Робототехника: все, что нужно знать о роботах. Каким был первый робот в мире? Происхождение слова "Робот"

Cо времен античности люди стали задумываться о создании механических людей, способных выполнять тяжелую и рутинную работу. В мифах есть упоминания о создании Гефестом механических рабов, выполняющих работу за человека.Но различные механизмы создавались и из научного интереса, Известен, например, механический голубь греческого математика Архита из Тарентума, построенный им около 400 года н.э. Возможно, движущийся при помощи пара, голубь был способен летать.

А некоторые роботы, создавались скорее ради развлечения или с целью извлечения коммерческой прибыли, и многие из них были фальсификациями, как например известный шахматный автомат "Турок".

Первый чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Его записи были найдены только в 1950-х годах и содержали подробные чертежи рыцаря, способного двигать руками и головой.

Хотя, не известно, был ли построен этот робот. Существует также мнение, что специалисты NASA использовали находки Леонардо для создания манипулятора, при подготовки экспедиций на Луну.

Первого действующего человекоподобного робота создал французский изобретатель Жак де Вокансон в 1737 году. Андроид представлял из себя человека в натуральную величину способного на флейте. Флейтист Вокансона имел в репертуаре 12 произведений!

Но самое известное изобретение Жака де Вокансона - пищеварительные утки, созданные им в 1739 году. Эти роботы состояли примерно из 400 деталей, и умели хлопать крыльями, пить воду. Также утки клевали зерна и через секунду - испражнялись. Но, на самом деле, утка не переваривала пищу: съеденные зерна, помещались в специальный контейнер, а "продукт на выходе" был заготовлен в другом.

К концу XIX века инженер из России Чебышёв Пафнутий придумал механизм - стопоход, который обладал высокой проходимостью. Конечно, это изобретение не представляло огромной пользы для человечества, но сама задумка дала определенный толчок к развитию технологий роботостроения.

В 1885 году прошли первые испытания Электрического Человека (Electric Man) Фрэнка Рида (Frank Reade). У машины был довольно мощный прожектор, а противников ожидали электрические разряды, которыми Человек стрелял прямо из глаз. Судя по всему, источник питания находился в закрытом сеткой фургоне.О способностях Электрического Человека и о его скорости ничего не известно.

Кстати, слово робот тогда еще не существовало. Оно появилось лишь в 1920 году, благодаря Карелу Чапеку и его брату Йозефу.

В 1893 году профессором Арчи Кемпионом (Archie Campion) на Международной колумбийской выставке (1893 World"s Columbian Exposition) был представлен опытный образец робота Boilerplate.
Boilerplate был задуман как средство бескровного решения конфликтов - иными словами, это был опытный образец механического солдата. Робот существовал в единственном экземпляре, но у него была возможность осуществить предложенную функцию - Boilerplate неоднократно участвовал в боевых действиях.Хотя истории о Boilerplate интересны, вызывает подозрение их истинность, так же как рассказы о Steem Man и Electric Man.

Семь лет спустя Луи Филип Перью (Louis Philip Perew) в Америке создал Автоматического Человека (Automatic Man). "Этот гигант из дерева, каучука и металлов, который ходит, бегает, прыгает, разговаривает и закатывает глаза - практически во всём в точности подражает человеку". Автоматический Человек был ростом 7 футов 5 дюймов (2,25 метра), одет был в белый костюм, носил гигантскую обувь и соответствующую шляпу.

Первые программируемые механизмы с манипуляторами появились в 1930х годах в США. Толчком к их созданию послужили работы Генри Форда по созданию автоматизированной производственной линии или конвейера (1913). Первый же действительно существовавший в железе индустриальный робот принадлежит Л.Г. Полларду. 29 октября 1934 года, Уиллард Л.Г. Поллард подал в бюро патентов заявку об изобретении нового полностью автоматического устройства для окраски поверхностей. В 1937 году лицензия на производство этого манипулятора каким-то образом досталась компании DeVilbiss. Именно DeVilbiss в 1941 году при помощи Гарольда Роузланда построила первые прототипы этого устройства. Однако окончательная Роузландовская версия, запатентованная и выпущенная на рынок в 1944 году, была совсем другим механизмом, заимствовав у Полларда младшего только идею системы управления.

История серьезной робототехники начинается с появлением атомной промышленности почти сразу по окончании второй мировой войны. Поставленная задача - обезопасить работу персонала с радиоактивными препаратами - успешно решается при помощи манипуляторов, копирующих движения человека-оператора. Это еще не совсем «честные» роботы, поскольку они по-прежнему состоят только из механических деталей: используются ременные и шевронные передачи. Современное название таких устройств - копирующие манипуляторы или MSM (master-slave manipulators).Одна из первых компаний по производству MSM - «CRL» (Central Research Laboratories) - была основана в 1945 году, а первый ее MSM - «Model 1» - был представлен комиссии по атомной энергетике США уже в 1949 году.

Датой рождения первого по-настоящему серьезного робота, о котором услышал весь мир, можно считать 18 мая 1966 года. В этот день Григорий Николаевич Бабакин, главный конструктор машиностроительного завода имени С.А.Лавочкина в Химках подписал головной том аванпроекта E8. Это был «Луноход-1», луноход 8ЕЛ в составе автоматической станции E8 №203, - первый в истории аппарат, успешно покоривший лунную поверхность 17 ноября 1970.

В 1968 году в Станфордском Исследовательском Институте (SRI, Stanford Research Institute) создают «Shakey» - первого мобильного робота с искусственным зрением и зачатками интеллекта. Устройство на колесиках решает задачу объезда возможных препятствий - различных кубиков. Исключительно на ровной поверхности, т.к. робот очень неустойчив. Самое примечательное, что «мозг» робота занимает целую комнату по соседству, общаясь с «телом» по радиосвязи.

Исследования устойчивости приводят к работам над динамическим равновесием роботов, в результате чего получаются роботы-лошади и даже несколько роботов на одной ноге, - чтобы не упасть, им приходится постоянно бегать и подпрыгивать. Начинается эра исследования устойчивости и проходимости. В это время появляется множество роботов для исследования других планет и, конечно, ведения боевых действий в пустыне. Вся робототехника в Соединенных Штатах по сей день очень часто спонсируется агентством DARPA.

Первое место в мире по производству и использованию роботов занимает Япония. В 1928 году под руководством доктора Нисимуро Макото был создан робот, названный «Естествоиспытатель»,высотой 3,2 метра. Оснащенный моторчиками, он мог менять положение головы и рук. А 21 ноября 2000 года на первой в истории выставке ROBODEX в городе Йокохама, Япония, Tokyo Sony Corporation представляет своего первого человекоподобного робота "SDR-3X".

Фантасты 50-х представляли себе 2000 год с летающими машинами и роботами, живущими бок о бок с человеком.
Как мы видим, этого пока не случилось, тем не менее сфера робототехники постепенно развивались в течение десятилетий, иногда стремительно затем ее развитие приутихло, но в настоящее время вновь возобносила небывалый рост. Каждый месяц производятся тысячи различных промышленных роботов, разрабатываются гуманоиды и андроиды, ученые всего мира работают созданием искусственного интеллекта, и все это -только начало.

