Призма элементы призмы. Все, что нужно знать о призме (2019)

Раздел математики, занимающийся изучением свойств различных фигур (точек, линий, углов, двумерных и трехмерных объектов), их размеров и взаимного расположения. Для удобства преподавания геометрию подразделяют на планиметрию и стереометрию. В… … Энциклопедия Кольера

Геометрия пространств размерности, большей трех; термин применяется к тем пространствам, геометрия к рых была первоначально развита для случая трех измерений и только потом обобщена на число измерений n>3, прежде всего евклидово пространство,… … Математическая энциклопедия

N мерная евклидова геометрия обобщение евклидовой геометрии на пространство большего числа измерений. Хотя физическое пространство является трёхмерным, и человеческие органы чувств рассчитаны на восприятие трёх измерений, N мерная… … Википедия

У этого термина существуют и другие значения, см. Пирамидацу (значения). Достоверность этого раздела статьи поставлена под сомнение. Необходимо проверить точность фактов, изложенных в этом разделе. На странице обcуждения могут быть пояснения … Википедия

- (Constructive Solid Geometry, CSG) технология, используемая в моделировании твёрдых тел. Конструктивная блочная геометрия зачастую, но не всегда, является способом моделирования в трёхмерной графике и САПР. Она позволяет создать сложную сцену или … Википедия

Конструктивная блочная геометрия (Constructive Solid Geometry, CSG) технология, используемая в моделировании твёрдых тел. Конструктивная блочная геометрия зачастую, но не всегда, является способом моделирования в трёхмерной графике и САПР. Она… … Википедия

У этого термина существуют и другие значения, см. Объём (значения). Объём это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого… … Википедия

Куб Тип Правильный многогранник Грань квадрат Вершин Рёбер Граней … Википедия

Объём это аддитивная функция от множества (мера), характеризующая вместимость области пространства, которую оно занимает. Изначально возникло и применялось без строгого определения в отношении трёхмерных тел трёхмерного евклидова пространства.… … Википедия

Часть пространства, ограниченная совокупностью конечного числа плоских многоугольников (см. ГЕОМЕТРИЯ), соединенных таким образом, что каждая сторона любого многоугольника является стороной ровно одного другого многоугольника (называемого… … Энциклопедия Кольера

Книги

  • Комплект таблиц. Геометрия. 10 класс. 14 таблиц + методика , . Таблицы отпечатаны на плотном полиграфическом картоне размером 680 х 980 мм. В комплект входит брошюра с методическими рекомендациями для учителя. Учебный альбом из 14 листов.…
В основании призмы может лежать любые многоугольник – треугольник, четырехугольник, и т.д. Оба основания абсолютно одинаковы, а соответственно, которыми углы параллельных граней соединяются между собой, всегда параллельны. В основании правильной призмы лежит правильный многоугольник, то есть такой, у которого все стороны равны. У прямой призмы ребра между боковыми гранями перпендикулярны основанию. При этом в основании прямой призмы может лежать многоугольник с любым количеством углов. Призма, основанием которой является параллелограмм, называется параллелепипедом. Прямоугольник – частный случай параллелограмма. Если в основании лежит именно эта фигура, а боковые грани расположены к основанию под прямым углом, параллелепипед называется прямоугольным. Второе название этого геометрического тела – прямоугольная .

Как она выглядит

Прямоугольных призм в окружении современного человека довольно много. Это, например, обычная картонная из-под обуви, компьютерных комплектующих и т.п. Оглядитесь по сторонам. Даже в комнате вы наверняка увидите множество прямоугольных призм. Это и компьютерный корпус, и книжная , и холодильник, и шкаф, и множество других предметов. Форма чрезвычайно популярна главным образом потому, что позволяет использовать место максимально эффективно, вне зависимости от того, оформляете вы интерьер или укладываете вещи в картонные перед переездом.

Свойства прямоугольной призмы

Прямоугольная призма обладает рядом специфических свойств. Любая пара граней может служить ее , поскольку все соседние грани расположены друг к другу под одним и тем же углом, и угол этот составляет 90°. Объем и площадь поверхности прямоугольной призмы вычислить проще, чем у любой другой. Возьмите любой предмет, имеющий форму прямоугольной призмы. Измерьте его длину, ширину и высоту. Чтобы найти объем , достаточно перемножить эти мерки. То есть формула выглядит так: V=a*b*h, где V – объем, a и b – стороны основания, h - высота, которая у этого геометрического тела совпадает с боковым ребром. Площадь основания вычисляется по формуле S1=a*b. Чтобы боковой поверхности, нужно сначала вычислить периметр основания по формуле P=2(a+b), а затем умножить его на высоту. Получается формула S2=P*h=2(a+b)*h. Для вычисления полной поверхности прямоугольной призмы сложите удвоенную площадь основания и площадь боковой поверхности. Получится формула S=2S1+S2=2*a*b+2*(a+b)*h=2

