สัดส่วนผกผันหมายถึงอะไร? สัดส่วนโดยตรง

วันนี้เราจะมาดูกันว่าปริมาณใดที่เรียกว่าสัดส่วนผกผัน กราฟสัดส่วนผกผันมีลักษณะอย่างไร และทั้งหมดนี้มีประโยชน์กับคุณอย่างไรไม่เพียงแต่ในบทเรียนคณิตศาสตร์ แต่ยังรวมถึงนอกโรงเรียนด้วย

สัดส่วนที่แตกต่างกันขนาดนี้

สัดส่วนบอกชื่อปริมาณสองปริมาณที่พึ่งพาซึ่งกันและกัน

การพึ่งพาสามารถเป็นได้ทั้งแบบตรงและแบบผกผัน ดังนั้น ความสัมพันธ์ระหว่างปริมาณจึงถูกอธิบายด้วยสัดส่วนโดยตรงและผกผัน

สัดส่วนโดยตรง– นี่คือความสัมพันธ์ระหว่างสองปริมาณซึ่งการเพิ่มขึ้นหรือลดลงของปริมาณหนึ่งในนั้นนำไปสู่การเพิ่มขึ้นหรือลดลงของอีกปริมาณหนึ่ง เหล่านั้น. ทัศนคติของพวกเขาไม่เปลี่ยนแปลง

ตัวอย่างเช่น ยิ่งคุณพยายามอ่านหนังสือสอบมากเท่าไร คะแนนของคุณก็จะยิ่งสูงขึ้นเท่านั้น หรือยิ่งคุณนำสิ่งของติดตัวไปด้วยในการเดินป่ามากเท่าไร กระเป๋าเป้ของคุณก็จะหนักมากขึ้นเท่านั้น เหล่านั้น. จำนวนความพยายามที่ใช้ในการเตรียมตัวสอบจะแปรผันโดยตรงกับเกรดที่ได้รับ และจำนวนสิ่งของที่บรรจุในกระเป๋าเป้นั้นแปรผันตรงกับน้ำหนักของมันโดยตรง

สัดส่วนผกผัน– นี่คือการพึ่งพาฟังก์ชันซึ่งการลดลงหรือเพิ่มขึ้นหลายครั้งในค่าอิสระ (เรียกว่าอาร์กิวเมนต์) ทำให้เกิดการเพิ่มขึ้นหรือลดลงตามสัดส่วน (เช่นจำนวนครั้งเท่ากัน) ในค่าที่ขึ้นอยู่กับ (เรียกว่า a การทำงาน).

เรามาอธิบายด้วยตัวอย่างง่ายๆ คุณต้องการซื้อแอปเปิ้ลที่ตลาด แอปเปิ้ลบนเคาน์เตอร์และจำนวนเงินในกระเป๋าสตางค์ของคุณเป็นสัดส่วนผกผัน เหล่านั้น. ยิ่งคุณซื้อแอปเปิ้ลมากเท่าไหร่ เงินก็จะเหลือน้อยลงเท่านั้น

ฟังก์ชันและกราฟของมัน

ฟังก์ชันสัดส่วนผกผันสามารถอธิบายได้ดังนี้ y = k/x. ซึ่งใน x≠ 0 และ เค≠ 0.

ฟังก์ชันนี้มีคุณสมบัติดังต่อไปนี้:

  1. โดเมนของคำจำกัดความคือเซตของจำนวนจริงทั้งหมดยกเว้น x = 0. ดี(): (-∞; 0) U (0; +∞).
  2. พิสัยเป็นจำนวนจริงทั้งหมด ยกเว้น = 0. จ(ป): (-∞; 0) ยู (0; +∞) .
  3. ไม่มีค่าสูงสุดหรือต่ำสุด
  4. มันแปลกและกราฟของมันก็สมมาตรเกี่ยวกับจุดกำเนิด
  5. ไม่ใช่เป็นระยะๆ
  6. กราฟของมันไม่ตัดแกนพิกัด
  7. ไม่มีศูนย์
  8. ถ้า เค> 0 (เช่น อาร์กิวเมนต์เพิ่มขึ้น) ฟังก์ชันจะลดลงตามสัดส่วนในแต่ละช่วงเวลา ถ้า เค< 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. เมื่ออาร์กิวเมนต์เพิ่มขึ้น ( เค> 0) ค่าลบของฟังก์ชันอยู่ในช่วงเวลา (-∞; 0) และค่าบวกอยู่ในช่วงเวลา (0; +∞) เมื่ออาร์กิวเมนต์ลดลง ( เค< 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

