Сферы применения ультразвука. Где применяются ультразвуковые волны? Где применяется ультразвук

Если какое-либо тело колеблется в упругой среде быстрее, чем среда успевает обтекать его, оно своим движением то сжимает, то разрежает среду. Слои повышенного и пониженного давления разбегаются от колеблющегося тела во все стороны и образуют звуковые волны. Если колебания тела, создающего волну следуют друг за другом не реже, чем 16 раз в секунду не чаще, чем 18 тысяч раз в секунду, то человеческое ухо слышит их.

Частоты 16 - 18000 Гц, которые способен воспринимать слуховой аппарат человека принято называть звуковыми, например писк комара »10 кГц. Но воздух, глубины морей и земные недра наполнены звуками, лежащими ниже и выше этого диапазона - инфра и ультразвуками. В природе ультразвук встречается в качестве компонента многих естественных шумов: в шуме ветра, водопада, дождя, морской гальки, перекатываемой прибоем, в грозовых разрядах. Многие млекопитающие, например кошки и собаки, обладают способностью восприятия ультразвука частотой до 100 кГц, а локационные способности летучих мышей, ночных насекомых и морских животных всем хорошо известны. Существование неслышимых звуков было обнаружено с развитием акустики в конце XIX века. Тогда же начались первые исследования ультразвука, но основы его применения были заложены только в первой трети XX-века.

Нижней границей ультразвукового диапазона называют упругие колебания частотой от 18 кГц. Верхняя граница ультразвука определяется природой упругих волн, которые могут распространяться только при том условии, что длина волны значительно больше длины свободного пробега молекул (в газах) или межатомных расстояний (в жидкостях и газах). В газах верхний предел составляет »106 кГц, в жидкостях и твёрдых телах »1010 кГц. Как правило, ультразвуком называют частоты до 106 кГц. Более высокие частоты принято называть гиперзвуком.

Ультразвуковые волны по своей природе не отличаются от волн слышимого диапазона и подчиняются тем же физическим законам. Но, у ультразвука есть специфические особенности, которые определили его широкое применение в науке и технике. Вот основные из них:

  • Малая длина волны. Для самого низкого ультразвукового диапазона длина волны не превышает в большинстве сред нескольких сантиметров. Малая длина волны обуславливает лучевой характер распространения УЗ волн. Вблизи излучателя ультразвук распространяется в виде пучков по размеру близких к размеру излучателя. Попадая на неоднородности в среде, ультразвуковой пучок ведёт себя как световой луч, испытывая отражение, преломление, рассеяние, что позволяет формировать звуковые изображения в оптически непрозрачных средах, используя чисто оптические эффекты (фокусировку, дифракцию и др.)
  • Малый период колебаний, что позволяет излучать ультразвук в виде импульсов и осуществлять в среде точную временную селекцию распространяющихся сигналов.
  • Возможность получения высоких значений энергии колебаний при малой амплитуде, т.к. энергия колебаний пропорциональна квадрату частоты. Это позволяет создавать УЗ пучки и поля с высоким уровнем энергии, не требуя при этом крупногабаритной аппаратуры.
  • В ультразвуковом поле развиваются значительные акустические течения. Поэтому воздействие ультразвука на среду порождает специфические эффекты: физические, химические, биологические и медицинские. Такие как кавитация, звукокапиллярный эффект, диспергирование, эмульгирование, дегазация, обеззараживание, локальный нагрев и многие другие.
  • Ультразвук неслышим и не создаёт дискомфорта обслуживающему персоналу.

История ультразвука. Кто открыл ультразвук.

Внимание к акустике было вызвано потребностями морского флота ведущих держав - Англии и Франции, т.к. акустический - единственный вид сигнала, способный далеко распространяться в воде. В 1826 году французский учёный Колладон определил скорость звука в воде. Эксперимент Колладона считается рождением современной гидроакустики. Удар в подводный колокол в Женевском озере происходил с одновременным поджогом пороха. Вспышка от пороха наблюдалась Колладоном на расстоянии 10 миль. Он также слышал звук колокола при помощи подводной слуховой трубы. Измеряя временной интервал между этими двумя событиями, Колладон вычислил скорость звука - 1435 м/сек. Разница с современными вычислениями только 3 м/сек.

В 1838 году, в США, звук впервые применили для определения профиля морского дна с целью прокладки телеграфного кабеля. Источником звука, как и в опыте Колладона, был колокол, звучащий под водой, а приёмником большие слуховые трубы, опускавшиеся за борт корабля. Результаты опыта оказались неутешительными. Звук колокола (как, впрочем, и подрыв в воде пороховых патронов), давал слишком слабое эхо, почти не слышное среди других звуков моря. Надо было уходить в область более высоких частот, позволяющих создавать направленные звуковые пучки.

Первый генератор ультразвука сделал в 1883 году англичанин Фрэнсис Гальтон . Ультразвук создавался подобно свисту на острие ножа, если на него дуть. Роль такого острия в свистке Гальтона играл цилиндр с острыми краями. Воздух или другой газ, выходящий под давлением через кольцевое сопло, диаметром таким же, как и кромка цилиндра, набегал на кромку, и возникали высокочастотные колебания. Продувая свисток водородом, удалось получить колебания до 170 кГц.

В 1880 году Пьер и Жак Кюри сделали решающее для ультразвуковой техники открытие. Братья Кюри заметили, что при оказании давления на кристаллы кварца генерируется электрический заряд, прямо пропорциональный прикладываемой к кристаллу силе. Это явление было названо "пьезоэлектричество" от греческого слова, означающего "нажать". Кроме того, они продемонстрировали обратный пьезоэлектрический эффект, который проявлялся тогда, когда быстро изменяющийся электрический потенциал применялся к кристаллу, вызывая его вибрацию. Отныне появилась техническая возможность изготовления малогабаритных излучателей и приёмников ультразвука.

