Полупроводники основные понятия типы электропроводимости свойства. Свойства полупроводников. Устройство и работа. Применение

Мы рассказывали о проводниках и диэлектриках и вскользь упомянули о том, что есть промежуточная форма проводимости, которая при определенных условиях может принимать свойства проводника или диэлектрика. Этот тип веществ называют полупроводниками.

Напомню: по электрическим свойствам полупроводники занимают среднее место между проводниками и непроводниками тока.
Наиболее часто для производства полупроводников используют германий, кремний, реже — селен, закись меди и другие вещества.

Электропроводность полупроводников сильно зависит от окружающей температуры. При температуре, близкой к абсолютному нулю (- 273С), они ведут себя по отношению к электрическому току как изоляторы. Большинство же проводников, наоборот, при такой температуре становятся сверхпроводящими, т. е. почти не оказывают току никакого сопротивления. С повышением температуры проводников их сопротивление электрическому току увеличивается, а сопротивление полупроводников уменьшается. Электропроводность проводников не изменяется при действии на них света. Электропроводность же полупроводников под действием света, так называемая фотопроводность, повышается.

Полупроводники могут преобразовывать энергию света в электрический ток. Проводникам же это совершенно не свойственно. Электропроводность полупроводников резко увеличивается при введении в них атомов некоторых других элементов. Электропроводность же проводников при введении в них примесей понижается.

Германий и кремний, являющиеся исходными материалами многих современных полупроводниковых приборов, имеют во внешних слоях своих оболочек по четыре валентных электрона. Всего же в атоме германия 32 электрона, а в атоме кремния 14. Но 28 электронов германия и 10 электронов кремния, находящиеся во внутренних слоях их оболочек, прочно удерживаются ядрами и ни при каких обстоятельствах не отрываются от них. Только четыре валентных электрона атомов этих полупроводников могут, да и то не всегда, стать свободными. Атом же полупроводника, потерявший хотя бы один электрон, становится положительным ионом. В полупроводнике атомы расположены в строгом порядке: каждый из них окружен четырьмя такими же атомами. Они к тому же расположены настолько близко друг к другу, что их валентные электроны образуют единые орбиты, проходящие вокруг всех соседних атомов, связывая их в единое вещество.
Такую взаимосвязь атомов в кристалле полупроводника можно представить себе в виде плоской схемы, как показано на рис. 1, а. Здесь большие шарики со знаком « + » условно изображают ядра атомов с внутренними слоями электронной оболочки (положительные ионы), а маленькие шарики — валентные электроны . Каждый атом, окружен четырьмя точно такими же. Любой из них связан с каждым соседним двумя валентными электронами, один из которых «свой», а второй заимствован у «соседа». Это двухэлектронная, или валентная, связь. Самая прочная связь! В свою очередь, внешний слой электронной оболочки каждого атома содержит восемь электронов: четыре своих и по одному от четырех соседних атомов. Здесь уже невозможно различить, какой из валентных электронов «свой», а какой «чужой», поскольку они стали общими. При такой связи атомов во всей массе кристалла германия или кремния можно считать, что кристалл полупроводника представляет собой одну большую молекулу. Схему взаимосвязи атомов в полупроводнике можно для наглядности упростить, изобразив ее так, как это сделано на рис. 1, 6. Здесь ядра атомов с внутренними электронными оболочками показаны в виде кружков со знаком плюс, а межатомные связи — двумя линиями, символизирующими валентные электроны.

Электропроводность полупроводников

При температуре, близкой к абсолютному нулю, полупроводник ведет себя как абсолютный непроводник, потому что в нем нет свободных электронов. Если повышения температуры нет, связь валентных электронов с атомными ядрами ослабевает и некоторые из них вследствие теплового движения могут покидать свои атомы. Вырвавшийся из межатомной связи электрон становится свободным (на рис. 1, б — черная точка), а там, где он был до этого, образуется пустое место. Это пустое место в межатомной связи полупроводника условно называют дыркой (на рис. 1 ,б — разорвавшаяся линия). Чем выше температура, тем больше появляется свободных электронов и дырок. Таким образом, образование в массе полупроводника дырки связано с уходом из оболочки атома валентного электрона, а возникновение дырки соответствует появлению положительного электрического заряда, равного отрицательному электрона.