กราฟของฟังก์ชันสัดส่วนผกผันเรียกว่าไฮเปอร์โบลา แสดงดังต่อไปนี้:

ปัญหาสัดส่วนผกผัน

เพื่อให้ชัดเจนยิ่งขึ้น เรามาดูงานต่างๆ กัน มันไม่ซับซ้อนเกินไปและการแก้มันจะช่วยให้คุณเห็นภาพว่าสัดส่วนผกผันคืออะไรและความรู้นี้จะมีประโยชน์ในชีวิตประจำวันของคุณอย่างไร

ภารกิจที่ 1 รถยนต์คันหนึ่งเคลื่อนที่ด้วยความเร็ว 60 กม./ชม. เขาใช้เวลา 6 ชั่วโมงก็ถึงที่หมาย จะต้องใช้เวลานานเท่าใดในการครอบคลุมระยะทางเดียวกันหากเขาเคลื่อนที่ด้วยความเร็วสองเท่า?

เราสามารถเริ่มต้นด้วยการเขียนสูตรที่อธิบายความสัมพันธ์ระหว่างเวลา ระยะทาง และความเร็ว: t = S/V เห็นด้วย มันทำให้เรานึกถึงฟังก์ชันสัดส่วนผกผันเป็นอย่างมาก และบ่งชี้ว่าเวลาที่รถอยู่บนถนนและความเร็วที่รถเคลื่อนที่นั้นเป็นสัดส่วนผกผัน

เพื่อยืนยันสิ่งนี้ ให้หา V 2 ซึ่งตามเงื่อนไขจะสูงกว่า 2 เท่า: V 2 = 60 * 2 = 120 กม./ชม. จากนั้นเราคำนวณระยะทางโดยใช้สูตร S = V * t = 60 * 6 = 360 กม. ตอนนี้การหาเวลา t 2 ที่ต้องการจากเราตามเงื่อนไขของปัญหาไม่ใช่เรื่องยาก: t 2 = 360/120 = 3 ชั่วโมง

อย่างที่คุณเห็น เวลาในการเดินทางและความเร็วนั้นแปรผกผันกันจริงๆ ด้วยความเร็วที่สูงกว่าความเร็วเดิม 2 เท่า รถจะใช้เวลาอยู่บนถนนน้อยลง 2 เท่า

วิธีแก้ไขปัญหานี้สามารถเขียนเป็นสัดส่วนได้ เรามาสร้างไดอะแกรมนี้กันก่อน:

↓ 60 กม./ชม. – 6 ชม

↓120 กม./ชม. – x ส

ลูกศรบ่งบอกถึงความสัมพันธ์ตามสัดส่วนผกผัน พวกเขายังแนะนำว่าเมื่อวาดสัดส่วน จะต้องพลิกด้านขวาของบันทึก: 60/120 = x/6 เราจะได้ x = 60 * 6/120 = 3 ชั่วโมงจากไหน

ภารกิจที่ 2 เวิร์กช็อปจ้างพนักงาน 6 คนซึ่งสามารถทำงานให้เสร็จตามจำนวนที่กำหนดได้ภายใน 4 ชั่วโมง หากจำนวนคนงานลดลงครึ่งหนึ่ง คนงานที่เหลือจะใช้เวลานานแค่ไหนจึงจะทำงานให้เสร็จในจำนวนเท่าเดิม?

ให้เราเขียนเงื่อนไขของปัญหาในรูปแบบของแผนภาพภาพ:

↓ คนงาน 6 คน – 4 ชั่วโมง

↓ 3 คน – x ชม

ลองเขียนสิ่งนี้เป็นสัดส่วน: 6/3 = x/4 และเราจะได้ x = 6 * 4/3 = 8 ชั่วโมง หากมีคนงานน้อยลง 2 เท่า คนที่เหลือจะใช้เวลาทำงานทั้งหมดเพิ่มขึ้น 2 เท่า

ภารกิจที่ 3 มีท่อสองท่อที่ทอดลงสู่สระน้ำ น้ำจะไหลผ่านท่อเดียวด้วยความเร็ว 2 ลิตร/วินาที และเต็มสระภายใน 45 นาที ผ่านท่ออีกเส้นสระจะเต็มใน 75 นาที น้ำเข้าสระผ่านท่อนี้ด้วยความเร็วเท่าใด?