Лекция: Призма, её основания, боковые рёбра, высота, боковая поверхность; прямая призма; правильная призма


Призма


Если Вы вместе с нами выучили плоские фигуры из прошлых вопросов, значит, полностью готовы к изучению объемных фигур. Первое объемное тело, которое мы выучим, будет призма.


Призма – это объемное тело, которое имеет большое количество граней.

Данная фигура имеет в основаниях два многоугольника, которые расположены в параллельных плоскостях, а все боковые грани имеют форму параллелограмма.


Рис 1. Рис. 2


Итак, давайте разберемся, из чего состоит призма. Для этого обратите внимание на Рис.1

Как уже говорилось ранее, у призмы есть два основания, которые параллельны друг другу – это пятиугольники ABCEF и GMNJK. Более того, данные многоугольники равны между собой.

Все остальные грани призмы называются боковыми гранями – они состоят из параллелограммов. Например, BMNC, AGKF, FKJE и т.д.

Общая поверхность всех боковых граней называется боковой поверхностью .

Каждая пара соседних граней имеет общую сторону. Такая общая сторона называется ребром. Например МВ, СЕ, АВ и т.д.

Если верхнее и нижнее основание призмы соединить перпендикуляром, то он будет называться высотой призмы. На рисунке высота отмечена, как прямая ОО 1 .

Существует две основных разновидности призмы: наклонная и прямая.

Если боковые ребра призмы не являются перпендикулярными к основаниям, то такая призма называется наклонной .

Если все ребра призмы перпендикулярны к основаниям, то такая призма называется прямой .

Если в основаниях призмы лежат правильные многоугольники (те, у которых стороны равны), то такая призма называется правильной .

Если основания у призмы не параллельны друг другу, то такая призма будет называться усеченной.

Её Вы можете наблюдать на Рис.2



Формулы для нахождения объема, площади призмы


Существует три основных формулы нахождения объема. Отличаются они друг от друга применением:




Аналогичные формулы для нахождения площади поверхности призмы:



Определение .

Это шестигранник, основаниями которого являются два равных квадрата, а боковые грани представляют собой равные прямоугольники

Боковое ребро - это общая сторона двух смежных боковых граней

Высота призмы - это отрезок, перпендикулярный основаниям призмы

Диагональ призмы - отрезок, соединяющий две вершины оснований, которые не принадлежат к одной грани

Диагональная плоскость - плоскость, которая проходит через диагональ призмы и ее боковые ребра

Диагональное сечение - границы пересечения призмы и диагональной плоскости. Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник

Перпендикулярное сечение (ортогональное сечение) - это пересечение призмы и плоскости, проведенной перпендикулярно ее боковым ребрам

Элементы правильной четырехугольной призмы

На рисунке изображены две правильные четырехугольные призмы, у которых обозначены соответствующими буквами:

  • Основания ABCD и A 1 B 1 C 1 D 1 равны и параллельны друг другу
  • Боковые грани AA 1 D 1 D, AA 1 B 1 B, BB 1 C 1 C и CC 1 D 1 D, каждая из которых является прямоугольником
  • Боковая поверхность - сумма площадей всех боковых граней призмы
  • Полная поверхность - сумма площадей всех оснований и боковых граней (сумма площади боковой поверхности и оснований)
  • Боковые ребра AA 1 , BB 1 , CC 1 и DD 1 .
  • Диагональ B 1 D
  • Диагональ основания BD
  • Диагональное сечение BB 1 D 1 D
  • Перпендикулярное сечение A 2 B 2 C 2 D 2 .