Гибель «Титаника» от столкновения с айсбергом, необходимость борьбы с новым оружием - подводными лодками требовали быстрого развития ультразвуковой гидроакустики. В 1914 году, французский физик Поль Ланжевен совместно с талантливым русским учёным-эмигрантом - Константином Васильевичем Шиловским впервые разработали гидролокатор, состоящий из излучателя ультразвука и гидрофона - приёмника УЗ колебаний, основанный на пьезоэффекте. Гидролокатор Ланжевена - Шиловского, был первым ультразвуковым устройством , применявшимся на практике. Тогда же российский ученый С.Я.Соколов разработал основы ультразвуковой дефектоскопии в промышленности. В 1937 году немецкий врач-психиатр Карл Дуссик, вместе с братом Фридрихом, физиком, впервые применили ультразвук для обнаружения опухолей головного мозга, но результаты, полученные ими, оказались недостоверными. В медицинской практике ультразвук впервые стал применяться только с 50-х годов XX-го века в США.

Получение ультразвука.

Излучатели ультразвука можно разделить на две большие группы:

1) Колебания возбуждаются препятствиями на пути струи газа или жидкости, или прерыванием струи газа или жидкости. Используются ограниченно, в основном для получения мощного УЗ в газовой среде.

2) Колебания возбуждаются преобразованием в механические колебаний тока или напряжения. В большинстве ультразвуковых устройств используются излучатели этой группы: пьезоэлектрические и магнитострикционные преобразователи.

Кроме преобразователей, основанных на пьезоэффекте, для получения мощного ультразвукового пучка используются магнитострикционные преобразователи. Магнитострикция - это изменение размеров тел при изменении их магнитного состояния. Сердечник из магнитострикционного материала, помещённый в проводящую обмотку меняет свою длину в соответствии с формой токового сигнала, проходящего по обмотке. Данное явление, открытое в 1842 г. Джеймсом Джоулем, свойственно ферромагнетикам и ферритам. Наиболее употребительные магнитострикционные материалы это сплавы на основе никеля, кобальта, железа и алюминия. Наибольшей интенсивности ультразвукового излучения позволяет достичь сплав пермендюр (49%Co, 2%V, остальное Fe), который используется в мощных УЗ излучателях. В частности в , выпускаемых нашим предприятием.

Применение ультразвука.

Многообразные применения ультразвука можно условно разделить на три направления:

  • получение информации о веществе
  • воздействие на вещество
  • обработка и передача сигналов

Зависимость скорости распространения и затухания акустических волн от свойств вещества и процессов в них происходящих, используется в таких исследованиях:

  • изучение молекулярных процессов в газах, жидкостях и полимерах
  • изучение строения кристаллов и других твёрдых тел
  • контроль протекания химических реакций, фазовых переходов, полимеризации и др.
  • определение концентрации растворов
  • определение прочностных характеристик и состава материалов
  • определение наличия примесей
  • определение скорости течения жидкости и газа
Информацию о молекулярной структуре вещества даёт измерение скорости и коэффициента поглощения звука в нём. Это позволяет измерять концентрацию растворов и взвесей в пульпах и жидкостях, контролировать ход экстрагирования, полимеризации, старения, кинетику химических реакций. Точность определения состава веществ и наличия примесей ультразвуком очень высока и составляет доли процента.

Измерение скорости звука в твёрдых телах позволяет определять упругие и прочностные характеристики конструкционных материалов. Такой косвенный метод определения прочности удобен простотой и возможностью использования в реальных условиях.

Ультразвуковые газоанализаторы осуществляют слежение за процессами накопления опасных примесей. Зависимость скорости УЗ от температуры используется для бесконтактной термометрии газов и жидкостей.

На измерении скорости звука в движущихся жидкостях и газах, в том числе неоднородных (эмульсии, суспензии, пульпы), основаны ультразвуковые расходомеры, работающие на эффекте Допплера. Аналогичная аппаратура используется для определения скорости и расхода потока крови в клинических исследованиях.

Большая группа методов измерения основана на отражении и рассеянии волн ультразвука на границах между средами. Эти методы позволяют точно определять местонахождение инородных для среды тел и используются в таких сферах как:

  • гидролокация
  • неразрушающий контроль и дефектоскопия
  • медицинская диагностика
  • определения уровней жидкостей и сыпучих тел в закрытых ёмкостях
  • определения размеров изделий
  • визуализация звуковых полей — звуковидение и акустическая голография

Отражение, преломление и возможность фокусировки ультразвука используется в ультразвуковой дефектоскопии, в ультразвуковых акустических микроскопах, в медицинской диагностике, для изучения макронеоднородностей вещества. Наличие неоднородностей и их координаты определяются по отражённым сигналам или по структуре тени.

Методы измерения, основанные на зависимости параметров резонансной колебательной системы от свойств нагружающей его среды (импеданс), применяются для непрерывного измерения вязкости и плотности жидкостей, для измерения толщины деталей, доступ к которым возможен только с одной стороны. Этот же принцип лежит в основе УЗ твердомеров, уровнемеров, сигнализаторов уровня. Преимущества УЗ методов контроля: малое время измерений, возможность контроля взрывоопасных, агрессивных и токсичных сред, отсутствие воздействия инструмента на контролируемую среду и процессы.

Воздействие ультразвука на вещество.