Робототехника - это не самостоятельная отрасль, прежде всего это синергия всех последних достижений технических, естественных наук и информационных технологий.

Когда мы говорим "робот", то люди далеки от техники его примерно так и представляют как в советских фантастических фильмах с железными руками и ногами. Конечно, мы вкладываем в это понятие гораздо более широкий смысл.

Выделяют следующие группы роботов:

1. Промышленные - когда говорят "роботизация" имеют ввиду прежде всего развитие этой сферы.

2. Военные - единственный вид, который получил развитие в России, к ним же можно отнести роботов ливидаторов различных аварий и природных катаклизмов.

3. Космические - к ним относятся и спутники, планетоходы и антропоморфные роботы, помогающие космонавтам.

4. Бытовые - уборщики, кухонные роботы, роботы - компаньоны.

5. Андроиды, гуманоиды - различные антропоморфные роботы, чьей целью является усовершенствование "человекообразности" роботов для различных социальных целей.

История робототехники

Автоматизация и роботизация производства в капиталистическом мире началась в 50-е годы XX века. Именно к тому времени можно отнести появление первых промышленных роботов. Они осуществляли сборку оборудования, и простейшие монотонные операции.
Первый такой робот был разработан изобретателем самоучкой Джоржем Деволом в 1954 году. Робот-манипулятор весил две тонны и управлялся программой записанной на магнитном барабане. Система получила название Unimate на новое устройство был оформлен патент и а в 1961 изобретатель основал компанию Unimation.

Первый робот был установлен на заводе Дженерал Моторс (на литейном участке) в 1961 году. Затем новинка была опробована заводами Chrysler и Ford,

Система Unimate применялась для работы с литыми металлическими деталями, которые манипулятор извлекал из форм отливки. Захватиное устройство управлялось гидроприводом.
Робот имел 5 степеней свободы и захватное устройство с двумя "пальцами". Точность работы была весьма высока до 1,25 мм. И был эффективнее человека - работал и быстрее и с меньшим количеством брака.

В 1967 промышленные манипуляторы приходят Европу. Они уже расширяют свой функционал, осваивают профессии сварщика, маляра. У робота появляется "техническое зрение" посредством видеокамер и датчиков, он учится определять габариты изделий и место их расположения.

В 1982 году IBM разрабатывает официальный язык для программирования робототехнических систем. В 1984 - компания Adept представила первый робот Scara с электроприводом .
Новая конструкция сделала роботы более простыми и надежными, сохранив высокую скорость.

В 90-е появился контроллер с интуитивным интерфейсом управления, которому мог управлять оператор, он мог изменять параметры и регулировать режим работы. С тех пор возможности управления роботами и их функиции только развивались, увеличивалась их сложность, скорость, число осей, стали использоваться различные материалы, шире становились возможности разработки и управления, было сделано несколько первых уверенных шагов в сторону искусственного интеллекта.

В то же время в СССР был фактически лидером в робототехнике. Началось все еще в 30-е годы. В 1936 году 16–летний советский школьник Вадим Мацкевич создал робота, который умел поднимать правую руку. Для этого он потратил 2 года работы в токарных мастерских новочеркасского Политеха. Ранее, в 12 лет создал маленький радиоуправляемый броневик, стрелявший фейерверками. На "робота" Мацкевича обратили внимание власти и в 1937 году он представлял его на Всемирной выставке 1937 года в Париже.

На рубеже 30 - 40-х гг. XX в. в СССР также появились автоматические линии для обработки деталей подшипников, а в конце 40-х гг. XX в. впервые в мировой практике было создано комплексное производство поршней для тракторных двигателей с автоматизацией всех процессов - от загрузки сырья до упаковки готовой продукции.

В 1966 в Воронеже был изобретен манипулятор для укладки металлических листов, в 1968 в Ленинграде году разработали подводный робот "Манта" с чувствительным захватным устройством - в дальнейшем он совершенствовался. В 1969 году в ЦНИТИ Миноборонпрома приступили к разработке промышленного робота «Универсал-50». В дальнейшем активно внедрялись автоматизированные системы на крупные производства.

В 1985 году уже использовалось 40 тыс промышленых роботов и в несколько раз превосходило количество, используемых в США. Автоматизированые линии вовсю работали на АвтоВазе в 80-е года и даже подвергались атакам работников-"хакеров".

Были крупные военные и космические разработки. Уникальным достижением по тем временам был беспилотный разведчик ДБР-1, который был принят на вооружение ВВС СССР еще в 1964 году. Такой аппарат мог выполнять разведывательные задачи над всей территорией Западной и Центральной Европы.

Одним из самых заметных достижений отечественной робототехники и науки стало создание в КБ им. Лавочкина «Лунохода-1». Именно советский аппарат стал первым в мире планетоходом, который успешно выполнил свою миссию на поверхности другого небесного тела.

В 1983 году на вооружение ВМФ СССР был принят уникальный противокорабельный комплекс П-700 «Гранит». Его особенностью стало то, что при залповом пуске ракеты могли самостоятельно выстраиваться в боевой порядок и во время полета обмениваться между собой информацией, самостоятельно распределяя цели. При этом одна из ракет комплекса могла играть роль лидера, занимая более высокий эшелон атаки.

Развивались и "роботы-гуманоиды": в 1962 году появился первый робот экскурсовод Рэкс - он проводил экскурсии для детей в Политехническом музее. Говорят, он все еще там "работает".

В Советском Союзе было выпущено более 100 тыс. единиц промышленной робототехники. Они заменили более одного миллиона рабочих, но в 90-е годы эти роботы исчезли.

В дальнейшем развитие робототехники идет ударными темпами, потому что развивается ключевые отрасли - физика, химия, электротехника и главное - электроника. На смену вакуумным лампам пришла силовая электроника, позже микросхемы, затем микроконтроллеры... Появляются новые материалы, новые способы автоматизации и методы программирования.

Но к России и СНГ это не уже не относится. Прежде всего развитие происходит в США, в Юго-Восточной Азии и Западной Европе.

На производствах внедряются управляемые роботизированные линии, роботы манипуляторы используются во всех отраслях промышленности, в сельском хозяйстве, медицине, в космосе и, конечно, в быту.

В некоторых отраслях до 50% работ выполняют промышленные роботы, например в автомобилестроении они могут сварить, покрасить, и переместить детали на другой участок сборки, где ими займутся другие роботы.

Существуют даже 100% автоматизированные фабрики. В Японии есть завод где роботы сами собирают роботов. И даже готовят еду для 2000 человек - офисного центра, обслуживающего этот завод.

В 90-е годы наблюдался некоторый спад. Внедрение роботов, использующих существующие в то время технологии, на производство не принесло ожидаемой прибыли и финансирование некоторых крупномасштабных проектов было приостановлено. По ряду причин - и экономических, и социальных - ожидаемого бума не произошло, они остались как нишевая продукция для автосборочных и ряда других производств.

Резкий скачок произошел только в середине нулевых и это развитие продолжается. Прежде всего из-за того, что в робототехнике заинтересовались военные...