Свойства правильной четырехугольной призмы

  • Основаниями являются два равных квадрата
  • Основания параллельны друг другу
  • Боковыми гранями являются прямоугольники
  • Боковые грани равны между собой
  • Боковые грани перпендикулярны основаниям
  • Боковые ребра параллельны между собой и равны
  • Перпендикулярное сечение перпендикулярно всем боковым ребрам и параллельно основаниям
  • Углы перпендикулярного сечения - прямые
  • Диагональное сечение правильной четырехугольной призмы представляет собой прямоугольник
  • Перпендикулярное (ортогональное сечение) параллельно основаниям

Формулы для правильной четырехугольной призмы

Указания к решению задач

При решении задач на тему "правильная четырехугольная призма " подразумевается, что:

Правильная призма - призма в основании которой лежит правильный многоугольник, а боковые ребра перпендикулярны плоскостям основания. То есть правильная четырехугольная призма содержит в своем основании квадрат . (см. выше свойства правильной четырехугольной призмы) Примечание . Это часть урока с задачами по геометрии (раздел стереометрия - призма). Здесь размещены задачи, которые вызывают трудности при решении. Если Вам необходимо решить задачу по геометрии, которой здесь нет - пишите об этом в форуме . Для обозначения действия извлечения квадратного корня в решениях задач используется символ √ .

Задача.

В правильной четырёхугольной призме площадь основания 144 см 2 , а высота 14 см. Найти диагональ призмы и площадь полной поверхности.

Решение .
Правильный четырехугольник - это квадрат.
Соответственно, сторона основания будет равна

144 = 12 см.
Откуда диагональ основания правильной прямоугольной призмы будет равна
√(12 2 + 12 2 ) = √288 = 12√2

Диагональ правильной призмы образует с диагональю основания и высотой призмы прямоугольный треугольник. Соответственно, по теореме Пифагора диагональ заданной правильной четырехугольной призмы будет равна:
√((12√2) 2 + 14 2 ) = 22 см

Ответ : 22 см

Задача

Определите полную поверхность правильной четырехугольной призмы, если ее диагональ равна 5 см, а диагональ боковой грани равна 4 см.

Решение .
Поскольку в основании правильной четырехугольной призмы лежит квадрат, то сторону основания (обозначим как a) найдем по теореме Пифагора:

A 2 + a 2 = 5 2
2a 2 = 25
a = √12,5

Высота боковой грани (обозначим как h) тогда будет равна:

H 2 + 12,5 = 4 2
h 2 + 12,5 = 16
h 2 = 3,5
h = √3,5

Площадь полной поверхности будет равна сумме площади боковой поверхности и удвоенной площади основания

S = 2a 2 + 4ah
S = 25 + 4√12,5 * √3,5
S = 25 + 4√43,75
S = 25 + 4√(175/4)
S = 25 + 4√(7*25/4)
S = 25 + 10√7 ≈ 51,46 см 2 .

Ответ : 25 + 10√7 ≈ 51,46 см 2 .

Призма. Параллелепипед

Призмой называется многогранник, две грани которого – равные n-угольники (основания) , лежащие в параллельных плоскостях, а остальные n граней – параллелограммы (боковые грани) . Боковым ребром призмы называется сторона боковой грани, не принадлежащая основанию.

Призма, боковые ребра которой перпендикулярны плоскостям оснований, называется прямой призмой (рис. 1). Если боковые ребра не перпендикулярны плоскостям оснований, то призма называется наклонной . Правильной призмой называется прямая призма, основания которой – правильные многоугольники.

Высотой призмы называется расстояние между плоскостями оснований. Диагональю призмы называется отрезок, соединяющий две вершины, не принадлежащие одной грани. Диагональным сечением называется сечение призмы плоскостью, проходящей через два боковых ребра, не принадлежащих одной грани. Перпендикулярным сечением называется сечение призмы плоскостью, перпендикулярной боковому ребру призмы.

Площадью боковой поверхности призмы называется сумма площадей всех боковых граней. Площадью полной поверхности называется сумма площадей всех граней призмы (т.е. сумма площадей боковых граней и площадей оснований).

Для произвольной призмы верны формулы :

где l – длина бокового ребра;

H – высота;

P

Q

S бок

S полн

S осн – площадь оснований;

V – объем призмы.

Для прямой призмы верны формулы:

где p – периметр основания;

l – длина бокового ребра;

H – высота.

Параллелепипедом называется призма, основанием которой служит параллелограмм. Параллелепипед, у которого боковые ребра перпендикулярны к основаниям, называется прямым (рис. 2). Если боковые ребра не перпендикулярны основаниям, то параллелепипед называется наклонным . Прямой параллелепипед, основанием которого является прямоугольник, называется прямоугольным. Прямоугольный параллелепипед, у которого все ребра равны, называется кубом.

Грани параллелепипеда, не имеющие общих вершин, называются противолежащими . Длины ребер, исходящих из одной вершины, называются измерениями параллелепипеда. Так как параллелепипед – это призма, то основные его элементы определяются аналогично тому, как они определены для призм.

Теоремы.