Воздействие ультразвука на вещество, приводящее к необратимым изменениям в нём, широко используется в промышленности. При этом механизмы воздействия ультразвука различны для разных сред. В газах основным действующим фактором являются акустические течения, ускоряющие процессы тепломассообмена. Причём эффективность УЗ перемешивания значительно выше обычного гидродинамического, т.к. пограничный слой имеет меньшую толщину и как следствие, больший градиент температуры или концентрации. Этот эффект используется в таких процессах, как:

  • ультразвуковая сушка
  • горение в ультразвуковом поле
  • коагуляция аэрозолей

В ультразвуковой обработке жидкостей основным действующим фактором является кавитация . На эффекте кавитации основаны следующие технологические процессы:

  • ультразвуковая очистка
  • металлизация и пайка
  • звукокапиллярный эффект — проникновение жидкостей в мельчайшие поры и трещины. Применяется для пропитки пористых материалов и имеет место при любой ультразвуковой обработке твёрдых тел в жидкостях.
  • кристаллизация
  • интенсификация электрохимических процессов
  • получение аэрозолей
  • уничтожения микроорганизмов и ультразвуковая стерилизация инструментов

Акустические течения — один из основных механизмов воздействия ультразвука на вещество. Он обусловлен поглощением ультразвуковой энергии в веществе и в пограничном слое. Акустические потоки отличаются от гидродинамических малой толщиной пограничного слоя и возможностью его утонения с увеличением частоты колебаний. Это приводит к уменьшению толщины температурного или концентрационного погранслоя и увеличению градиентов температуры или концентрации, определяющих скорость переноса тепла или массы. Это способствует ускорению процессов горения, сушки, перемешивания, перегонки, диффузии, экстракции, пропитки, сорбции, кристаллизации, растворения, дегазации жидкостей и расплавов. В потоке с высокой энергией влияние акустической волны осуществляется за счёт энергии самого потока, путём изменения его турбулентности. В этом случае акустическая энергия может составлять всего доли процентов от энергии потока.

При прохождении через жидкость звуковой волны большой интенсивности, возникает так называемая акустическая кавитация . В интенсивной звуковой волне во время полупериодов разрежения возникают кавитационные пузырьки, которые резко схлопываются при переходе в область повышенного давления. В кавитационной области возникают мощные гидродинамические возмущения в виде микроударных волн и микропотоков. Кроме того, схлопывание пузырьков сопровождается сильным локальным разогревом вещества и выделением газа. Такое воздействие приводит к разрушению даже таких прочных веществ, как сталь и кварц. Этот эффект используется для диспергировании твёрдых тел, получения мелкодисперсных эмульсий несмешивающихся жидкостей, возбуждения и ускорения химических реакций, уничтожения микроорганизмов, экстрагирования из животных и растительных клеток ферментов. Кавитация определяет также такие эффекты как слабое свечение жидкости под действием ультразвука - звуколюминесценция , и аномально глубокое проникновение жидкости в капилляры - звукокапиллярный эффект .

Кавитационное диспергирование кристаллов карбоната кальция (накипи) лежит в основе акустических противонакипных устройств . Под воздействием ультразвука происходит раскалывание частиц, находящихся в воде, их средние размеры уменьшаются с 10 до 1 микрона, увеличивается их количество и общая площадь поверхности частиц. Это приводит к переносу процесса образования накипи с теплообменной поверхности в непосредственно в жидкость. Ультразвук так же воздействует и на сформированный слой накипи, образуя в нем микротрещины способствующие откалыванию кусочков накипи с теплообменной поверхности.

В установках по ультразвуковой очистке с помощью кавитации и порождаемых ею микропотоков удаляют загрязнения как жёстко связанные с поверхностью, типа окалины, накипи, заусенцев, так и мягкие загрязнения типа жирных плёнок, грязи и т.п. Этот же эффект используется для интенсификации электролитических процессов.

Под действием ультразвука возникает такой любопытный эффект, как акустическая коагуляция, т.е. сближение и укрупнение взвешенных частиц в жидкости и газе. Физический механизм этого явления ещё не окончательно ясен. Акустическая коагуляция применяется для осаждения промышленных пылей, дымов и туманов при низких для ультразвука частотах до 20 кГц. Возможно, что благотворное действие звона церковных колоколов основано на этом эффекте.

Механическая обработка твёрдых тел с применением ультразвука основана на следующих эффектах:

  • уменьшение трения между поверхностями при УЗ колебаниях одной из них
  • снижение предела текучести или пластическая деформация под действием УЗ
  • упрочнение и снижение остаточных напряжений в металлах под ударным воздействием инструмента с УЗ частотой
  • Комбинированное воздействие статического сжатия и ультразвуковых колебаний используется в ультразвуковой сварке

Различают четыре вида мехобработки с помощью ультразвука:

  • размерная обработка деталей из твёрдых и хрупких материалов
  • резание труднообрабатываемых материалов с наложением УЗ на режущий инструмент
  • снятие заусенцев в ультразвуковой ванне
  • шлифование вязких материалов с ультразвуковой очисткой шлифовального круга

Действия ультразвука на биологические объекты вызывает разнообразные эффекты и реакции в тканях организма, что широко используется в ультразвуковой терапии и хирургии. Ультразвук является катализатором, ускоряющим установление равновесного, с точки зрения физиологии состояния организма, т.е. здорового состояния. УЗ оказывает на больные ткани значительно большее влияние, чем на здоровые. Также используется ультразвуковое распыление лекарственных средств при ингаляциях. Ультразвуковая хирургия основана на следующих эффектах: разрушение тканей собственно сфокусированным ультразвуком и наложение ультразвуковых колебаний на режущий хирургический инструмент.

Ультразвуковые устройства применяются для преобразования и аналоговой обработки электронных сигналов и для управления световыми сигналами в оптике и оптоэлектронике. Малая скорость ультразвука используется в линиях задержки. Управление оптическими сигналами основывается на дифракции света на ультразвуке. Один из видов такой дифракции - т.н.брегговская дифракция зависит от длины волны ультразвука, что позволяет выделить из широкого спектра светового излучения узкий частотный интервал, т.е. осуществлять фильтрацию света.