ขั้นแรก ให้เราลดปริมาณทั้งหมดที่มอบให้ตามเงื่อนไขของปัญหาให้เป็นหน่วยวัดเดียวกัน โดยแสดงความเร็วในการเติมน้ำในสระเป็นลิตรต่อนาที: 2 ลิตร/วินาที = 2 * 60 = 120 ลิตร/นาที

เนื่องจากเงื่อนไขบ่งบอกว่าสระเติมช้ากว่าผ่านท่อที่สอง ซึ่งหมายความว่าอัตราการไหลของน้ำจะลดลง สัดส่วนจะผกผัน ให้เราแสดงความเร็วที่ไม่รู้จักผ่าน x และวาดแผนภาพต่อไปนี้:

↓ 120 ลิตร/นาที – 45 นาที

↓ x ลิตร/นาที – 75 นาที

จากนั้นเราก็สร้างสัดส่วน: 120/x = 75/45 โดยที่ x = 120 * 45/75 = 72 ลิตร/นาที

ในปัญหานี้ อัตราการเติมน้ำในสระแสดงเป็นลิตรต่อวินาที ลองลดคำตอบที่เราได้รับให้อยู่ในรูปแบบเดียวกัน: 72/60 = 1.2 ลิตร/วินาที

ภารกิจที่ 4 โรงพิมพ์ส่วนตัวขนาดเล็กจะพิมพ์นามบัตร พนักงานโรงพิมพ์ทำงานด้วยความเร็ว 42 นามบัตรต่อชั่วโมง และทำงานเต็มวัน - 8 ชั่วโมง ถ้าเขาทำงานเร็วขึ้นและพิมพ์นามบัตรได้ 48 ใบในหนึ่งชั่วโมง เขาจะกลับบ้านได้เร็วแค่ไหน?

เราปฏิบัติตามเส้นทางที่พิสูจน์แล้วและจัดทำไดอะแกรมตามเงื่อนไขของปัญหาโดยกำหนดค่าที่ต้องการเป็น x:

↓ 42 นามบัตร/ชั่วโมง – 8 ชั่วโมง

↓ นามบัตร 48 ใบ/ชม. – x ชม

เรามีความสัมพันธ์แบบสัดส่วนผกผัน: จำนวนครั้งที่พนักงานโรงพิมพ์พิมพ์นามบัตรมากขึ้นต่อชั่วโมง จำนวนเวลาเท่ากันที่เขาจะต้องทำงานเดิมให้เสร็จน้อยลง เมื่อรู้อย่างนี้แล้ว เรามาสร้างสัดส่วนกันดีกว่า:

42/48 = x/8, x = 42 * 8/48 = 7 ชั่วโมง

ดังนั้นเมื่อทำงานเสร็จภายใน 7 ชั่วโมง พนักงานโรงพิมพ์ก็สามารถกลับบ้านเร็วขึ้นหนึ่งชั่วโมงได้

บทสรุป

สำหรับเราดูเหมือนว่าปัญหาสัดส่วนผกผันเหล่านี้ง่ายมาก เราหวังว่าตอนนี้คุณก็คิดแบบนั้นเช่นกัน และสิ่งสำคัญคือความรู้เกี่ยวกับการพึ่งพาปริมาณตามสัดส่วนผกผันจะมีประโยชน์กับคุณมากกว่าหนึ่งครั้ง

ไม่ใช่แค่ในบทเรียนคณิตศาสตร์และการสอบเท่านั้น แต่ถึงอย่างนั้นเมื่อคุณเตรียมตัวไปเที่ยว ช้อปปิ้ง ตัดสินใจหารายได้เสริมเล็กน้อยในช่วงวันหยุด ฯลฯ

บอกเราในความคิดเห็นว่าคุณสังเกตเห็นตัวอย่างความสัมพันธ์แบบผกผันและแบบสัดส่วนตรงรอบตัวคุณอย่างไร ปล่อยให้มันเป็นเกมแบบนั้น คุณจะเห็นว่ามันน่าตื่นเต้นแค่ไหน อย่าลืมแบ่งปันบทความนี้บนโซเชียลเน็ตเวิร์กเพื่อให้เพื่อนและเพื่อนร่วมชั้นของคุณสามารถเล่นได้

blog.site เมื่อคัดลอกเนื้อหาทั้งหมดหรือบางส่วน จำเป็นต้องมีลิงก์ไปยังแหล่งที่มาดั้งเดิม

วันนี้เราจะมาดูกันว่าปริมาณใดที่เรียกว่าสัดส่วนผกผัน กราฟสัดส่วนผกผันมีลักษณะอย่างไร และทั้งหมดนี้มีประโยชน์กับคุณอย่างไรไม่เพียงแต่ในบทเรียนคณิตศาสตร์ แต่ยังรวมถึงนอกโรงเรียนด้วย