Остановить уже развитие невозможно и все странам, желающим быть в авангарде мировой промышленности приходится это принимать и догонять.

Устройство робота и задачи робототехники

Выделяют шесть общих задач роботехники:

  1. Перемещение - передвижение в любой среде
  2. Ориентация - осознавать свое местоположение
  3. Манипуляция - свободно манипулировать предметами окружающей среды
  4. Взаимодействие - контактировать с себеподобными
  5. Коммуникация - свободно общаться с человеком
  6. Искусственный интеллект - робот должен самостоятельно решать как ему выполнить команду человека

Самое оптимальное перемещение робота на колесах и гусеничной платформе. Именно эти способы обеспечивают наибольшую устойчивость и проходимость.
У колесных платформ с проходимостью сложнее - колесо не может преодолеть препятствие выше, чем его радиус. Колесные схемы постоянно совершенствуются, используются мощные серводвигатели , разрабатывается независимые подвески, применяются покрышки с грунтозацепами.

Устойчивы четырехноние и инсектоморфные роботы (это значит в форме насекомых, несколько "ног", обычно 6) Такие устройства часто используются для военных целей.

Ходить на двух ногах робот учился очень долго. Из всех существующих с этим хорошо справляется только гуманоид ASIMO от Honda он умеет не только устойчиво ходить, но и подниматься по ступеням, компания его разрабатывала более 25 лет
Большинство же человекоподобных роботов пока передвигаются на платформе.

Кроме хождения по земле опреденные модели могут ползать, плавать и летать.

Ориентрируется в пространстве робот с помощью датчиков, сенсоров, видеокамер, имеет способность "видеть" в инфракрасном диапазоне, улаваливать ультразвуковые колебания и воспринимать тепловое излучение.
Управлять может и оператор, он может находиться в той же комнате или за несколько километров.

Все озвученные задачи робототехники в той или иной мере решаются. Робот становится совершеннее, он умеет сотрудничать с другими роботами, учится общаться человеком и лучше его понимать.

Интересная схема обучения космического робота-спутника, вероятно этот же принцип используется для настройки других робототехнических систем. "Эмоциональное обучение", как называют его разработчики. Суть его в том, что в нем закладывается "аппарат эмоций", который сообщает спутнику что для него "хорошо", а что "плохо". Хорошо - если он нацеливается на конкретный заданный обьект - это увеличивает оценку, плохо - если от него отклоняется - оценка будет уменьшена. Ну и так пока устройство не станет стабильным "хорошистом".
Например, это может пригодиться для космических телескопов. Обучение проводится с помощью оператора и занимает около 20 минут, результат отображается в базе знаний.

Конкретно это описанное устройство космонавт может выбросить в открытый космос: остальные действия спутник выполнит сам. В концепте разработана модель нервной системы, которая логически следует из тех условий, в которых работает нервная система всех живых организмов.
Робототехника будущего может самостоятельно собирать новые знания, анализировать их и применять на практике.

Процесс возникновения и формирования общественной мысли, создания и совершенствования роботов - универсальных автоматических устройств, наделенных определенными способностями, а также развития робототехники охватывает длительный исторический период от древних времен до современности и может быть разбит на 4 этапа.

Первый этап. Глубокая древность. Одно из ранних упоминаний об искусственном человеке - бронзовом великане по имени Талое, построенном Гефестом для охраны о.Крит от вражеского нашествия, - датируется III в. до н. э. Множество легенд имеется о глиняном колоссе Големе, обладавшем чудовищной физической силой и явившемся древним прообразом робота. По сведениям Каллистрата (III в. до н. э.) и Павзания (II в. до н. э.), механик и скульптор Дедал создал несколько механических статуй, среди них статую Афродиты, которые могли воспроизводить различные виды движений; утверждают, что все они были достаточно сложными механизмами.

Достоверные сведения о механических людях, созданных по образу и подобию человека, относятся к I в. и связаны с именем древнегреческого механика Герона Александрийского, оставившего несколько сочинений по механике, в частности, знаменитый "Трактат о пневматике", в котором он описал множество автоматов в виде движущихся фигур и поющих птиц. В своем труде об автоматах он писал, что древние обладали искусством их построения, при этом словом "автомат" Герон обозначал культовые и театральные устройства, центральную роль в которых играли подвижные фигуры людей. Например, им было создано устройство, с помощью которого "оживали" статуи, установленные в храме Дионисия: стоило запылать жертвенному огню, как фигуры бога Дионисия и его жены Ариадны начинали двигаться. Надо сказать, что приводы автоматов Герона представляли собой часто очень сложные механизмы с использованием гидравлических и пневматических устройств.

Итак, первый исторический этап движения человечества по пути создания роботов характеризуется обилием мифов и легенд о механических существах, а также созданием первых довольно совершенных для своего времени человекоподобных автоматов - андроидов, предназначенных главным образом для культовых и зрелищных целей.

Второй этап. Средние века. В различных регионах мира продолжает развиваться процесс разработки и создания различных автоматических устройств и человекоподобных механизмов - андроидов, отдельные образцы которых достигли высокой степени совершенства, служили эталоном высочайшего мастерства, продуктом самых совершенных технологий и научно-технических достижений своего времени.

В XIII в. заподноевропейские мастера сконструировали автоматические устройства: Р. Бэкон - модель "говорящей головы", А. Магнус - "железного человека". Высокое техническое мастерство проявили французские ремесленники, создав примерно в 1500 г. для Людовика XII механического, льва, который, когда его звали, приближался к королю, останавливался и почтительно поднимался на задние лапы.

К числу наиболее знаменитых создателей механических фигур средних веков относился французский механик Жак де Вокансон (1709-1782). Его "Порхающая утка", получившая наибольшую известность и сохранившаяся до наших дней, вытягивала шею, чтобы взять зерно из руки, проглатывала и переваривала его, пила, барахталась в воде, крякала, ее движения в точности имитировали движения живой утки. Особенно гордился Вокансон тем, что крылья утки были так точно воспроизведены, что к их устройству не смог бы придраться ни один анатом. Среди других моделей Вокансона получили известность "Пианист", который, играя на фортепиано, поднимал голову и имитировал дыхание, а также "Игрок, на флейте", который еще и пел, аккомпанируя себе и отбивая такт ногой. Вокансон мечтал построить модель человека с сердцем, артериями и венами, но смерть помешала достижению этой цели.

Современники Вокансона швейцарские часовщики Пьер Жаке-Дроз (1721-1790) и его сын Анри Жаке-Дроз (1752-1791) достигли высокого совершенства в создании автоматов - андроидов, некоторые из них сохранились до наших дней. Кстати, от имени Анри Дроза и произошло словосочетание "андроид". Образцом высочайшего технического мастерства может служить созданный Дрозом-отцом андроид "Писец" (1.1), сидящий за столом и аккуратным почерком выписывающий буквы и слова, плавно покачивающий головой и опускающий веки в такт движению руки. "Писец" мог быть запрограммирован на написание любого текста, состоящего не более чем из 40 букв, однако предпочтение чаще всего отдавалось знаменитому изречению Рене Декарта: "Cogito, ergo sum", что означает "Я мыслю, следовательно, существую". Пьер Жаке-Дроз достиг такого совершенства в создании автоматов, что однажды в Испании был схвачен инквизицией по обвинению в колдовстве. Созданная Пьером и Анри Дрозами "Девушка, играющая на клавесине", по восторженным описаниям современников, играет, шевелит губами, грудь ее поднимается и опускается при "дыхании", она смотрит на клавиши, в ноты, а иногда бросает взгляд на публику, по окончании игры встает и кланяется публике.