Ультразвук чрезвычайно интересная вещь и можно предположить, что многие возможности его практического применения до сих пор не известны человечеству. Мы любим и знаем ультразвук и будем рады обсудить любые идеи, связанные его применением.

Где применяется ультразвук - сводная таблица

Наше предприятие, ООО «Кольцо-энерго», занимается производством и монтажом акустических противонакипных устройств «Акустик-Т». Устройства, выпускаемые нашим предприятием, отличаются исключительно высоким уровнем ультразвукового сигнала, что позволяет им работать на котлах без водоподготовки и пароводяных бойлерах с артезианской водой. Но предотвращение накипи - очень малая часть того, что может ультразвук. У этого удивительного природного инструмента огромные возможности и мы хотим рассказать вам о них. Сотрудники нашей компании много лет работали в ведущих российских предприятиях, занимающихся акустикой. Мы знаем об ультразвуке очень много. И если вдруг возникнет необходимость применить ультразвук в вашей технологии,

Применение ультразвука в промышленности

Ультразвуковыми называют упругие механические ко­лебания с частотой выше 20 кГц, которые не восприни­маются человеческим ухом. Наиболее короткие ультразвуковые волны имеют длину порядка длин волн видимого света. Ультразвуковые волны, так же как и све­товые, отражаются от препятствий, их можно фокусиро­вать и т. п.

При распространении ультразвуковых колебаний в жидкой среде в последней возникают чередующиеся сжатия и растяжения с частотой проходящих колебаний; в момент растяжения происходят местные разрывы жид­кости и образуются полости (пузырьки), заполняющиеся парами жидкости и растворенными в ней газами. В мо­мент сжатия пузырьки захлопываются, что сопрово­ждается сильными гидравлическими ударами. Это явле­ние называется кавитацией. Местные ударные давле­ния при этом часто превышают 980 МПа.

Используемые в промышленности источники ультра­звука могут быть разделены на две группы: механиче­ские и электромеханические.

Из механических источников ультразвука наибольшее применение получили динамические (сирены) и статиче­ские (свистковые). Сирены имеют статор с отверстиями и ротор из перфорированного диска. При подаче в кор­пус сирены пара, газа или сжатого воздуха ротор вра­щается, периодически закрывая и открывая отверстия статора, создавая механические колебания. Сирены ши­роко применяют, например, для осаждения тумана сер­ной кислоты и мелкодисперсной сажи в процессе их производства.

Из статических источников ультразвука (генераторов) наиболее известен свисток Гартмана, в котором зву­ковые колебания возникают при ударе струи газа, движу­щейся со сверхзвуковой скоростью из сопла в цилиндри­ческий резонатор.

Из электромеханических источников наибольшее при­менение получили магнитострикционные и пьезокерамические преобразователи.

Основной частью магнитострикционного преобразова­теля служит так называемый двигатель из ферромагнит­ного материала, обладающий способностью изменять свои размеры в магнитном поле. Например, стержень из никеля, помещенный в магнитное поле, укорачивается, а стержень из железокобальтового сплава (пермендюра) - удлиняется.

Пьезоэлектрический эффект заключается в том, что при растяжении и сжатии в определенных направлениях некоторых кристаллов, например кварца, на их поверхности возникают электрические заряды (прямой пьезоэффект).

Если к такой кварцевой пластинке подвести электри­ческий заряд, то она изменит свои размеры (обратный пьезоэффект). При действии на пластинку переменного электрического поля она будет сжиматься или разжи­маться синхронно с изменением приложенного напряже­ния. Прямой пьезоэлектрический эффект используется в приемниках ультразвуковых колебаний, где последние преобразуются в переменный ток.

Обратный пьезоэффект используется при изготовле­нии излучателей ультразвуковых колебаний, которые преобразуют электрические колебания в механические, главным образом, более высоких частот по сравнению с магнитострикционными.

В последние годы широкое распространение получили вибраторы из пьезокерамики, обладающие более высо­ким пьезоэффектом, чем природный кварц.

Одним из основных технологических применений уль­тразвука является интенсификация многих техно­логических процессов.

Ультразвуковые колебания применяются при ускоре­нии таких процессов, как полимеризация (например, уль­тразвуковая обработка эмульсии при изготовлении ис­кусственного каучука).

Значительно ускоряет ультразвук кристаллизацию различных веществ из пересыщенных растворов (вин­ной кислоты, фтористого алюминия и др.).

С помощью ультразвука можно ускорить и растворе­ние твердых веществ в жидкости. Например, продолжи­тельность растворения вискозы в процессе изготовления химических волокон при применении ультразвука сокра­щается с 7 до 3 ч.

Ультразвук позволяет ускорить экстракционные про­цессы, например получать рыбий жир из рыбьей печени без значительного повышения температуры, что позво­ляет сохранить в нем все ценные витамины.

В химических процессах ультразвук применяют для очистки деталей (подшипников, электрических контак­тов и др.) и сборочных единиц от загрязнений.

Качество ультразвуковой очистки несравнимо с дру­гими способами. Например, при очистке деталей в раз­личных органических растворителях на их поверхности остается до 80% загрязнений, при вибрационной очист­ке - около 55 %, а при ультразвуковой - не более 0,5 %.

Ультразвуковые методы в большинстве случаев обеспе­чивают полную очистку деталей от технических загрязне­ний.

Ультразвуковая очистка производится в органических растворителях или водных растворах моющих веществ.