สัดส่วนที่แตกต่างกันขนาดนี้

สัดส่วนบอกชื่อปริมาณสองปริมาณที่พึ่งพาซึ่งกันและกัน

การพึ่งพาสามารถเป็นได้ทั้งแบบตรงและแบบผกผัน ดังนั้น ความสัมพันธ์ระหว่างปริมาณจึงถูกอธิบายด้วยสัดส่วนโดยตรงและผกผัน

สัดส่วนโดยตรง– นี่คือความสัมพันธ์ระหว่างสองปริมาณซึ่งการเพิ่มขึ้นหรือลดลงของปริมาณหนึ่งในนั้นนำไปสู่การเพิ่มขึ้นหรือลดลงของอีกปริมาณหนึ่ง เหล่านั้น. ทัศนคติของพวกเขาไม่เปลี่ยนแปลง

ตัวอย่างเช่น ยิ่งคุณพยายามอ่านหนังสือสอบมากเท่าไร คะแนนของคุณก็จะยิ่งสูงขึ้นเท่านั้น หรือยิ่งคุณนำสิ่งของติดตัวไปด้วยในการเดินป่ามากเท่าไร กระเป๋าเป้ของคุณก็จะหนักมากขึ้นเท่านั้น เหล่านั้น. จำนวนความพยายามที่ใช้ในการเตรียมตัวสอบจะแปรผันโดยตรงกับเกรดที่ได้รับ และจำนวนสิ่งของที่บรรจุในกระเป๋าเป้นั้นแปรผันตรงกับน้ำหนักของมันโดยตรง

สัดส่วนผกผัน– นี่คือการพึ่งพาฟังก์ชันซึ่งการลดลงหรือเพิ่มขึ้นหลายครั้งในค่าอิสระ (เรียกว่าอาร์กิวเมนต์) ทำให้เกิดการเพิ่มขึ้นหรือลดลงตามสัดส่วน (เช่นจำนวนครั้งเท่ากัน) ในค่าที่ขึ้นอยู่กับ (เรียกว่า a การทำงาน).

เรามาอธิบายด้วยตัวอย่างง่ายๆ คุณต้องการซื้อแอปเปิ้ลที่ตลาด แอปเปิ้ลบนเคาน์เตอร์และจำนวนเงินในกระเป๋าสตางค์ของคุณเป็นสัดส่วนผกผัน เหล่านั้น. ยิ่งคุณซื้อแอปเปิ้ลมากเท่าไหร่ เงินก็จะเหลือน้อยลงเท่านั้น

ฟังก์ชันและกราฟของมัน

ฟังก์ชันสัดส่วนผกผันสามารถอธิบายได้ดังนี้ y = k/x. ซึ่งใน x≠ 0 และ เค≠ 0.

ฟังก์ชันนี้มีคุณสมบัติดังต่อไปนี้:

  1. โดเมนของคำจำกัดความคือเซตของจำนวนจริงทั้งหมดยกเว้น x = 0. ดี(): (-∞; 0) U (0; +∞).
  2. พิสัยเป็นจำนวนจริงทั้งหมด ยกเว้น = 0. จ(ป): (-∞; 0) ยู (0; +∞) .
  3. ไม่มีค่าสูงสุดหรือต่ำสุด
  4. มันแปลกและกราฟของมันก็สมมาตรเกี่ยวกับจุดกำเนิด
  5. ไม่ใช่เป็นระยะๆ
  6. กราฟของมันไม่ตัดแกนพิกัด
  7. ไม่มีศูนย์
  8. ถ้า เค> 0 (เช่น อาร์กิวเมนต์เพิ่มขึ้น) ฟังก์ชันจะลดลงตามสัดส่วนในแต่ละช่วงเวลา ถ้า เค< 0 (т.е. аргумент убывает), функция пропорционально возрастает на каждом из своих промежутков.
  9. เมื่ออาร์กิวเมนต์เพิ่มขึ้น ( เค> 0) ค่าลบของฟังก์ชันอยู่ในช่วงเวลา (-∞; 0) และค่าบวกอยู่ในช่วงเวลา (0; +∞) เมื่ออาร์กิวเมนต์ลดลง ( เค< 0) отрицательные значения расположены на промежутке (0; +∞), положительные – (-∞; 0).

