olamiz, biz ikkita katakchamizning kesishmasida ko'rsatilgan 100 qiymatini olamiz. Hammasi shu qadar sodda va osonki, hatto eng haqiqiy gumanist ham tushunadi!

Tenglamalar va tengsizliklar

Ma'lum bo'lishicha, ma'lum sharoitlarda ko'rsatkich logarifmdir. Shuning uchun har qanday matematik sonli ifodalarni logarifmik tenglik sifatida yozish mumkin. Masalan, 3 4 =81 ni to'rtga teng 81 ning 3 logarifmi sifatida yozish mumkin (log 3 81 = 4). Salbiy kuchlar uchun qoidalar bir xil: 2 -5 = 1/32 biz uni logarifm sifatida yozamiz, log 2 (1/32) = -5 ni olamiz. Matematikaning eng qiziqarli bo'limlaridan biri "logarifmlar" mavzusidir. Tenglamalarning xossalarini o'rgangandan so'ng, biz quyida misollar va echimlarni ko'rib chiqamiz. Endi tengsizliklar qanday ko‘rinishini va ularni tenglamalardan qanday ajratish mumkinligini ko‘rib chiqamiz.

Quyidagi ifoda berilgan: log 2 (x-1) > 3 - bu logarifmik tengsizlik, chunki nomaʼlum “x” qiymati logarifmik belgi ostida. Shuningdek, ifodada ikkita miqdor solishtiriladi: ikkita asosga kerakli sonning logarifmi uch sonidan kattaroqdir.

Logarifmik tenglamalar va tengsizliklar o'rtasidagi eng muhim farq shundaki, logarifmli tenglamalar (masalan, logarifm 2 x = √9) javobda bir yoki bir nechta o'ziga xos sonli qiymatlarni nazarda tutadi, tengsizlikni yechishda ikkalasi ham maqbul diapazonni bildiradi. qiymatlar va nuqtalar bu funktsiyani buzgan holda aniqlanadi. Natijada, javob tenglamaning javobidagi kabi oddiy raqamlar to'plami emas, balki doimiy qator yoki raqamlar to'plamidir.

Logarifmlar haqidagi asosiy teoremalar

Logarifmning qiymatlarini topishning ibtidoiy vazifalarini hal qilishda uning xossalari noma'lum bo'lishi mumkin. Biroq, logarifmik tenglamalar yoki tengsizliklar haqida gap ketganda, birinchi navbatda, logarifmlarning barcha asosiy xususiyatlarini aniq tushunish va amalda qo'llash kerak. Tenglamalar misollarini keyinroq ko'rib chiqamiz, keling, avval har bir xususiyatni batafsil ko'rib chiqamiz;

  1. Asosiy identifikatsiya quyidagicha ko'rinadi: a logaB =B. Bu faqat a 0 dan katta, birga teng emas va B noldan katta bo'lganda qo'llaniladi.
  2. Mahsulotning logarifmini quyidagi formulada ifodalash mumkin: log d (s 1 * s 2) = log d s 1 + log d s 2. Bu holda majburiy shart: d, s 1 va s 2 > 0; a≠1. Siz bu logarifmik formulani misollar va yechim bilan isbotlashingiz mumkin. log a s 1 = f 1 va log a s 2 = f 2, keyin a f1 = s 1, a f2 = s 2 bo‘lsin. Biz s 1 * s 2 = a f1 *a f2 = a f1+f2 (xususiyatlari)ni olamiz. daraja ), so'ngra ta'rifi bo'yicha: log a (s 1 * s 2) = f 1 + f 2 = log a s1 + log a s 2, bu isbotlanishi kerak bo'lgan narsa.
  3. Bo'limning logarifmi quyidagicha ko'rinadi: log a (s 1/s 2) = log a s 1 - log a s 2.
  4. Formula ko'rinishidagi teorema quyidagi shaklni oladi: log a q b n = n/q log a b.

Ushbu formula "logarifm darajasining xossasi" deb ataladi. Bu oddiy darajalarning xususiyatlariga o'xshaydi va bu ajablanarli emas, chunki barcha matematika tabiiy postulatlarga asoslanadi. Keling, dalilni ko'rib chiqaylik.

Log a b = t bo'lsin, a t =b chiqadi. Ikkala qismni m darajaga ko'tarsak: a tn = b n;

lekin a tn = (a q) nt/q = b n ekan, shuning uchun log a q b n = (n*t)/t, keyin log a q b n = n/q log a b. Teorema isbotlangan.