В последние годы преимущественное распространение получают водные растворы моющих веществ благодаря их негорючести и отсутствию токсичных компонентов, низкой стоимости, способности удерживать загрязнения во взвешенном состоянии без повторного осаждения их на очищаемую поверхность. В качестве водных моющих растворов применяются растворы щелочей и щелочных солей с добавками поверхностно-активных веществ. При очистке в таких растворах происходит одновременно эмульгирование и омыление загрязнений.

Продолжительность ультразвуковой очистки зависит от характера загрязнений и моющих растворов и не пре­вышает 10-15 мин.

Пайка некоторых металлов и сплавов, например алю­миния, нержавеющих сталей и др., обычными способами затруднена из-за наличия на их поверхностях прочной, трудноудаляемой оксидной пленки. Введение ультразву­ковых колебаний в расплавленный припой приводит к разрушению пленки и облегчает смачивание припоем поверхности, подлежащей пайке или лужению, облегчает и ускоряет процесс пайки, повышает качество паяных со­единений. Внедрение ультразвука при пайке алюминия уменьшает трудоемкость процесса на 20 - 30%. С по­мощью ультразвука можно облуживать изделия из кера­мики.

Сущность ультразвуковой размерной об­работки заключается в том, что между инструментом, соединенным с излучателем, и заготовкой вводится абра­зивный материал, который воздействует на обрабатывае­мую поверхность. В качестве абразивных зерен приме­няют алмаз, корунд, наждак, кварцевый песок, карбид бора, карбид кремния и др.

Ультразвуком можно обрабатывать как хрупкие ма­териалы (стекло, керамику, кварц, кремний, германий и др.), так и жаропрочные твердые (закаленные и азоти­рованные стали, твердые сплавы), применяемые, в част­ности, для изготовления металлорежущего инстру­мента.

Ультразвуковая обработка может производиться сво­бодно направленным абразивом, например при декоративном шлифовании и для снятия заусенцев у мелких деталей.

Размерная обработка инструментом обеспечивает вы­сокую точность, позволяет получать сквозные и глухие отверстия, вырезы, осуществлять шлифование, клейме­ние, гравирование и другие операции.

Наряду с преимуществами ультразвуковой метод имеет и недостатки: сравнительно небольшая площадь и глубина обработки, большая энергоемкость, невысокая производительность процесса и большой износ инстру­мента.

Электроэрозионная обработка

Электроэрозионные методы обработки применимы для всех токопроводящих материалов. Эти методы осно­ваны на явлении эрозии (разрушения) поверхности токо­проводящих электродов от разрядов при пропускании между ними импульсного электрического тока.

Разрушение материала происходит из-за его локаль­ного оплавления и выброса расплавленного материала в виде парожидкостной смеси.

Все виды электроэрозионной обработки осущест­вляются в жидкостной среде - керосине, нефтяном мас­ле, дистиллированной воде.

При прохождении искрового разряда в жидкости на­чинается бурное газообразование, в результате чего жид­кость как бы взрывается, что способствует удалению продуктов эрозии из рабочей зоны. Кроме того, рабочая жидкость препятствует окислению поверхности обра­батываемого материала.

Основными разновидностями электроэрозионных ме­тодов являются электроискровая и анодно-механическая обработка.

Электроискровая обработка широко при­меняется в инструментальном производстве при изготов­лении штампов, литейных форм и прессформ, а также в основном производстве при размерной обработке заго­товок деталей сложных профилей из труднообрабаты­ваемых электропроводящих материалов. С ее помощью можно получать сквозные и глухие отверстия различной конфигурации, криволинейные щели и пазы, вырезать сложный контур, клеймить детали, удалять из заготовок сломанный инструмент и т. п.

Принципиальная схема установки приведена на рис. 18.57, а. Источник питания - генератор 3 однополярных импульсов заряжает конденсатор 5 до напряжения про­боя в промежутке между электродом-инструментом 2 и обрабатываемой заготовкой 1. При пробое энергия, на­копленная конденсатором 5, мгновенно выделяется в ви­де разряда.

Из-за малой длительности разряда заготовка и рабо­чий электрод практически не нагреваются, хотя основная часть накопленной энергии превращается в теплоту, иду­щую на плавление и испарение обрабатываемого мате­риала.

Под действием многочисленных разрядов в обра­батываемом материале образуется выемка, представляю­щая собой отпечаток торца электрода-инструмента. Станки для электроискровой обработки снабжены про­граммно-управляющими устройствами, которые обеспе­чивают постоянный зазор между заготовкой и инстру­ментом, продольное перемещение инструмента и регули­рование подачи. Производительность процесса зависит от частоты следования импульсов, энергии разряда, свойств обрабатываемого материала, материала и формы электрода-инструмента. При оптимальных ре­жимах обработки, устанавливаемых с помощью перемен­ного сопротивления 4, конфигурация детали обеспечи­вается с погрешностью ± 0,005 мм.

Обработку профильным электродом применяют для получения сквозных и глухих отверстий с различной фор­мой поперечного сечения.

В настоящее время наибольшее применение получил метод электроискровой обработки непрофилированным электродом-проволокой. При этом (рис. 18.57,6) электрод-проволока 2 диаметром 0,02 - 0,5 мм (в зависимости от требуемой точности обработки) перематывается с опре­деленной скоростью с подающей катушки 4 на приемную катушку 1 , воспроизводя любой заданный контур. При вырезании замкнутого контура в заготовке 3 предусма­тривается технологическое отверстие.

Анодно-механическая обработка (рис. 18.57, в) осуществляется при включении обрабатываемой заготовки 1 в цепь постоянного тока в качестве анода, а рабочего инструмента - диска 2 в качестве катода. В зазор подается рабочая жидкость (раствор жидкого стекла при черновой обработке или раствор хлористого или сернокислого натрия при доводке). При анодно-меха-нической обработке металл заготовки подвергается анод­ному (электрохимическому) растворению, а также ло­кальному плавлению от воздействия разрядов, как при электроискровой обработке, и механическому воздей­ствию инструмента, который снимает оксидную пленку и расплавленный металл.