Свою лепту в создание подобных механизмов внесли и русские мастеровые. Так, знаменитый механик-самоучка И.П. Кулибин (1735-1818) в течение 3-х лет построил "Яичную фигуру" - универсальные часы, которые давали театрализованное представление в музыкальном сопровождении. Часовой механизм служил не только по своему прямому назначению, но и для автоматического включения в действие других механизмов, с помощью которых осуществлялись бой часов, движение фигурок и исполнение музыкальных мелодий.

Наряду с непосредственным натурным созданием различных автоматических устройств, воспроизводивших функции живых существ, в средние века довольно интенсивно закладывались основы и получили развитие соответствующие научные направления. Попытки установить соответствие между "механизмами и отдельными органами человека можно обнаружить еще в тетрадях Леонардо да Винчи (1452-1519). А знаменитый французский математик и философ Рене Декарт (1596- 165С) утвеждап, что тела животных представляют собой не что иное, как сложные машины; говорить то же самое о человеке по тем временам было небезопасно.

В XVI - XVII вв. на стыке физиологии и механики возникает новое научное направление, получившее название ятромеханики (от гр. t р т о е _ врач). Его выдающимся представителем был Дж. А. Бо- релли (1608-1679), врач и механик, профессор Мессинского университета, работа которого "О движении животных" была издана в Риме в 1680-1681 гг. посмертно. В ней на основе механических аналогий рассматривается работа мускулов сердца, кровообращения и других органов животных и человека, строится учение о законах их движения и функционирования, исходя из принципов механики. Учение Борелли развивалось и в XVIII в., в частности, Леонард Эйлер (1707-1783) и Даниил Бернулли (1700-1782) в своих первых работах, выполненных в стенах Петербургской Академии наук, рассматривали ряд вопросов тока крови в организме и движения мускулов, прибегая к механическим аналогиям. По существу, ятромеханика заложила основы современных научных направлений - биомеханики и бионики, играющих важную роль в развитии робототехники.

На рубеже XVIII и XIX вв. в трудах Л. Карно, Г. Монжа, X. Ланца и А. Бетанкура, О. Борньи, Ж. Ашетта, Ж. Кристиана возникает наука о машинах. В 1841 г. Р. Виллис определил понятие механизма, и с этого времени к машине начинают подходить как к объекту, требующему научного исследования.

Начало новому этапу в исследовании машин и механизмов положил российский математик, академик Петербургской Академии наук П.Л.Че- бышев (1821-1894), увязав вопросы структуры и синтеза механизмов в единое учение о построении механизмов на основе математических методов. В опубликованной им в 1853 г. работе "Теория механизмов, известных под названием параллелограммов" задачи теории механизмов были впервые описаны на языке математики.

Английский математик и логик Джордж Буль (1815-1864), разработал основы математической логики и создал так называемую Булеву алгебру, которая в дальнейшем легла в основу реализации всех выполняемых современными ЭВМ вычислительных и логических операций. Основная работа Д. Буля "Исследование законов мысли" была опубликована в 1854 г.

Промышленная революция, связанная с переходом от ручного производства к машинному и начавшаяся во второй половине XVIII столетия, активизирует изобретатвлей и переориентирует их творческие усилия на создание новых машин и устройств, совершенствование промышленных технологий. Именно в этот период начали закладываться основы промышленной автоматики, особенно в текстильной промышленности. Ж. Вокансон строил не только автоматы-андроиды, но и автоматические ткацкие станки. Еще в 20-е гг. XVIII в. Бушон и Фалькон из Лиона спроектировали ткацкие станки для производства шелковой ткани с рисунком, которые частично управлялись, выражаясь современным языком, с помощью перфокарт или перфолент. Впоследствии эти станки были усовершенствованы Вокансоном и французским изобретателем Жозвфом Мари Жаккардом (1752-1834), а в 1805 г. Жаккард создает автоматический станок, на котором с помощью перфокарт можно производить ткани с заранее запрограммированным рисунком. Только во Франции в течение 7 лет были введены в действие 10 тыс. таких станков.

Создание программируемых ткацких автоматов Жаккарда явилось одним из важнейших событий, определивших дальнейший технический прогресс промышленности и послуживших толчком к развитию робототехники. Другим не. менее важным событием стало создание первой вычислительной машины в почти современном значении этого слова. На основе способа программирования, примененного Жаккардом, идею вычислительной машины высказал, а затем развил выдающийся английский математик, экономист и механик Чарльз Бэббидж (1792- 1871). Свыше 37 лет он работал над воплощением своей идеи. В 1823 г. им была построена дифференцирующая машина и начата работа над более сложной. Разработанная в результате аналитическая машина по своим структурным особенностям была уже компьютером в современном понимании, имела почти все те же функциональные блоки, из которых состоят современные ЭВМ, а ввод данных осуществлялся с помощью перфокарт. Несмотря на то, что эта машина не была построена из-за ограниченных возможностей техники того времени, она по своим структурным особенностям на целое поколение предопределила направление развития вычислительной техники, а ее создатель

Ч. Бэббидж вошел в историю вычислительной техники как "отец вычислительной машины".

Итак, второй историчеокий этап развития робототехники характеризуется, с одной стороны, расцветом высочайшего технического искусства мастеров при создании сложных автоматических устройств, воспроизводящих функции животных и человека; с другой - началом разработки и внедрения в развивающееся промышленное производство весьма эффективных технологических устройств и станков-автоматов. Одновременно в этот период начинают формироваться соответствующие научные направления, заявляет о себе вычислительная техника.

Третий этап. Конец XIX - первая половина XX а На базе возросших научных и технических возможностей своего времени растет реализация потребностей общества и производства в различных автоматических устройствах. При этом намечается более явственный прогресс в приближении их к тому виду, который характерен для современных робототехнических устройств.

Роль своеобразного катализатора процесса берут на себя литература и искусство, многократно усиливая интерес общества к проблеме робототехники. Именно в этот период появляется много высокохудожественных научно-фантастических произведений литературы, ставится немало комиксов, мультфильмов и полнометражных кинолент, в которых андроиды, роботы, фантомы и иные творения человеческого воображения играют ведущие роли.

Само понятие "робот" приходит из художественной литературы. Впервыв его употребил как производное от чешского слова "robota" - барщина, принудительный труд, в своей пьесе "R. U. R." (Rossem"s Universal Robots - "Россумские универсальные роботы") знаменитый чешский писатель К. Чапек (1890-1938). В пьесе, поставленной 21 января 1921 г. в Пражском национальном театре, рассказывается о некоем Россуме, основателе фабрики, на которой биологическим путем выращивались роботы, отличавшиеся чрезвычайно высокой работоспособностью.