Рис 1. Схема взаимосвязи атомов в кристале полупроводника (а) и упрощенная схема его структуры (б).

А теперь рассмотри рис. 2. На нем схематично изображено явление возникновения тока в полупроводнике. Причиной возникновения тока служит напряжение, приложенное к полюсам (на рис. 2 источник напряжения символизируют знаки « + » и « — ») . Вследствие тепловых явлений во всей массе полупроводника высвобождается из межатомных связей некоторое количество электронов (на рис. 2 они обозначены точками со стрелками). Электроны, освобождавшиеся вблизи положительного полюса источника напряжения, притягиваются этим полюсом и уходят из массы полупроводника, оставляя после себя дырки. Электроны, ушедшие из межатомных связей на некотором удалении от положительного полюса, тоже притягиваются им и движутся в его сторону. Но, встретив на своем пути дырки, электроны как бы «впрыгивают» в них (рис. 2, а), происходит заполнение межатомных связей. А ближние к отрицательному полюсу дырки заполняются другими электронами, вырвавшимися из атомов, расположенных еще ближе к отрицательному полюсу (рис. 2, б). Пока в полупроводнике действует электрическое поле, этот процесс продолжается: нарушаются одни межатомные связи — из них уходят валентные электроны, возникают дырки — и заполняются другие межатомные связи — в дырки «впрыгивают» электроны, освободившиеся из каких — то других межатомных связей (рис. 2, б-в).

Рис 2. Схема движения электронов и дырок.

При температуре выше абсолютного нуля в полупроводнике непрерывно возникают и исчезают свободные электроны и дырки даже тогда, когда нет внешних электрических полей. Но электроны и дырки движутся хаотически в разные стороны и не уходят за пределы полупроводника. В чистом полупроводнике число высвободившихся в каждый момент времени электронов равно числу образующихся при этом дырок . Общее же их число при комнатной температуре относительно невелико. Поэтому электропроводность такого полупроводника, (называемая собственной) , мала, он оказывает электрическому току довольно большое сопротивление. Но если в чистый полупроводник добавить даже ничтожное количество примеси в виде атомов других элементов, электропроводность его резко повысится. При этом в зависимости от структуры атомов примесных элементов электропроводность полупроводника будет электронной или дырочной .

Электронная проводимость

Если какой-либо атом в кристалле полупроводника заменить атомом сурьмы, имеющим во внешнем слое электронной оболочки пять валентных электронов, этот атом — «пришелец» четырьмя электронами свяжется с четырьмя соседними атомами полупроводника. Пятый же валентный электрон атома сурьмы окажется «лишним» и станет свободным. Чем больше в полупроводник будет введено атомов сурьмы, тем больше в его массе окажется свободных электронов. Следовательно, полупроводник с примесью сурьмы приближается по своим свойствам к металлу: для того чтобы через него проходил электрический ток, в нем не обязательно должны разрушаться межатомные связи. Их называют полупроводниками с электропроводностью или типа (n). Здесь латинская буква n — начальная буква латинского слова negativ (негатив), что значит «отрицательный» . Этот термин в данном случае нужно понимать в том смысле, что в полупроводнике типа n основными носителями тока являются отрицательные заряды, т.е. электроны.