Производительность процесса в 2 - 3 раза выше, чем при обычной механической обработке. Этот метод при­меняют для шлифования, хонингования цилиндрических отверстий, полирования, резки. Анодно-механическую обработку можно совмещать с абразивной обработкой, используя при этом в качестве инструмента электропро­водящий абразивный диск или добавляя абразив в рабо­чую жидкость.

Процесс электроискрового упрочнения применяют для упрочнения поверхностей различных ме­таллов и сплавов, чаще всего штамповой оснастки. В от­личие от размерной электроискровой обработки здесь анодом является электрод-инструмент, материал с по­верхности которого переносится на обрабатываемую заготовку - катод.

Сущность метода заключается в том, что при сближе­нии инструмента с деталью между ними возникает ис­кровой электрический разряд, который оплавляет мате­риал анода. На первой стадии капля расплавленного металла разогревается до высокой температуры, заки­пает и металл анода в виде мелких частиц устремляется к катоду. Достигнув катода, расплавленные частицы сва­риваются с ним. На следующей стадии через раска­ленный участок катода проходит второй импульс тока, Этот импульс сопровождается механическим ударом анода о катод, при котором происходит сварка металла анода с поверхностью катода, сопровождаемая химиче­скими реакциями, диффузионными процессами и явле­ниями, характерными при ковке.

В качестве материала анода для упрочнения режущего инструмента (резцов, фрез, сверл, ножей и др.) исполь­зуют твердые сплавы различных марок, феррохром и графит. Расход этих материалов невелик.

Ультразвук

Ультразву́к - упругие колебания с частотой за пределом слышимости для человека. Обычно ультразвуковым диапазоном считают частоты выше 18 000 герц.

Хотя о существовании ультразвука известно давно, его практическое использование достаточно молодо. В наше время ультразвук широко применяется в различных физических и технологических методах. Так, по скорости распространения звука в среде судят о её физических характеристиках. Измерения скорости на ультразвуковых частотах позволяет с весьма малыми погрешностями определять, например, адиабатические характеристики быстропротекающих процессов, значения удельной теплоемкости газов, упругие постоянные твердых тел.

Источники ультразвука

Частота ультразвуковых колебаний, применяемых в промышленности и биологии, лежит в диапазоне порядка нескольких МГц . Такие колебания обычно создают с помощью пьезокерамических преобразователей из титанита бария. В тех случаях, когда основное значение имеет мощность ультразвуковых колебаний, обычно используются механические источники ультразвука. Первоначально все ультразвуковые волны получали механическим путем (камертоны, свистки, сирены).

В природе УЗ встречается как в качестве компонентов многих естественных шумов (в шуме ветра, водопада, дождя, в шуме гальки, перекатываемой морским прибоем, в звуках, сопровождающих грозовые разряды, и т. д.), так и среди звуков животного мира. Некоторые животные пользуются ультразвуковыми волнами для обнаружения препятствий, ориентировки в пространстве.

Излучатели ультразвука можно подразделить на две большие группы. К первой относятся излучатели-генераторы; колебания в них возбуждаются из-за наличия препятствий на пути постоянного потока - струи газа или жидкости. Вторая группа излучателей - электроакустические преобразователи; они преобразуют уже заданные колебания электрического напряжения или тока в механическое колебание твердого тела, которое и излучает в окружающую среду акустические волны.

Свисток Гальтона

Первый ультразвуковой свисток сделал в 1883 году англичанин Гальтон. Ультразвук здесь создается подобно звуку высокого тона на острие ножа, когда на него попадает поток воздуха. Роль такого острия в свистке Гальтона играет «губа» в маленькой цилиндрической резонансной полости. Газ, пропускаемый под высоким давлением через полый цилиндр, ударяется об эту «губу»; возникают колебания, частота которых (она составляет около 170 кГц) определяется размерами сопла и губы. Мощность свистка Гальтона невелика. В основном его применяют для подачи команд при дрессировке собак и кошек.

Жидкостный ультразвуковой свисток

Большинство ультразвуковых свистков можно приспособить для работы в жидкой среде. По сравнению с электрическими источниками ультразвука жидкостные ультразвуковые свистки маломощны, но иногда, например, для ультразвуковой гомогенизации, они обладают существенным преимуществом. Так как ультразвуковые волны возникают непосредственно в жидкой среде, то не происходит потери энергии ультразвуковых волн при переходе из одной среды в другую. Пожалуй, наиболее удачной является конструкция жидкостного ультразвукового свистка, изготовленного английскими учеными Коттелем и Гудменом в начале 50-х годов XX века. В нем поток жидкости под высоким давлением выходит из эллиптического сопла и направляется на стальную пластинку. Различные модификации этой конструкции получили довольно широкое распространение для получения однородных сред. Благодаря простоте и устойчивости своей конструкции (разрушается только колеблющаяся пластинка) такие системы долговечны и недороги.

Сирена

Другая разновидность механических источников ультразвука - сирена. Она обладает относительно большой мощностью и применяется в полицейских и пожарных машинах. Все ротационные сирены состоят из камеры, закрытой сверху диском (статором), в котором сделано большое количество отверстий. Столько же отверстий имеется и на вращающемся внутри камеры диске - роторе. При вращении ротора положение отверстий в нём периодически совпадает с положением отверстий на статоре. В камеру непрерывно подаётся сжатый воздух, который вырывается из неё в те короткие мгновения, когда отверстия на роторе и статоре совпадают.