И хотя эти создания сегодня получили бы скорее название "андроиды", чем "роботы" (которые, как теперь принято считать, должны быть механическими), употребление слова "робот" стало повсеместным. "Роботы - это люди... они механически совершеннее нас, они обладают невероятно сильным интеллектом, но у них нет души", - так определяет понятие "робот" один из персонажей пьесы.

Роботы не чувствуют боли, нв испытывают человеческих чувств и переживаний. Они созданы людьми только для выполнения тяжелой и опасной работы и в этом смысле превосходят людей по ловкости и физической ^иле. В обществе им отводится роль чернорабочих и солдат. Предприимчивые дельцы в погоне за прибылью налаживают массовое производство роботов, сами же люди перестают трудиться, и, по выражению одного из геровв пьесы, наступает "сплошная сумасшедшая оргия". В конце концов роботы от "ужаса и страданий обретают душу", прозревают и восстают. "Власть человека пала Захватив комбинат, мы стали владыками всего... Наступила новая эра! Власть роботов!". Таков исход пьесы.

Таким образом, К. Чапек не просто создал литературное произведение, но поставил и рассмотрел в художественной форме ряд фундаментальных вопросов робототехники - способов создания роботов, основные их характеристики, размеры производства и области использования, социально-психологические аспекты взаимоотношения роботов и людей, самовоспроизведение роботов.

Пожалуй, наиболее значительное место тема робототехники занимает в творчестве другого замечательного писателя-фантаста, американского ученого и популяризатора науки Айзека Азимова. В одном из своих рассказов, объединенных общим циклом "Я робот", А. Азимов в 1942 г. попытался впервые сформулировать основные принципы поведения роботов и взаимодействия их с человеком, исходя из категорий добра и гуманности. Эти принципы, названные тремя законами робототехники , гласят:

1. Робот не может причинить вред человеку или своим бездействием способствовать нанесению ему вреда.

2. Он должен исполнять приказы человека, кроме тех, которые противоречат первому закону.

3. Робот должен обеспечивать собственную безопасность, кроме тех случаев, когда это противоречит первому и второму законам.

Один из пионеров промышленной робототехники, основатель и президент робототехнической фирмы "Unimation", признаваемый "отцом современной промышленной робототехники", Джозеф Ф. Энгель- бергер считает, что три закона робототехники А. Азимова являются теми стандартами, которым должны следовать специалисты при создании современных роботов. Фантастические идеи и образы писателей в значительной мере предвосхитили тенденции научно-технического прогресса, а новое понятие "робот" стало в дальнейшем играть важную роль не только в литературе и искусстве, но и в науке, технике, производстве.

Благодаря всеобщему интересу к роботам, изобретателям и талантливым умельцам удается находить источники финансирования, разрабатывать и создавать оригинальные конструкции андроидов. Так, спустя 7 лет после премьеры "R. U. R." американский инженер Дж. Уэнсли сконструировал управляемый голосом робот "Мистер Телевокс", имевший внешее сходство с человеком, способный выполнять элементарные движения по команде, подаваемой голосом, и ставший экспонатом Всемирной выставки в Нью-Йорке. Выставку Британской ассоциации инженеров по моделированию в 1928 г. "открыл" робот по имени "Эрик", обратившийся к собравшимся с небольшой речью. В том же году под руководством доктора Нисимура

Макота создается первый японский робот, названный "Естествоиспытателем" й способный с помощью электропривода манипулировать руками и головой. Впоследствии этот андроид стали считать родоначальником роботостроения в Японии.

Первый отечественный робот-андроид В2М был создан в 1936 г. одаренным московским школьником Вадимом Мацкевичем и в 1937 г. был удостоен диплома Всемирной выставки в Париже. Ныне В.В Мац- кевич - кандидат технических наук, автор многих печатных трудов, в частности, увлекательной научно-популярной книги "Занимательная анатомия роботов", вышедшей в издательстве "Радио и связь" уже вторым изданием (1988 г.).

Однако все эти оригинальные устройства, являясь прорывом в сфере новой техники, яркой демонстрацией творческих возможностей человека, имели крайне ограниченное практическое применение. Решение технических проблем, связанных с использованием роботов в производственных процессах и научных исследованиях, было по существу нетронутым. Более того, оставалось совершенно неясным, какие задачи могут решать робототехнические устройства в промышленности. _

Если обратиться к роботам как к программно-управляемым многоцелевым автоматам манипуляционного типа, предназначенным для использования в промышленности или научных исследованиях, то одним из самых первых промышленных манипуляторов был поворотный механизм с захватным устройством для удаления заготовок из печи, разработанный в США Бэббитом в 1892 г. Дальнейшее усовершенствование этого устройства приводит к появлению предшественников современных роботов. Ими оказались интенсивно разрабатываемые в 1940-1950 гг., особенно в США, Франции и ФРГ, копирующие дистанционные манипуляторы для работы с опасными радиоактивными материалами. Одним из первых копирующих манипуляторов такого типа для обслуживания атомных реакторов, разработанный в США под руководством Р. Герца, благодаря силовому очувствлению, позволял использовать в качестве обратной связи как визуальную, так и силовую информацию, что значительно улучшало процесс управления и расширяло функциональные возможности устройства.

Появление таких манипуляторов сыграло важную роль в последующем развитии манипуляционных систем, передаточных механизмов, систем очувствления и аппаратных средств робототехники. Среди созданных в то время манипуляторов особую известность получили копирующие манипуляторы, разработанные Государственным научно- исследовательским институтом штата Орегон (США); предложенные им конструкции и принципы управления до сих пор находят применение во многих моделях роботов. И все же более прямыми предшественниками современных роботов можно считать программируемые краскораспы- лительные машины, разработанные в 1930-1940 гг. в США, например, машины Полларда и Розелунда, которые программировались путем записи сигнала от рычажного механизма, перемещаемого по заданной траектории.

Возросший экономический потенциал и потребности в современных видах вооружения ведущих промышленных стран в первой половине XX в. дают мощный импульс развитию науки и научно-технических направлений, без которых возникновение и прогресс современной робототехники стали бы невозможными. Речь идет прежде всего о вычислительной технике и кибернетике.

В 1936-1937 гг. английский математик Алан Мотисон Тьюринг (1912-1954) вводит концепцию "абстрактной вычислительной машины", ныне называемой машиной Тьюринга, способной с помощью простейших операций считывания и сдвига выполнять вычисления произвольной сложности и ставшей прообразом появившихся в конце 1940-х гг. универсальных вычислительных машин. Усилиями ряда талантливых ученых (Дж. фон Нейман, Г. Уолтер, У.Р. Эшби, К. Шеннон и др.) на основе изучения аналогий между нервной системой человека, вычислительными машинами и системами автоматического регулирования развивается теория алгоритмов, ставшая одним из теоретических истоков вычислительной математики, а затем кибернетики и робототехники.