กราฟของฟังก์ชันสัดส่วนผกผันเรียกว่าไฮเปอร์โบลา แสดงดังต่อไปนี้:

ปัญหาสัดส่วนผกผัน

เพื่อให้ชัดเจนยิ่งขึ้น เรามาดูงานต่างๆ กัน มันไม่ซับซ้อนเกินไปและการแก้มันจะช่วยให้คุณเห็นภาพว่าสัดส่วนผกผันคืออะไรและความรู้นี้จะมีประโยชน์ในชีวิตประจำวันของคุณอย่างไร

ภารกิจที่ 1 รถยนต์คันหนึ่งเคลื่อนที่ด้วยความเร็ว 60 กม./ชม. เขาใช้เวลา 6 ชั่วโมงก็ถึงที่หมาย จะต้องใช้เวลานานเท่าใดในการครอบคลุมระยะทางเดียวกันหากเขาเคลื่อนที่ด้วยความเร็วสองเท่า?

เราสามารถเริ่มต้นด้วยการเขียนสูตรที่อธิบายความสัมพันธ์ระหว่างเวลา ระยะทาง และความเร็ว: t = S/V เห็นด้วย มันทำให้เรานึกถึงฟังก์ชันสัดส่วนผกผันเป็นอย่างมาก และบ่งชี้ว่าเวลาที่รถอยู่บนถนนและความเร็วที่รถเคลื่อนที่นั้นเป็นสัดส่วนผกผัน

เพื่อยืนยันสิ่งนี้ ให้หา V 2 ซึ่งตามเงื่อนไขจะสูงกว่า 2 เท่า: V 2 = 60 * 2 = 120 กม./ชม. จากนั้นเราคำนวณระยะทางโดยใช้สูตร S = V * t = 60 * 6 = 360 กม. ตอนนี้การหาเวลา t 2 ที่ต้องการจากเราตามเงื่อนไขของปัญหาไม่ใช่เรื่องยาก: t 2 = 360/120 = 3 ชั่วโมง

อย่างที่คุณเห็น เวลาในการเดินทางและความเร็วนั้นแปรผกผันกันจริงๆ ด้วยความเร็วที่สูงกว่าความเร็วเดิม 2 เท่า รถจะใช้เวลาอยู่บนถนนน้อยลง 2 เท่า

วิธีแก้ไขปัญหานี้สามารถเขียนเป็นสัดส่วนได้ เรามาสร้างไดอะแกรมนี้กันก่อน:

↓ 60 กม./ชม. – 6 ชม

↓120 กม./ชม. – x ส

ลูกศรบ่งบอกถึงความสัมพันธ์ตามสัดส่วนผกผัน พวกเขายังแนะนำว่าเมื่อวาดสัดส่วน จะต้องพลิกด้านขวาของบันทึก: 60/120 = x/6 เราจะได้ x = 60 * 6/120 = 3 ชั่วโมงจากไหน

ภารกิจที่ 2 เวิร์กช็อปจ้างพนักงาน 6 คนซึ่งสามารถทำงานให้เสร็จตามจำนวนที่กำหนดได้ภายใน 4 ชั่วโมง หากจำนวนคนงานลดลงครึ่งหนึ่ง คนงานที่เหลือจะใช้เวลานานแค่ไหนจึงจะทำงานให้เสร็จในจำนวนเท่าเดิม?

ให้เราเขียนเงื่อนไขของปัญหาในรูปแบบของแผนภาพภาพ:

↓ คนงาน 6 คน – 4 ชั่วโมง

↓ 3 คน – x ชม

ลองเขียนสิ่งนี้เป็นสัดส่วน: 6/3 = x/4 และเราจะได้ x = 6 * 4/3 = 8 ชั่วโมง หากมีคนงานน้อยลง 2 เท่า คนที่เหลือจะใช้เวลาทำงานทั้งหมดเพิ่มขึ้น 2 เท่า

ภารกิจที่ 3 มีท่อสองท่อที่ทอดลงสู่สระน้ำ น้ำจะไหลผ่านท่อเดียวด้วยความเร็ว 2 ลิตร/วินาที และเต็มสระภายใน 45 นาที ผ่านท่ออีกเส้นสระจะเต็มใน 75 นาที น้ำเข้าสระผ่านท่อนี้ด้วยความเร็วเท่าใด?