Основная задача при изготовлении сирен - это во-первых- сделать как можно больше отверстий в роторе, во-вторых- достичь большой скорости его вращения. Однако практически выполнить оба эти требования очень трудно.

Ультразвук в природе

Применение ультразвука

Диагностическое применение ультразвука в медицине (УЗИ)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно в брюшной полости и полости таза .

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

  • противовоспалительным, рассасывающим
  • аналгезирующим, спазмолитическим
  • кавитационным усилением проницаемости кожи

Фонофорез - сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита . Удобство ультрафонофореза медикаментов и природных веществ:

  • лечебное вещество при введении ультразвуком не разрушается
  • синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз , остеохондроз , артриты , бурситы , эпикондилиты, пяточная шпора , состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

Резка металла с помощью ультразвука

На обычных металлорежущих станках нельзя просверлить в металлической детали узкое отверстие сложной формы, например в виде пятиконечной звезды. С помощью ультразвука это возможно, магнитострикционный вибратор может просверлить отверстие любой формы. Ультразвуковое долото вполне заменяет фрезерный станок. При этом такое долото намного проще фрезерного станка и обрабатывать им металлические детали дешевле и быстрее, чем фрезерным станком.

Ультразвуком можно даже делать винтовую нарезку в металлических деталях, в стекле, в рубине, в алмазе. Обычно резьба сначала делается в мягком металле, а потом уже деталь подвергают закалке. На ультразвуковом станке резьбу можно делать в уже закалённом металле и в самых твёрдых сплавах. То же и со штампами. Обычно штамп закаляют уже после его тщательной отделки. На ультразвуковом станке сложнейшую обработку производит абразив (наждак, корундовый порошок) в поле ультразвуковой волны. Беспрерывно колеблясь в поле ультразвука, частицы твёрдого порошка врезаются в обрабатываемый сплав и вырезают отверстие такой же формы, как и у долота.

Приготовление смесей с помощью ультразвука

Широко применяется ультразвук для приготовления однородных смесей (гомогенизации). Еще в 1927 году американские ученые Лимус и Вуд обнаружили, что если две несмешивающиеся жидкости (например, масло и воду) слить в одну мензурку и подвергнуть облучению ультразвуком, то в мензурке образуется эмульсия, то есть мелкая взвесь масла в воде. Подобные эмульсии играют большую роль в промышленности: это лаки, краски, фармацевтические изделия, косметика.

Применение ультразвука в биологии

Способность ультразвука разрывать оболочки клеток нашла применение в биологических исследованиях, например, при необходимости отделить клетку от ферментов. Ультразвук используется также для разрушения таких внутриклеточных структур, как митохондрии и хлоропласты с целью изучения взаимосвязи между их структурой и функциями. Другое применение ультразвука в биологии связано с его способностью вызывать мутации. Исследования, проведённые в Оксфорде, показали, что ультразвук даже малой интенсивности может повредить молекулу ДНК. Искусственное целенаправленное создание мутаций играет большую роль в селекции растений. Главное преимущество ультразвука перед другими мутагенами (рентгеновские лучи, ультрафиолетовые лучи) заключается в том, что с ним чрезвычайно легко работать.

Применение ультразвука для очистки

Применение ультразвука для механической очистки основано на возникновении под его воздействием в жидкости различных нелинейных эффектов. К ним относится кавитация , акустические течения , звуковое давление . Основную роль играет кавитация. Её пузырьки, возникая и схлопываясь вблизи загрязнений, разрушают их. Этот эффект известен как кавитационная эрозия . Используемый для этих целей ультразвук имеет низкую частоты и повышенную мощность.

В лабораторных и производственных условиях для мытья мелких деталей и посуды применяются ультразвуковые ванны заполоненные растворителем (вода, спирт и т. п.). Иногда с их помощью от частиц земли моют даже корнеплоды (картофель, морковь, свекла и др.).

Применение ультразвука в расходометрии

Для контроля расхода и учета воды и теплоносителя с 60-х годов прошлого века в промышленности применяются ультразвуковые расходомеры .

Применение ультразвука в дефектоскопии

Ультразвук хорошо распространяется в некоторых материалах, что позволяет использовать его для ультразвуковой дефектоскопии изделий из этих материалов. В последнее время получает развитие направление ультразвуковой микроскопии, позволяющее исследовать подповерхностный слой материала с хорошей разрешающей способностью.

Ультразвуковая сварка

Ультразвуковая сварка - сварка давлением, осуществляемая при воздействии ультразвуковых колебаний. Такой вид сварки применяется для соединения деталей, нагрев которых затруднен, или при соединении разнородных металлов или металлов с прочными окисными пленками (алюминий, нержавеющие стали, магнитопроводы из пермаллоя и т. п.). Так ультразвуковая сварка применяется при производстве интегральных микросхем.

Применение ультразвука в гальванотехнике

Ультразвук применяют для интенсификации гальванических процессов и улучшения качества покрытий, получаемых электрохимическим способом.

Механические волны с частотой колебания, большей 20 000 Гц, не воспринимаются человеком как звук. Из называют ультразвуковыми волнами или ультразвуком . Ультразвук сильно поглощается газами и во много раз слабее - твердыми веществами и жидкостями. Поэтому ультразвуковые волны могут распространяться на значительные расстояния только в твердых телах и жидкостях.

Так как энергия, которую переносят волны, пропорциональна плотности среды и квадрату частоты, то ультразвук может переносить энергию, намного большую, чем звуковые волны. Еще одно важное свойство ультразвука заключается в том, что сравнительно просто осуществляется его направленное излучение. Все это позволяет широко использовать ультразвук в технике.