На основе синтеза теории информационных процессов, вычислительной техники и функционально-вычислительного подхода создается кибернетика, определяемая как наука об управлении сложными динамическими системами (акад. А.И. Берг). Ее "отцами" называют выдающихся американских ученых - математика Норберта Винера (1894-1964) и нейрофизиолога Уоррена Мак-Каллока (1898-1969), а датой официального рождения считается 1948 г., когда вышла в свет книга Н. Винера "Кибернетика, или управление и связь в животном и машине"."

Логическим завершением периода формирования теоретических основ вычислительной техники стали работы выдающегося американского математика, одного из основоположников кибернетики Джона фон Неймана (1903-1957), именно ему принадлежит идея записи в память ЭВМ программы решения какой-либо задачи. Благодаря принципу хранения программ, вычислительные машины становятся универсальными. Первыми компьютерами, в которых был реализован неймановский принцип, были созданные в США электромеханический вычислительный калькулятор последовательного действия на электромагнитных релейных схемах Ховарда Эйкена (1944 г.) и первая действительно электронная вычислительная машина "ENIAC" (1947 г.), разработанная по контракту с Пентагоном в Пенвильванском университете под руководством Дж. Проспера Эккерта и Дж. Морли, основавших впоследствии знаменитую фирму IBM.

Не менее важное значение для развития вычислительной техники, кибернетики и робототехники имела другая работа Дж. фон Неймана - "Общая и логическая теория кибернетических автоматов", опубликованная в 1951 г. и посвященная принципам построения управляющих и вычислительных автоматических устройств. В своих трудах и лекциях он дал общую схему самовоспроизводящегося автомата - "машинной мастерской, которая при наличии достаточного количества сырья и времени будет изготавливать копии любой машины". Образ фантомного робота Неймана не раз встречается на страницах специальной литературы по робототехнике.

Уже с первых работ Дж. фон Неймана теория и практика электронных вычислительных машин начинают развиваться поразительными темпами, а изобретение транзистора в лабораториях компании "Bell Telephone" Джоном Бардином, Уолтером Бриттеном и Вильямом Шокли придает новый импульс этому динамическому процессу, позволившему в дальнейшем создать компактные и надежные компьютерные системы управления роботами.

Итак, третий этап становления робототехники отмечен возникновением и всеобщим признанием термина "робот", разработкой и использованием для нужд человека прямых предшественников современных роботов - дистанционных копирующих манипуляторов и программируемых автоматических устройств манипуляционного типа, а также стремительным развитием научных и прикладных основ вычислительной техники и кибернетики. Этот мощный научно-техни- ческий задел, следуя интересам и потребностям общественного развития, вывел на старт современную робототехнику.

Четвертый этап. Вторая половина XX в. Возникновение современных роботов следует отнести к 1959 г., когда в США были созданы первые промышленные манипуляторы с программным управлением, получившие общепринятое название промышленных роботов (ПР) и положившие начало коммерческому производству. В 1950-х гг. группа американских инженеров, начав работу над проблемой применения теории управления в решении общих задач оптимального перемещения оборудования, инструмента и материалов в производственном процессе, установила, что управление погрузочно-разгрузочными и транспортными механизмами и процессами может быть поручено компьютеру. Относительная простота программирования управляющего компьютера становится основой для создания гибкого оборудования, пригодного для эффективной работы в изменяющихся условиях производства. Такой подход и обусловил создание первых механических манипуляторов с программным управлением, т.е. промышленных роботов.

Первопроходцами здесь стали два талантливых американских инженера - Джордж К. Девол и Джозеф Ф. Энгельбергер. В 1954 г. Девол запатентовал в США способ перемещения предметов между Различными производственными участками на основе управляющей программы на перфокартах, аналогичных предложенным когда-то Бэббиджем. Изобретение было призвано решить, в.первую очередь, именно проблему гибкости, т.е. создания универсального транспортировочного устройства, легко перестраиваемого для выполнения других операций. В 1956 г. Девол вместе с Энгельбергером, работавшим тогда в одной из аэрокосмических компаний, организовали первую в мире робототехническую компанию "Unimation" ("Юнимейшн"), что означает "универсальная автоматизация" - сокращенное от "Universal Automation". В лаборатории этой компании и был создан первый в мире промышленный робот по патенту Девола, носивший скромное название "программируемое устройство для передачи предметов" и ставший прототипом последующих разработок. Фирма "Unimation" занимала ведущие позиции в мировой робототехнической промышленности вплоть до начала 1980-х гг., когда усилились позиции ряда других компаний, развивавшихся более динамично.

В начале 1960-х гг. первые американские промышленные роботы с торговыми марками "Unimate" (1.2) и "Versatran" (1.3), созданные соответственно фирмами "Unimation", "American Machine and Faundry" (AMF) и предназначенные для обслуживания технологических процессов - литья под давлением, ковки, механической обработки, точечной сварки, нанесения покрытий - поступили на промышленный рынок. Они представляли собой уже достаточно совершенные системы с обратной связью и контролируемой траекторией движения, имели числовое программное управление и память, как у ЭВМ. Уже в первых роботах "Unimate" и "Versatran" был реализован принцип программирования обучением. Человек-оператор с помощью ручки координат задавал последовательность точек, через которые должна была пройти "рука" за один рабочий цикл, а робот "запоминал" их координаты, после чего мог автоматически с большой точностью осуществлять перемещение от одной точки к другой в заданной последовательности.

Применение роботов в автомобильной и металлургической промышленности оказалось экономически выгодным: затраты на приобретение роботов "Unimate" или "Versatran" (25-35 тыс. дол. за изделие) окупались за 1,5 - 2,5 г. Как было сказано в одной из статей того времени, опубликованной в "Машинери мэгэзин", в американской металлообрабатывающей промышленности появился новый тип производственного рабочего, который не состоит в профсоюзе, не пьет кофе в обеденный перерыв, работает 24 ч. в сутки и не интересуется пособиями или пенсией. Он осваивает новую работу за несколько минут и всегда выполняет ее хорошо, никогда не жалуется на жару, пыль и запахи и не получает увечий. Это промышленный робот.

Первые коммерческие успехи применения промышленных роботов явились мощным импульсом для их дальнейшего совершенствования. В начале 1970-х гг. появляются роботы, управляемые компьютерами. Первый мини-компьютер,управляющий роботом, был выпущен в 1974 г. фирмой "Cincinnati Milacron", одной из ведущих фирм - изготовителей роботов в США. В конце 1971 г. американской фирмой "INTEL" был создан первый микропроцессор, а несколькими годами позже появляются роботы с микропроцессорным управлением, что обусловило существенное повышение их качества при одновременном снижении стоимости. Дело в том, что микропроцессоры и основанные на них микроЭВМ. чрезвычайно дешевы, имеют малые размеры и массу и относительно легко могут быть запрограммированы для выполнения самых различных функций. Именно микропроцессоры, эти "чудо-кристаллы XX в." позволили строить управляющие микрокомпьютеры, стоимость которых в десятки и сотни раз ниже стоимости традиционных универсальных ЭВМ. Например, если сравнить микрокомпьютеры с первой электронно-вычислительной машиной "ENIAC", то можно убедиться, что их надежность выше примерно в 1000 раз, количество потребляемой энергии меньше в миллион раз, производительность больше чем в 20 раз, а физические размеры блоков памяти составляют примерно 1/30000 долю от размеров блоков машины "ENIAC". Но, может быть, самое удивительное, что при этом компьютер в 10000 раз дешевле. Уже в середине 1980-х гг. в капиталистических странах использовалось примерно 34 млн. микропроцессоров, в том числе в США - 23, Японии - 9, странах Западной Европы - 2 млн. К^этому времени стоимость типичного микропроцессора снизилась на Западе более чем в 1000 раз, а мощность и быстродействие возросли в 70 и 400 раз соответственно.