Дырочная проводимость

Совсем иная картина получится, если в полупроводник ввести атомы с тремя валентными электронами, например индия. Каждый атом металла индия своими тремя электронами заполнит связи только с тремя соседними атомами полупроводника, а для заполнения связи с четвертым у него не хватает одного электрона. Образуется дырка. Она, конечно, может заполниться каким — либо электроном, вырвавшимся из валентной связи с другими атомами полупроводника. Однако независимо от того, где будут дырки, в массе полупроводника с примесью индия не будет хватать электронов для их заполнения. И чем больше будет введено в полупроводник примесных атомов индия, тем больше в нем образуется дырок. Чтобы в таком полупроводнике электроны могли перемещаться, совершенно обязательно должны разрушаться валентные связи между атомами. Вырвавшиеся из них электроны или же электроны, поступившие в полупроводник извне, движутся от дырки к дырке. А во всей массе полупроводника в любой момент времени число дырок будет больше общего числа свободных электронов. Их называют полупроводниками с дырочной электропроводностью или тип (р). Латинская буква р — первая буква латинского слова positiv (позитив), что значит «положительный». Этот термин в данном случае нужно понимать в том смысле, что явление электрического тока в массе полупроводника типа (р) сопровождается непрерывным возникновением и исчезновением положительных зарядов — дырок. Перемещаясь в массе полупроводника, дырки как бы являются носителями тока. Полупроводники типа р, так же как и типа n, обладают во много раз лучшей электропроводностью по сравнению с чистыми.
Надо сказать, что практически не существует как совершенно чистых полупроводников, так и абсолютно электропроводимых типов n и р. В полупроводнике с примесью индия обязательно есть небольшое количество атомов некоторых других элементов, придающих ему электронную проводимость, а с примесью сурьмы есть атомы элементов, создающих в нем дырочную электропроводность. Например, в полупроводнике, имеющем в целом электропроводность типа n, есть дырки, которые могут заполняться свободными электронами примесных атомов сурьмы. Вследствие этого электропроводность несколько ухудшится, но в целом он сохранит электронную проводимость. Аналогичное явление будет наблюдаться и в том случае, если в полупроводник с дырочным характером попадут свободные электроны.

Поэтому в полупроводниках типа n — основными носителями тока являются электроны (преобладает электронная электропроводность), а к полупроводниках типа р — основными носителями тока являются дырки (преобладает дырочная электропроводность).

Свойства полупроводников — свойство янтаря после натирания шерстью притягивать к себе мелкие предметы, было подмечено очень давно. Но электрические явления, непостоянные и преходящие, долго находились в тени магнитных явлений, более стабильных во времени.

В 17-18 веках электрические опыты оказались широко доступными, и был сделан ряд новых открытий. В 1729 году англичанин Стефан Грей обнаружил, что все вещества делятся на 2 класса: неспособные переносить электрический заряд изоляторы (называемые «электрическими телами», поскольку их можно было электризовать трением), и способные переносить заряд проводники (называемые «неэлектрическими телами»).

Современные представления об электрических свойствах веществ

С развитием дальнейших представлений свойства веществ проводить электрический ток стали характеризовать количественно – значением удельной электрической проводимости, измеряемой в сименсах на метр (См/м). При комнатной температуре проводимость проводников лежит в диапазоне от 10 6 до 10 8 См/м, а у диэлектриков (изоляторов) меньше 10 -8 См/м.

Вещества, по проводимости занимающие промежуточное положение, логично назвать полупроводниками или полуизоляторами. Исторически закрепилось первое название. Проводимость полупроводников лежит в пределах от 10 -8 до 10 6 См/м. Между этими 3 видами веществ не существует резких границ, качественные отличия определяются разницей количественных свойств.

Из физики известно, что электрон в твердом теле не может обладать произвольной энергией, эта энергия может принимать лишь определенные значения, называемые энергетическими уровнями. Чем ближе электрон в атоме к ядру, тем ниже его энергия. Наибольшей энергией обладает удаленный электрон. В электрических и химических процессах участвуют лишь электроны внешней оболочки атома (электроны т.н. валентной зоны).

Электроны с более высокой энергией, чем электроны валентной зоны, относятся к электронам зоны проводимости. Эти электроны не связаны с отдельными атомами, и они беспорядочно движутся внутри тела, обеспечивая проводимость.

Атомы вещества, отдавшего электрон в зону проводимости, рассматриваются как заряженные положительно ионы, они неподвижны и образуют кристаллическую решетку вещества, внутри которой движутся электроны проводимости. У проводников (металлов) зона проводимости примыкает к валентной зоне, и каждый атом металла без помех отдает в зону проводимости один или большее число электронов, что и обеспечивает металлам свойство электропроводности.

Свойства полупроводников определяются шириной запрещенной зоны

У полупроводников и диэлектриков между валентной зоной и зоной проводимости существует т.н. запрещенная зона. Электроны не могут обладать энергией, соответствующей энергии уровней этой зоны. Деление веществ на диэлектрики и полупроводники производится в зависимости от ширины запрещенной зоны. При ширине запрещенной зоны в несколько электрон-вольт (эВ), у электронов валентной зоны мало шансов попасть в зону проводимости, что и делает эти вещества непроводящими. Так, у алмаза ширина запрещенной зоны 5,6 эВ. Однако, с повышением температуры, электроны валентной зоны увеличивают свою энергию, и некоторая часть попадает в зону проводимости, что ухудшает изолирующие свойства диэлектриков.