Описанные свойства ультразвука используются в эхолоте - приборе для определения глубины моря (рис. 25,11). Корабль снабжают источником и приемником ультразвука определенной частоты. Источник отправляет кратковременные ультразвуковые импульсы, а приемник улавливает отраженные импульсы. Зная время между отправлением и приемом импульсов и скорость распространения ультразвука в воде, с помощью формулы l = vt/2 определяют глубину моря. Аналогично действует ультразвуковой локатор, которым пользуются для определения расстояния до препятствия на пути корабля в горизонтальном направлении . При отсутствии таких препятствий ультразвуковые импульсы не возвращаются к кораблю.

Интересно, что некоторые животные, например, летучие мыши, имеют органы, действующие по принципу ультразвукового локатора, что позволяет им хорошо ориентироваться в темноте. Совершенный ультразвуковой локатор имеют дельфины.

При прохождении ультразвука через жидкость частицы жидкости приобретают большие ускорения и сильно воздействуют на различные тела, помещенные в жидкость. Это используют для ускорения самых различных технологических процессов (например, приготовления растворов, отмывки деталей, дубления кож и т. д.).

При интенсивных ультразвуковых колебаниях в жидкости ее частицы приобретают такие большие ускорения, что в жидкости образуются на короткое время разрывы (пустоты ), которые резко захлопываются, создавая множество маленьких ударов, т. е. происходит кавитация. В таких условиях жидкость оказывает сильное дробящее действие, что используется для приготовления суспензий, состоящих из распыленных частиц твердого тела в жидкости, и эмульсий - взвесей мелких капелек одной жидкости в другой.

Ультразвук применяется для обнаружения дефектов в металлических деталях. В современной технике применение ультразвука столь обширно, что трудно даже перечислить все области его использования.

Заметим, что механические волны с частотой колебаний меньше 16 Гц называют инфразвуковыми волна ми или инфразвуком. Они также не вызывают звуковых ощущений. Инфразвуковые волны возникают на море во время ураганов и землетрясений. Скорость распространения инфразвука в воде гораздо больше, чем скорость перемещения урагана или гигантских волн цунами, образующихся при землетрясении. Это позволяет некоторым морским животным, обладающим способностью воспринимать инфразвуковые волны, получать таким путем сигналы о приближающейся опасности.

Ультразвук - упругие звуковые колебания высокой частоты. Человеческое ухо воспринимает распространяющиеся в среде упругие волны частотой приблизительно до 16-20 кГц; колебания с более высокой частотой представляют собой ультразвук (за пределом слышимости). Обычно ультразвуковым диапазоном считают полосу частот от 20 000 до миллиарда Гц. Звуковые колебания с более высокой частотой называют гиперзвуком. В жидкостях и твердых телах звуковые колебания могут достигать 1000 ГГц [

Хотя о существовании ультразвука ученым было известно давно, практическое использование его в науке, технике и промышленности началось сравнительно недавно. Сейчас ультразвук широко применяется в различных областях физики, технологии, химии и медицины.

Применение ультразвука [Диагностическое применение ультразвука в медицине (узи)

Благодаря хорошему распространению ультразвука в мягких тканях человека, его относительной безвредности по сравнению с рентгеновскими лучами и простотой использования в сравнении с магнитно-резонансной томографией ультразвук широко применяется для визуализации состояния внутренних органов человека, особенно вбрюшной полости и полости таза.

Терапевтическое применение ультразвука в медицине

Помимо широкого использования в диагностических целях (см. Ультразвуковое исследование), ультразвук применяется в медицине как лечебное средство.

Ультразвук обладает действием:

    противовоспалительным, рассасывающим

    аналгезирующим, спазмолитическим

    кавитационным усилением проницаемости кожи

Фонофорез- сочетанный метод, при котором на ткани действуют ультразвуком и вводимыми с его помощью лечебными веществами (как медикаментами, так и природного происхождения). Проведение веществ под действием ультразвука обусловлено повышением проницаемости эпидермиса и кожных желез, клеточных мембран и стенок сосудов для веществ небольшой молекулярной массы, особенно - ионов минералов бишофита. Удобство ультрафонофореза медикаментов и природных веществ:

    лечебное вещество при введении ультразвуком не разрушается

    синергизм действия ультразвука и лечебного вещества

Показания к ультрафонофорезу бишофита: остеоартроз, остеохондроз, артриты, бурситы, эпикондилиты, пяточная шпора, состояния после травм опорно-двигательного аппарата; Невриты, нейропатии, радикулиты, невралгии, травмы нервов.

Наносится бишофит-гель и рабочей поверхностью излучателя проводится микро-массаж зоны воздействия. Методика лабильная, обычная для ультрафонофореза (при УФФ суставов, позвоночника интенсивность в области шейного отдела - 0,2-0,4 Вт/см2., в области грудного и поясничного отдела - 0,4-0,6 Вт/см2).

11. Инфразвук и его влияние на организм

Инфразву́к (от лат.infra - ниже, под) - упругие волны, аналогичные звуковым, но имеющие частоту ниже воспринимаемой человеческим ухом. За верхнюю границу частотного диапазона инфразвука обычно принимают 16-25 Гц. Нижняя же граница инфразвукового диапазона условно определена как 0.001 Гц. Практический интерес могут представлять колебания от десятых и даже сотых долей герц, то есть с периодами в десяток секунд.Природа возникновения инфразвуковых колебаний такая же, как и у слышимого звука, поэтому инфразвук подчиняется тем же закономерностям, и для его описания используется такой же математический аппарат, как и для обычного слышимого звука (кроме понятий, связанных с уровнем звука). Инфразвук слабо поглощается средой, поэтому может распространяться на значительные расстояния от источника. Из-за очень большой длины волны ярко выражена дифракция.Инфразвук, образующийся в море, называют одной из возможных причин нахождения судов, покинутых экипажем (см. Бермудский треугольник, Корабль-призрак).