В последующие годы после создания и выхода на промышленный Рынок первых роботов во всем мире началось стремительное развитие Робототехники. Конкуренция, борьба за рынки сбыта определили резкое увеличение производства промышленных роботов в ведущих странах, сопровождаемое энергичным внедрением робототехники в различные отрасли промышленности. В ряде капиталистических стран организуются ассоциации или общества, курирующие исследования и разработки в области создания и использования промышленных роботов, в частности, в 1972 г. образована Японская ассоциация промышленной робототехники (JIRA), в 1974 - Институт робототехники США (RIA) и ассоциация роботов Великобритании (BRA), в 1975 - Итальянское общество робототехники (SIRI), в 1978 - Французская (AFRI), в 1980 - Шведская (SWIRA), в 1981 - Австралийская (ARA), в 1982 - Датская (DRA) и Сингапурская (SRA) ассоциации роботов.

Изменяется и сам принцип использования промышленных роботов - от единичного к комплексному. В ведущих робототехнических странах (Япония, США, ФРГ, СССР и др.) в конце 1960-х - начале 1970-х гг. разрабатываются и создаются гибкие производственные системы (ГПС), так называемые "безлюдные" производства, представляющие собой производства будущего. Научно-технические достижения робототехники позволили в 1960-1980-х гг. создать ряд сложных научных и специальных робототехнических комплексов для исследования космического пространства (станции типа "Луна", аппараты "Луноход" - СССР; станции типа "Маринер", "Сервойер", "Викинг" - США и др.), а также освоения подводных глубин (аппараты "TV", "Москито", "Долфин" - Япония; аппараты "KURV", "RCV" - США; "Манта", "ОСА" - СССР; "ROV", "RM"- Франция; "ARCS" - Канада и др.).

Робототехника как научная дисциплина, формируется совместными усилиями ученых и разработчиков техники в целостное научно-техни- ческое направление, обогащается огромным опытом разработки и эксплуатации самых разнообразных роботов, робототехнических устройств и систем.

Итак, рассмотренный четвертый исторический этап может быть назван в целом этапом современной робототехники. Он характеризуется разработкой и созданием уже достаточно совершенных роботов, управляемых в наиболее развитом виде от ЭВМ и имеющих прикладное назначение как в промышленном производстве, так и в научных исследованиях; динамичным развитием и широким использованием в производственных процессах класса промышленных роботов; окончательным формированием робототехники в единое научно-техническое направление.

В истории происхождения слов, имеющих латинские корни, случаются курьёзы, которые можно объяснить только незнанием происхождения латинского языка.
Латинский язык сформировался на основе вульгарной латыни (уличный язык – vulgarus > vulica - улица (праслав.)), на котором говорил простой народ древнего города Рима.
Вульгарная латынь одновременно является праславянским языком – предшественником славянских языков.
Например, общепризнанно считается, что слово «робот» придумано чешским писателем Карелом Чапеком в 1920 году.
Вот, ссылки из источников.
«Робот
Происхождение слова "робот" бесспорно, но, как ни странно, малоизвестно.
В 1921 г. известный чешский писатель Карел Чапек написал пьесу "Р.У.Р." ("Россумские универсальные роботы"), персонажами которой были люди и роботы - искусственные люди.
Роботы Чапека были не механическими, а биологическими существами. Просто у них отсутствовали некоторые человеческие функции, в частности - способность влюбляться.
Само слово "робот" Чапек образовал от чешского robota - по-нашему "работа".
Один из героев пьесы, генеральный директор компании "Р.У.Р.", отвечая на вопрос "Что такое роботы?", говорит: "Роботы - это не люди,... они механически совершеннее нас, они обладают невероятно сильным интеллектом, но у них нет души".
Благодаря этим качествам ("механическое совершенство" и "невероятно сильный интеллект") роботы способны работать и совершенствоваться как люди. В пьесе "Р.У.Р." роботы, первоначально созданные для замены людей на заводах, вскоре вышли из-под контроля людей и принялись, уничтожать своих создателей.
Образы и идеи К. Чапека во многом предвосхитили и научно-технический прогресс и фантастику.»
«Слово «робот» было придумано чешским писателем Карелом Чапеком и его братом Йозефом и впервые использовано в пьесе Чапека «Р. У. Р. («Россумские универсальные роботы», 1920). В ранних русских переводах использовалось слово «раические бездушные устройства»
Сведения о первом практическом применении прообразов современных роботов - механических людей с автоматическим управлением - относятся к эллинистической эпохе. Тогда на маяке, сооружённом на острове Фаросм, установили четыре позолоченные женские фигуры. Днём они горели в лучах солнца, а ночью ярко освещались, так что всегда были хорошо видны издалека. Эти статуи через определённые промежутки времени, поворачиваясь, отбивали склянки; в ночное же время они издавали трубные звуки, предупреждая мореплавателей о близости берега.
Прообразами роботов были также механические фигуры, созданные арабским учёным и изобретателем Аль-Джазари (1136-1206). Так, он создал лодку с четырьмя механическими музыкантами, которые играли на бубнах, арфе и флейте.
Чертёж человекоподобного робота был сделан Леонардо да Винчи около 1495 года. Записи Леонардо, найденные в 1950-х, содержали детальные чертежи механического рыцаря, способного сидеть, раздвигать руки, двигать головой и открывать забрало. Дизайн, скорее всего, основан на анатомических исследованиях, записанных в Витрувианском человеке. Неизвестно, пытался ли Леонардо построить робота.
В XVI-XVIII веках в Западной Европе получило значительное распространение конструирование автоматонов - заводных механизмов, внешне напоминающих человека или животных и способных иногда выполнять достаточно сложные движения. В коллекции Смитсоновского института имеется один из наиболее ранних образцов таких автоматонов - «испанский монах» (примерно 40 см в высоту), способный прогуливаться, ударяя себя в грудь правой рукой и кивая головой; периодически он подносит находящийся в его левой руке деревянный крест к губам и целует его. Считается, что этот автоматон был изготовлен примерно в 1560 году механиком Хуанело Турриано для императора Карла V.
С начала XVIII века в прессе начали появляться сообщения о машинах с «признаками разума», однако в большинстве случаев выяснялось, что это мошенничество. Внутри механизмов прятались живые люди или дрессированные животные.»
Наиболее подробно происхождения слова «»робот» описано в статье .

«Кто на самом деле придумал слово «робот»?