Muammolar va tengsizliklarga misollar

Logarifmlarga oid masalalarning eng keng tarqalgan turlari tenglamalar va tengsizliklarga misollardir. Ular deyarli barcha muammoli kitoblarda uchraydi va matematika imtihonlarining majburiy qismidir. Universitetga kirish yoki matematikadan kirish imtihonlarini topshirish uchun siz bunday vazifalarni qanday to'g'ri hal qilishni bilishingiz kerak.

Afsuski, logarifmning noma'lum qiymatini echish va aniqlashning yagona rejasi yoki sxemasi mavjud emas, lekin har bir matematik tengsizlik yoki logarifmik tenglamaga ma'lum qoidalar qo'llanilishi mumkin. Avvalo, ifodani soddalashtirish yoki umumiy shaklga qisqartirish mumkinligini aniqlashingiz kerak. Uzoq logarifmik ifodalarni ularning xossalaridan to‘g‘ri foydalansangiz, soddalashtirishingiz mumkin. Keling, ular bilan tezda tanishaylik.

Logarifmik tenglamalarni yechishda biz qanday turdagi logarifmga ega ekanligimizni aniqlashimiz kerak: misol ifodasi tabiiy logarifm yoki o'nlikdan iborat bo'lishi mumkin.

Mana ln100, ln1026 misollar. Ularning yechimi shundan kelib chiqadiki, ular 10 ta asosi mos ravishda 100 va 1026 ga teng bo'ladigan quvvatni aniqlashlari kerak. Tabiiy logarifmlarni yechish uchun logarifmik identifikatsiyalarni yoki ularning xususiyatlarini qo'llash kerak. Keling, har xil turdagi logarifmik masalalarni yechish misollarini ko'rib chiqaylik.

Logarifm formulalarini qanday ishlatish kerak: misollar va echimlar bilan

Shunday qilib, keling, logarifmlar haqidagi asosiy teoremalardan foydalanish misollarini ko'rib chiqaylik.

  1. Mahsulot logarifmining xossasi b sonining katta qiymatini oddiyroq omillarga ajratish zarur bo'lgan vazifalarda qo'llanilishi mumkin. Masalan, log 2 4 + log 2 128 = log 2 (4*128) = log 2 512. Javob 9.
  2. log 4 8 = log 2 2 2 3 = 3/2 log 2 2 = 1,5 - ko'rib turganingizdek, logarifm kuchining to'rtinchi xususiyatidan foydalanib, biz ko'rinishidan murakkab va yechilmaydigan ifodani yechishga muvaffaq bo'ldik. Siz shunchaki bazani faktorlarga ajratib, keyin ko'rsatkich qiymatlarini logarifm belgisidan chiqarib olishingiz kerak.

Yagona davlat imtihonidan topshiriqlar

Logarifmlar ko'pincha kirish imtihonlarida, ayniqsa Yagona davlat imtihonida (barcha maktab bitiruvchilari uchun davlat imtihonida) ko'plab logarifmik muammolar mavjud. Odatda, bu vazifalar nafaqat A qismida (imtihonning eng oson test qismi), balki C qismida ham (eng murakkab va hajmli vazifalar) mavjud. Imtihon “Tabiiy logarifmlar” mavzusini aniq va mukammal bilishni talab qiladi.

Misollar va muammolarni hal qilish Yagona davlat imtihonining rasmiy versiyalaridan olingan. Keling, bunday vazifalar qanday hal qilinishini ko'rib chiqaylik.

Berilgan log 2 (2x-1) = 4. Yechish:
keling, ifodani biroz soddalashtirib, uni qayta yozamiz log 2 (2x-1) = 2 2, logarifmning ta'rifi bo'yicha biz 2x-1 = 2 4 ni olamiz, shuning uchun 2x = 17; x = 8,5.

  • Yechim og'ir va chalkash bo'lmasligi uchun barcha logarifmlarni bir xil asosga qisqartirish yaxshidir.
  • Logarifm belgisi ostidagi barcha ifodalar musbat deb ko'rsatiladi, shuning uchun logarifm belgisi ostidagi va uning asosi sifatidagi ifodaning ko'rsatkichi ko'paytiruvchi sifatida chiqarilganda, logarifm ostida qolgan ifoda musbat bo'lishi kerak.