Если же ширина запрещенной зоны порядка одного электрон-вольта, вещество приобретает заметную проводимость уже при комнатной температуре, становясь еще более проводящим с повышением температуры. Подобные вещества мы и относим к полупроводникам, и свойства полупроводников определяются шириной запрещенной зоны.

При комнатной температуре ширина запрещенной зоны у полупроводников менее 2,5-3 эВ. В качестве примера, ширина запрещенной зоны германия 0,72 эВ, а кремния 1,12 эВ. К широкозонным полупроводникам относятся полупроводники с шириной запрещенной зоны более 2 эВ. Обычно, чем выше у полупроводника ширина запрещенной зоны, тем выше его температура плавления. Так, у германия температура плавления 936 °С, а у кремния 1414 °С.

Два вида проводимости полупроводников – электронная и дырочная

При температуре абсолютного нуля (-273 °С), в чистом полупроводнике (собственном полупроводнике, или полупроводнике i -типа) все электроны находятся в составе атомов, и полупроводник является диэлектриком. При повышении температуры часть электронов валентной зоны попадает в зону проводимости, и возникает электронная проводимость. Но когда атом теряет электрон, он становится заряженным положительно.

Перемещаться под действием электрического поля атом, занимающий место в кристаллической решетке, не может, но он способен притянуть электрон из соседнего атома, заполнив «дырку» в своей валентной зоне. Потерявший электрон атом, в свою очередь, также будет искать возможность заполнить образовавшуюся во внешней оболочке «дырку». Дырка обладает всем и свойствами положительного заряда, и можно считать, что в полупроводнике существуют 2 вида носителей – отрицательно заряженные электроны и положительно заряженные дырки.

Электроны проводимости могут занимать свободные места в валентной зоне, т.е. объединяться с дырками. Такой процесс называется рекомбинацией, и, поскольку генерация и рекомбинация носителей происходит одновременно, при данной температуре количество пар носителей находится в состоянии динамического равновесия – количество возникающих пар сравнивается с количеством рекомбинирующих.

Собственная проводимость полупроводника i -типа складывается из электронной и дырочной проводимости, при этом преобладает электронная проводимость, поскольку электроны подвижнее дырок. Удельная электрическая проводимость металлов или полупроводников зависит от числа носителей заряда в 1 куб. см, или от концентрации электронов и дырок.

Если число атомов в 1 куб. см вещества порядка 10 22 , то при комнатной температуре в металлах число электронов проводимости не меньше числа атомов, т.е. также порядка 10 22 , при этом в чистом германии концентрация носителей заряда порядка 10 13 см -3 , а в кремнии 10 10 см -3 , что значительно меньше, чем у металла, оттого проводимость полупроводников в миллионы и миллиарды раз хуже, чем у металлов.

Все дело в примесях

При приложении к полупроводнику напряжения возникающее в нем электрическое поле ускоряет электроны и дырки, их движение становится упорядоченным, и возникает электрический ток – ток проводимости. Помимо собственной проводимости, в полупроводниках существует еще и примесная проводимость, обязанная, как можно догадаться по названию, наличию в полупроводнике примесей.

Если к 4-валентному германию добавить ничтожное количество 5-валентной сурьмы, мышьяка или фосфора, на связь с атомами германия атомы примеси задействуют 4 электрона, а пятый окажется в зоне проводимости, что резко улучшает проводимость полупроводника. Такие примеси, атомы которых отдают электроны, называются донорами. Поскольку в таких полупроводниках преобладает электронная проводимость, они называются полупроводниками n -типа (от английского слова negative — отрицательный). Чтобы все атомы донора отдавали по электрону в зону проводимости, энергетическая зона атомов донора должна располагаться как можно ближе к зоне проводимости полупроводника, несколько ниже ее.

При добавлении к 4-валентному германию примеси 3-валентного бора, индия или алюминия, атомы примеси отнимают электроны от атомов германия, и германий приобретает дырочную проводимость, становится полупроводником p -типа (от английского слова positive – положительный). Примеси, создающие дырочную проводимость, называются акцепторами.