1. Диагонали параллелепипеда пересекаются в одной точке и делятся ею пополам.

2. В прямоугольном параллелепипеде квадрат длины диагонали равен сумме квадратов трех его измерений:

3. Все четыре диагонали прямоугольного параллелепипеда равны между собой.

Для произвольного параллелепипеда верны формулы:

где l – длина бокового ребра;

H – высота;

P – периметр перпендикулярного сечения;

Q – Площадь перпендикулярного сечения;

S бок – площадь боковой поверхности;

S полн – площадь полной поверхности;

S осн – площадь оснований;

V – объем призмы.

Для прямого параллелепипеда верны формулы:

где p – периметр основания;

l – длина бокового ребра;

H – высота прямого параллелепипеда.

Для прямоугольного параллелепипеда верны формулы:

(3)

где p – периметр основания;

H – высота;

d – диагональ;

a,b,c – измерения параллелепипеда.

Для куба верны формулы:

где a – длина ребра;

d – диагональ куба.

Пример 1. Диагональ прямоугольного параллелепипеда равна 33 дм, а его измерения относятся, как 2: 6: 9. Найти измерения параллелепипеда.

Решение. Для нахождения измерений параллелепипеда воспользуемся формулой (3), т.е. тем фактом, что квадрат гипотенузы прямоугольного параллелепипеда равен сумме квадратов его измерений. Обозначим через k коэффициент пропорциональности. Тогда измерения параллелепипеда будут равны 2k , 6k и 9k . Запишем формулу (3) для данных задачи:

Решая это уравнение относительно k , получим:

Значит, измерения параллелепипеда равны 6 дм, 18 дм и 27 дм.

Ответ: 6 дм, 18 дм, 27 дм.

Пример 2. Найти объем наклонной треугольной призмы, основанием которой служит равносторонний треугольник со стороной 8 см, если боковое ребро равно стороне основания и наклонено под углом 60º к основанию.

Решение . Сделаем рисунок (рис. 3).

Для того, чтобы найти объем наклонной призмы необходимо знать площадь ее основания и высоту. Площадь основания данной призмы – это площадь равностороннего треугольника со стороной 8 см. Вычислим ее:

Высотой призмы является расстояние между ее основаниями. Из вершины А 1 верхнего основания опустим перпендикуляр на плоскость нижнего основания А 1 D . Его длина и будет высотой призмы. Рассмотрим DА 1 АD : так как это угол наклона бокового ребра А 1 А к плоскости основания, А 1 А = 8 см. Из этого треугольника находим А 1 D :

Теперь вычисляем объем по формуле (1):

Ответ: 192 см 3 .

Пример 3. Боковое ребро правильной шестиугольной призмы равно 14 см. Площадь наибольшего диагонального сечения равна 168 см 2 . Найти площадь полной поверхности призмы.

Решение. Сделаем рисунок (рис. 4)


Наибольшее диагональное сечение – прямоугольник AA 1 DD 1 , так как диагональ AD правильного шестиугольника ABCDEF является наибольшей. Для того, чтобы вычислить площадь боковой поверхности призмы, необходимо знать сторону основания и длину бокового ребра.

Зная площадь диагонального сечения (прямоугольника), найдем диагональ основания.

Поскольку , то

Так как то АВ = 6 см.

Тогда периметр основания равен:

Найдем площадь боковой поверхности призмы:

Площадь правильного шестиугольника со стороной 6 см равна:

Находим площадь полной поверхности призмы:

Ответ:

Пример 4. Основанием прямого параллелепипеда служит ромб. Площади диагональных сечений 300 см 2 и 875 см 2 . Найти площадь боковой поверхности параллелепипеда.

Решение. Сделаем рисунок (рис. 5).

Обозначим сторону ромба через а , диагонали ромба d 1 и d 2 , высоту параллелепипеда h . Чтобы найти площадь боковой поверхности прямого параллелепипеда необходимо периметр основания умножить на высоту: (формула (2)). Периметр основания р = АВ + ВС + CD + DA = 4AB = 4a , так как ABCD – ромб. Н = АА 1 = h . Т.о. Необходимо найти а и h .

Рассмотрим диагональные сечения. АА 1 СС 1 – прямоугольник, одна сторона которого диагональ ромба АС = d 1 , вторая – боковое ребро АА 1 = h , тогда

Аналогично для сечения ВВ 1 DD 1 получим:

Используя свойство параллелограмма такое, что сумма квадратов диагоналей равна сумме квадратов всех его сторон, получим равенство Получим следующее.