ขั้นแรก ให้เราลดปริมาณทั้งหมดที่มอบให้ตามเงื่อนไขของปัญหาให้เป็นหน่วยวัดเดียวกัน โดยแสดงความเร็วในการเติมน้ำในสระเป็นลิตรต่อนาที: 2 ลิตร/วินาที = 2 * 60 = 120 ลิตร/นาที

เนื่องจากเงื่อนไขบ่งบอกว่าสระเติมช้ากว่าผ่านท่อที่สอง ซึ่งหมายความว่าอัตราการไหลของน้ำจะลดลง สัดส่วนจะผกผัน ให้เราแสดงความเร็วที่ไม่รู้จักผ่าน x และวาดแผนภาพต่อไปนี้:

↓ 120 ลิตร/นาที – 45 นาที

↓ x ลิตร/นาที – 75 นาที

จากนั้นเราก็สร้างสัดส่วน: 120/x = 75/45 โดยที่ x = 120 * 45/75 = 72 ลิตร/นาที

ในปัญหานี้ อัตราการเติมน้ำในสระแสดงเป็นลิตรต่อวินาที ลองลดคำตอบที่เราได้รับให้อยู่ในรูปแบบเดียวกัน: 72/60 = 1.2 ลิตร/วินาที

ภารกิจที่ 4 โรงพิมพ์ส่วนตัวขนาดเล็กจะพิมพ์นามบัตร พนักงานโรงพิมพ์ทำงานด้วยความเร็ว 42 นามบัตรต่อชั่วโมง และทำงานเต็มวัน - 8 ชั่วโมง ถ้าเขาทำงานเร็วขึ้นและพิมพ์นามบัตรได้ 48 ใบในหนึ่งชั่วโมง เขาจะกลับบ้านได้เร็วแค่ไหน?

เราปฏิบัติตามเส้นทางที่พิสูจน์แล้วและจัดทำไดอะแกรมตามเงื่อนไขของปัญหาโดยกำหนดค่าที่ต้องการเป็น x:

↓ 42 นามบัตร/ชั่วโมง – 8 ชั่วโมง

↓ นามบัตร 48 ใบ/ชม. – x ชม

เรามีความสัมพันธ์แบบสัดส่วนผกผัน: จำนวนครั้งที่พนักงานโรงพิมพ์พิมพ์นามบัตรมากขึ้นต่อชั่วโมง จำนวนเวลาเท่ากันที่เขาจะต้องทำงานเดิมให้เสร็จน้อยลง เมื่อรู้อย่างนี้แล้ว เรามาสร้างสัดส่วนกันดีกว่า:

42/48 = x/8, x = 42 * 8/48 = 7 ชั่วโมง

ดังนั้นเมื่อทำงานเสร็จภายใน 7 ชั่วโมง พนักงานโรงพิมพ์ก็สามารถกลับบ้านเร็วขึ้นหนึ่งชั่วโมงได้

บทสรุป

สำหรับเราดูเหมือนว่าปัญหาสัดส่วนผกผันเหล่านี้ง่ายมาก เราหวังว่าตอนนี้คุณก็คิดแบบนั้นเช่นกัน และสิ่งสำคัญคือความรู้เกี่ยวกับการพึ่งพาปริมาณตามสัดส่วนผกผันจะมีประโยชน์กับคุณมากกว่าหนึ่งครั้ง

ไม่ใช่แค่ในบทเรียนคณิตศาสตร์และการสอบเท่านั้น แต่ถึงอย่างนั้นเมื่อคุณเตรียมตัวไปเที่ยว ช้อปปิ้ง ตัดสินใจหารายได้เสริมเล็กน้อยในช่วงวันหยุด ฯลฯ

บอกเราในความคิดเห็นว่าคุณสังเกตเห็นตัวอย่างความสัมพันธ์แบบผกผันและแบบสัดส่วนตรงรอบตัวคุณอย่างไร ปล่อยให้มันเป็นเกมแบบนั้น คุณจะเห็นว่ามันน่าตื่นเต้นแค่ไหน อย่าลืมแบ่งปันบทความนี้บนโซเชียลเน็ตเวิร์กเพื่อให้เพื่อนและเพื่อนร่วมชั้นของคุณสามารถเล่นได้

เว็บไซต์ เมื่อคัดลอกเนื้อหาทั้งหมดหรือบางส่วน จำเป็นต้องมีลิงก์ไปยังแหล่งที่มา

นอกจากปริมาณที่เป็นสัดส่วนโดยตรงในเลขคณิตแล้ว ยังมีการพิจารณาปริมาณที่เป็นสัดส่วนผกผันอีกด้วย