Чтобы акцепторы могли легко захватывать электроны, энергетические уровни атомов акцептора должны примыкать к уровням валентной зоны полупроводника, располагаясь чуть выше ее.

Примесная проводимость обычно значительно превышает собственную, поскольку концентрация атомов донора или акцептора значительно превышает концентрацию собственных носителей. Получить полупроводник со строго дозированным количеством примеси очень сложно, при этом и исходный полупроводник должен быть очень чистым. Так, для германия допускается не более одного атома посторонней примеси (т.е. не донора и не акцептора) на 10 миллиардов атомов германия, а для кремния требования по чистоте еще в 1000 раз выше.

Переход металл-полупроводник

В полупроводниковых приборах возникает необходимость применения контактов полупроводника с металлом. Вещество (металл или полупроводник) характеризуется энергией, требуемой электрону для выхода из вещества – работой выхода. Обозначим работу выхода из металла A м, а из полупроводника A п.

Омические контакты

При необходимости создания омического контакта (т.е. невыпрямляющего, когда сопротивление контакта мало при любой полярности приложенного напряжения) достаточно обеспечить контакт металла с полупроводником при создании следующих условий:

  • При контакте с n-полупроводником: A м < A п;
  • При контакте с p-полупроводником: A м > A п .

Подобные свойства полупроводников объясняется тем, что в приграничном слое полупроводника накапливаются основные носители, что и обеспечивает его малое сопротивление. Накопление основных носителей обеспечивается тем, что электроны всегда переходят из вещества с меньшей работой выхода в вещество с большей работой выхода.

Выпрямляющие контакты

А вот если с полупроводником n -типа в контакте находится металл с A м > A п, то электроны перейдут из полупроводника в металл, и в приграничном слое образуется обедненная основными носителями область, обладающая малой проводимостью. Для того, чтобы преодолеть создавшийся барьер, к контакту необходимо приложить напряжение определенной полярности и достаточной величины. При приложении обратной полярности проводимость контакта еще более ухудшится – такой контакт обладает выпрямляющими свойствами. Нетрудно видеть, что аналогичные свойства полупроводников односторонней проводимости обладает контакт металла с полупроводником p -типа при A м < A п.

История полупроводникового детектора

Подобные свойства полупроводников металл-полупроводник были открыты еще немецким физиком Фердинандом Брауном в 1874 году. Самые первые диоды на основе контакта металл-полупроводник появились около 1900 года, когда в радиоприемниках стали использоваться детекторы, состоящие из вольфрамовой проволоки, прижатой к поверхности кристалла галенита (сульфида свинца). Радиолюбители делали детекторы самостоятельно, сплавляя свинец с серой.

В 1906 году французский ученый Г. Пикар сконструировал детектор из кремниевого кристалла и спиральной контактной пружины с острием, и получил на него патент. Электронные приборы на основе контакта металл-полупроводник называют диодами Шоттки по имени исследовавших подобные контакты немецкого физика Вальтера Шоттки.

В 1926 году появились мощные купроксные выпрямительные элементы, представляющие собой медную пластину с нанесенным слоем закиси меди, получившие широкое применение в силовых блоках.

Электронно-дырочный переход

Электронно-дырочный переход, или n-p -переход – это область на границе двух полупроводников разного типа проводимости, и работа полупроводниковых приборов основывается на использовании свойств подобных переходов. При отсутствии приложенного к переходу напряжения носители заряда перемещаются из областей с более высокой концентрацией в области с более низкой концентрацией — из полупроводника n -типа в полупроводник p -типа перемещаются электроны, а в обратном направлении дырки.

В результате этих перемещений по обе стороны границы раздела возникают области с объемным зарядом, а между этими областями возникает контактная разность потенциалов. Эта разность потенциалов образует потенциальный барьер, что препятствует дальнейшему переходу носителей через барьер. Высота барьера (контактная разность потенциалов) зависит от концентрации примесей, и для германия составляет обычно 0,3-0.4 В, доходя до 0,7 В. В установившемся режиме ток через переход отсутствует, поскольку p-n -переход обладает большим сопротивлением в сравнении с остальными областями полупроводников, и образовавшийся слой называют запирающим.