Слово «робот» вошло в речь с легкой руки чешского писателя Карела Чапека. В своей пьесе RUR («Россумские Универсальные Роботы»), опубликованной в 1920 г. Чапек описывает фабрику, производящую «искусственных людей», которых и называет роботами.
Но, вопреки устоявшемуся мнению, Карел Чапек не придумывал это слово. В коротком письме составителям Оксфордского Словаря английского языка он называет своего старшего брата, художника и писателя Йозефа Чапека, как действительного автора слова «робот».
Некоторые утверждают, что слово «робот» впервые было употреблено Йозефом Чапеком в его коротком рассказе «Opilec» («Пьяница») опубликованной в 1917 г. Но это также не верно, в этом рассказе автор использует слово «автомат». А слово «робот» действительно впервые появляется в пьесе Карела «RUR».
А вот отрывок из статьи Карела Чапека, в которой вся эта история рассказывается в деталях самим Чапеком.
«… это было так: идея пьесы пришла писателю в один неподходящий момент. Но, пока она была еще теплой, он поспешил к своему старшему брату Йозефу, художнику, который стоял перед мольбертом и рисовал так, что холст потрескивал.
- Слушай Йозеф, - сказал писатель, - у меня есть идея для пьесы.
- Какая? – пробормотал художник (он действительно пробормотал, потому, что в тот момент держал кисточку во рту. Автор рассказал ему идею так быстро, как только мог.
- Так напиши это, - заметил художник, вынув кисточку изо рта и остановив работу над холстом.
- Но, - сказал автор, - я не знаю как назвать этих искусственных рабочих. Я хочу назвать Лабори (Labori), но это кажется мне слишком педантичным.
- Ну назови их Роботы (Robots), - пробормотал художник с кисточкой во рту и подошел к холсту.
Вот так это было. Так родилось слово Робот...»
Таким образом, слово робот пришло к нам из чешского языка и означает "принудительная работа, тяжелый труд".» .
На самом деле, слово «робот» имеет общеславянское происхождение и ведёт своё начало от вульгарной латыни.

Этимология слова «робот»

Английское слово Labor – труд заимствовано из латинского языка, где l;bor – работа, труд; трудность, бедствие (лат.).
В тоже время латинское слово l;bor происходит от вульгарной латыни и означает «раб», «работа», «труд». Надо только прочитать слово l;bor инверсно:
l;bor > rabij/rabota/trudij/orudij - раб/работа/труд/орудий (праслав.)(инв. l;bor, замена j/l; замена t/l; пропуск t, замена d/b, j/l)
Другое латинское слово op;ra – работа, старание, труд; произведение, изделие; рабочий; наёмник; услуга; досуг; время (лат.) тоже в славянской трактовке означает работа.
opera > rabota/upiranj – опора/упирание/работа (слав.)(пропуск n; инв. op;r, редукция b/p, пропуск t)
Музыкальное слово «опера» также от славянского корня «работа»», в смысле, «произведение».
Опера (итал. opera от лат. труд, изделие, произведение) [БСЭ].
Однако, «по смыслу, так сказать, по существу» как сказывал г. Голохвастов, «опера» связана со славянским корнем «пение».
Опера – opera > co-pelnaj > so-pelnaj – со-пельный, со-пение (слав.)(редукция l/r, s/c, пропуск n)/so-pevanj- со-певание (слав.)(замена v/l), т. е. «пение сообща». Отсюда, производное слово «капелла», которое лингвисты соотносят с позднелатинским capella, и переносят в итал. cappella - «часовня» - помещение для певчих.
Йозефу Чапеку ничего не нужно было придумывать. Он, как художник, с нестандартным мышлением, просто перевернул слово Labori и получил интуитивно исходный корень вульгарной латыни, который означает «работа».
«Робот (от словацк. robota) - автоматическое устройство с антропоморфным действием, которое частично или полностью заменяет человека при выполнении работ в монотонных, опасных для жизни условиях или при относительной недоступности объекта.» [ВП]

Сокращения

СПИ – Слово о полку Игореве
ПВЛ – Повесть временных лет
СД – словарь Даля
СФ – словарь Фасмера
СИС – словарь иностранных слов
ТСЕ – толковый словарь Ефремова
ТСОШ – толковый словарь Ожегова, Шведова
CРС – словарь русских синонимов
БТСУ – большой толковый словарь Ушакова
ССИС – сборный словарь иностранных слов
МАК – малый академический словарь русского языка
ВП – Википедия
ЭБЕ - Энциклопедия Брокгауза и Ефрона
БСЭ - большая советская энциклопедия

1. Робот, http://www.robo-homo.ru/robo-lenta/robo-glossary/142.html
2. Робот, https://ru.wikipedia.org/wiki/
3. Кто на самом деле придумал слово «робот»?

Человечество всегда максимально старалось облегчить повседневную жизнедеятельность и работу. И в ходе этой эволюции возник класс машин - роботов, а вместе с ним и целое направление - робототехника. Одной из стран, в которой эта дисциплина развита наиболее активно, является Япония. Разработчики планируют применять роботов не только , но и в бытовых условиях. Ученые надеются, что уже в ближайшие десятилетия станут таким же привычным явлением, как использование смартфонов.

Однако с чего начинались робкие шаги истории робототехники?

I-III вв. н.э.

Здесь берет начало история роботов. Первые статуи богов с движущимися конечностям и головой в Древнем Египте, Вавилоне, Китае. Автоматический шар, созданный Архимедом, с отражением небесных светил. Автоматические системы Герона Александрийского для продажи святой воды.

Средние века

Наиболее популярными тогда были автоматические часовые механизмы и человеческие фигуры, которые двигались.

В 1495 году - проект Леонардо да Винчи - механический человек.

В середине 1700-го часовщики Пьер-Жаке Дро и его сын Анри-Луи Дро развивали автоматические системы. От имени последнего и произошло слово «андроид».

К 1805 году возникают механизмы, дающие начало созданию автоматических станков.

Увидела свет пьеса Rossumovi univerzální roboti («Россумские универсальные роботы») чешского автора Карла Чапека, которая дала миру слово «роботы» - создания, механически и интеллектуально совершеннее человека.

Наиболее широко и значимо в литературе тема робототехники раскрылась в , в цикле рассказов «Я, робот». Сейчас, кажется, о трех законах робототехники знает даже далекий от этой сферы человек.

1928 г. - «Мистер Телевокс» (автор - инженер Дж. Уэнсли, США) - робот-гуманоид, выполняющий движения по команде. Еще один робот - «Естествоиспытатель» (доктор Нисимура Макота) - андроид, положивший начало японской истории роботостроения. Умел двигать конечностями и головой:

Технический прогресс в робототехнике двигался в направлении систем совершенствования управления. Развитая система сенсоров характерна для таких робототехнических систем: Unimate, Hitachi, Westinghouse.

Период с 1970-го по 2000-й характеризуется активным ростом и развитием отрасли: использованием новых контроллеров, развитием языков программирования, запуском первых роботов в космос и возникновением машин, создающих роботов.

Двухтысячные годы ознаменовались .