ลองยกตัวอย่าง

1) ความยาวของฐานและความสูงของรูปสี่เหลี่ยมผืนผ้าที่มีพื้นที่คงที่

สมมติว่าคุณต้องจัดสรรที่ดินเป็นรูปสี่เหลี่ยมผืนผ้าซึ่งมีพื้นที่

เรา “สามารถกำหนดความยาวของส่วนต่างๆ ได้ตามใจชอบ แต่ความกว้างของพื้นที่จะขึ้นอยู่กับความยาวที่เราเลือก ความยาวและความกว้าง (ที่เป็นไปได้) ที่แตกต่างกันจะแสดงอยู่ในตาราง

โดยทั่วไป หากเราแทนความยาวของส่วนด้วย x และความกว้างด้วย y ความสัมพันธ์ระหว่างส่วนทั้งสองก็สามารถแสดงได้ด้วยสูตร:

เมื่อแสดง y ถึง x เราจะได้:

เมื่อให้ค่า x ตามอำเภอใจ เราจะได้ค่า y ที่สอดคล้องกัน

2) เวลาและความเร็วของการเคลื่อนที่สม่ำเสมอในระยะทางหนึ่ง

ให้ระยะทางระหว่างสองเมืองเป็น 200 กม. ยิ่งความเร็วสูงก็ยิ่งใช้เวลาน้อยลงในการครอบคลุมระยะทางที่กำหนด สามารถดูได้จากตารางต่อไปนี้:

โดยทั่วไป หากเราแสดงความเร็วด้วย x และเวลาของการเคลื่อนที่ด้วย y ความสัมพันธ์ระหว่างสิ่งเหล่านั้นจะแสดงด้วยสูตร:

คำนิยาม. ความสัมพันธ์ระหว่างปริมาณสองปริมาณที่แสดงออกมาด้วยความเท่ากัน โดยที่ k เป็นจำนวนหนึ่ง (ไม่เท่ากับศูนย์) เรียกว่าความสัมพันธ์แบบสัดส่วนผกผัน

ตัวเลขในที่นี้เรียกอีกอย่างว่าสัมประสิทธิ์สัดส่วน

เช่นเดียวกับในกรณีของสัดส่วนโดยตรง ปริมาณ x และ y ในกรณีทั่วไปสามารถรับค่าบวกและค่าลบได้อย่างเท่าเทียมกัน

แต่ในทุกกรณีของสัดส่วนผกผัน ไม่มีปริมาณใดจะเท่ากับศูนย์ได้ ที่จริงแล้ว ถ้าอย่างน้อยหนึ่งปริมาณ x หรือ y เท่ากับศูนย์ แล้วด้านซ้ายของค่าที่เท่ากันจะเท่ากับ

และอันที่ถูกต้อง - สำหรับตัวเลขบางตัวที่ไม่เท่ากับศูนย์ (ตามคำจำกัดความ) นั่นคือผลลัพธ์จะมีความเท่าเทียมกันที่ไม่ถูกต้อง

2. กราฟของสัดส่วนผกผัน

มาสร้างกราฟการพึ่งพากัน

เมื่อแสดง y ถึง x เราจะได้:

เราจะให้ค่า x ตามอำเภอใจ (ถูกต้อง) และคำนวณค่า y ที่สอดคล้องกัน เราได้รับตาราง:

มาสร้างจุดที่เกี่ยวข้องกัน (รูปที่ 28)

หากเราใช้ค่า x ในช่วงที่น้อยลง จุดต่างๆ ก็จะอยู่ใกล้กันมากขึ้น

สำหรับค่า x ที่เป็นไปได้ทั้งหมด จุดที่สอดคล้องกันจะอยู่บนสองกิ่งของกราฟ ซึ่งสมมาตรโดยคำนึงถึงที่มาของพิกัดและผ่านในไตรมาสที่หนึ่งและสามของระนาบพิกัด (รูปที่ 29)

ดังนั้นเราจะเห็นว่ากราฟของสัดส่วนผกผันเป็นเส้นโค้ง เส้นนี้ประกอบด้วยสองสาขา

จะได้รับสาขาหนึ่งสำหรับค่าบวกและอีกสาขาหนึ่งสำหรับค่าลบของ x

กราฟของความสัมพันธ์ตามสัดส่วนผกผันเรียกว่าไฮเปอร์โบลา

เพื่อให้ได้กราฟที่แม่นยำยิ่งขึ้น คุณต้องสร้างจุดให้ได้มากที่สุด

อติพจน์สามารถวาดได้ด้วยความแม่นยำค่อนข้างสูงโดยใช้รูปแบบต่างๆ เช่น

ในการวาดภาพ 30 จะมีการพล็อตกราฟของความสัมพันธ์ตามสัดส่วนผกผันกับสัมประสิทธิ์ลบ ตัวอย่างเช่น โดยการสร้างตารางดังนี้:

เราได้รับไฮเปอร์โบลาซึ่งมีสาขาอยู่ในไตรมาสที่ 2 และ 4

I. ปริมาณตามสัดส่วนโดยตรง

ให้มีค่า ขึ้นอยู่กับขนาด เอ็กซ์. ถ้าเมื่อเพิ่มขึ้น เอ็กซ์ขนาดหลายเท่า ที่เพิ่มขึ้นตามจำนวนที่เท่ากันแล้วจึงมีค่าดังกล่าว เอ็กซ์และ ที่เรียกว่าเป็นสัดส่วนโดยตรง

ตัวอย่าง.

1 . ปริมาณสินค้าที่ซื้อและราคาซื้อ (ด้วยราคาคงที่สำหรับสินค้าหนึ่งหน่วย - 1 ชิ้นหรือ 1 กิโลกรัม เป็นต้น) ซื้อสินค้ามากขึ้นกี่ครั้งก็ยิ่งจ่ายเงินมากขึ้นเท่านั้น

2 . ระยะทางที่เดินทางและเวลาที่ใช้ไป (ที่ความเร็วคงที่) เส้นทางนั้นยาวไกลสักกี่ครั้ง จะต้องใช้เวลานานสักกี่ครั้งจึงจะสำเร็จ

3 . ปริมาตรของร่างกายและมวลของมัน ( หากแตงโมลูกหนึ่งมีขนาดใหญ่กว่าอีกลูก 2 เท่า มวลของมันจะใหญ่ขึ้น 2 เท่า)

ครั้งที่สอง คุณสมบัติของสัดส่วนโดยตรงของปริมาณ

หากปริมาณสองปริมาณเป็นสัดส่วนโดยตรงอัตราส่วนของค่าสองค่าที่รับโดยพลการของปริมาณแรกจะเท่ากับอัตราส่วนของค่าที่สอดคล้องกันสองค่าของปริมาณที่สอง

ภารกิจที่ 1สำหรับแยมราสเบอร์รี่ที่เราเอา 12 กกราสเบอร์รี่และ 8 กกซาฮาร่า คุณต้องการน้ำตาลมากแค่ไหนหากรับประทานเข้าไป? 9 กกราสเบอรี่?

สารละลาย.

เราให้เหตุผลเช่นนี้: ปล่อยให้มันจำเป็น x กกน้ำตาลสำหรับ 9 กกราสเบอรี่ มวลของราสเบอร์รี่และมวลของน้ำตาลเป็นปริมาณที่เป็นสัดส่วนโดยตรง: ราสเบอร์รี่น้อยกว่ากี่เท่า, ต้องการน้ำตาลน้อยลงในจำนวนเท่าเดิม ดังนั้นอัตราส่วนของราสเบอร์รี่ที่รับประทาน (โดยน้ำหนัก) ( 12:9 ) จะเท่ากับอัตราส่วนน้ำตาลที่รับประทาน ( 8:x). เราได้รับสัดส่วน:

12: 9=8: เอ็กซ์;

x=9 · 8: 12;

x=6. คำตอบ:บน 9 กกจำเป็นต้องทานราสเบอร์รี่ 6 กกซาฮาร่า

การแก้ปัญหาสามารถทำได้ดังนี้:

เอาล่ะ 9 กกจำเป็นต้องทานราสเบอร์รี่ x กกซาฮาร่า

(ลูกศรในรูปชี้ไปในทิศทางเดียวขึ้นหรือลงไม่สำคัญ แปลว่า กี่เท่าของจำนวน 12 จำนวนมากขึ้น 9 จำนวนครั้งเท่ากัน 8 จำนวนมากขึ้น เอ็กซ์กล่าวคือมีความสัมพันธ์โดยตรงที่นี่)

คำตอบ:บน 9 กกฉันจำเป็นต้องกินราสเบอร์รี่ 6 กกซาฮาร่า

ภารกิจที่ 2รถสำหรับ 3 ชั่วโมงเดินทางไกล 264 กม. เขาจะใช้เวลาเดินทางนานแค่ไหน? 440 กม,ถ้าเขาขับด้วยความเร็วเท่ากันล่ะ?

สารละลาย.

ปล่อยให้ x ชั่วโมงรถจะครอบคลุมระยะทาง 440 กม.

คำตอบ:รถจะผ่านไป 440 กม. ใน 5 ชั่วโมง