Если к n-p -переходу приложить внешнее напряжение, то, в зависимости от его полярности, переход поведет себя по-разному.

Протекание через переход прямого тока

Если к полупроводнику p -типа приложить «плюс» источника напряжения, то создаваемое источником поле действует противоположно полю контактной разности потенциалов, суммарное поле уменьшается, снижается высота потенциального барьера, и его преодолевает большее число носителей. Через переход начинает протекать ток, называемый прямым. Одновременно уменьшается толщина защитного слоя и его электрическое сопротивление.

Для возникновения существенного прямого тока к переходу достаточно приложить напряжение, сравнимое с высотой барьера в отсутствие приложенного напряжения, т.е. в десятые доли вольта, а при еще большем напряжении сопротивление запирающего слоя станет близким к нулю.

Протекание через переход обратного тока

Если же внешнее напряжение «переполюсовать», т.е. приложить к p -полупроводнику «минус» источника напряжения, поле внешнего напряжения будет складываться с полем контактной разности потенциалов. Высота потенциального барьера увеличивается, что затруднит диффузию основных носителей через переход, и ток через переход, называемый «обратным», окажется небольшим. Запирающий слой становится толще, его электрическое сопротивление возрастает.

Выпрямляющие свойства электронно-дырочных переходов используются в диодах разной мощности и назначения — для выпрямления переменного тока в силовых блоках питания и слабых сигналов в устройствах различного назначения.

Иные применения свойства полупроводников

Электронно-дырочный переход при обратном напряжении ведет себя аналогично заряженному электрическому конденсатору емкостью от единиц до сотен пикофарад. Эта емкость зависит от приложенного к переходу напряжения, что позволяет использовать некоторые виды полупроводниковых приборов в качестве конденсаторов переменной емкости, управляемых приложенным напряжением.

Свойства n-p -перехода также значительно зависят от температуры среды, что позволяет применять отдельные виды полупроводниковых приборов в качестве датчиков температуры. Приборы с тремя областями различной проводимости, как, например, n-p-n , позволяют создавать устройства, обладающие свойствами усиления электрических сигналов, а также их генерации.

Физические свойства твердых тел, и в первую очередь их электрические свойства, определяются не тем, как образовались зоны, а тем, как они заполнены. С этой точки зрения все кристаллические тела можно разделить на две различные группы. Все тела, входящие в первую группу, являются проводниками. Вторая группа твердых тел объединяет полупроводники и диэлектрики. Во вторую группу объединяются тела, у которых над целиком заполненными зонами располагаются совершенно пустые зоны. В эту группу входят и кристаллы, имеющие структуру алмаза: кремний, германий, серое олово, собственно алмаз; и многие химические соединения- окислы металлов, карбиды, нитриды металлов, корунд.

Полупроводники делятся на собственные (чистые) и примесные (легированные). Собственными называются полупроводники высокой степени очистки. В этом случае свойства всего кристалла определяются только свойствами собственных атомов полупроводникового элемента. Появление проводящих свойств в полупроводнике может быть обусловлено повышением температуры, другими внешними воздействиями (облучение светом, бомбардировка быстрых электронов). Важно лишь, чтобы внешнее воздействие вызывало переход электронов из валентной зоны в зону проводимости или чтобы были созданы условия для генерации свободных носителей заряда в объеме полупроводника. Собственная проводимость со строгим равенством концентраций носителей различных знаков может быть реализована только в сверхчистых идеальных кристаллах полупроводника. В реальных условиях мы всегда имеем дело с кристаллами, в той или иной степени загрязненными различными примесями. Более того, именно примесные полупроводники и представляют наибольший интерес в полупроводниковой технике. Примесные полупроводники, в зависимости от типа вводимой примеси, делятся на донорные (электронные) и акцепторные (дырочные). Образование дырок в валентной зоне означает появление в кристалле дырочной проводимости. Благодаря такому типу проводимости и сами полупроводники получили название дырочных полупроводников или полупроводников p-типа. Примеси, вводимые в полупроводник для захвата электронов из валентной зоны, получили название акцепторов, из-за чего энергетические уровни этих примесей называются акцепторными уровнями, а сами полупроводники с такими примесями- акцепторными полупроводниками.

Фотопроводимость- неравновесный процесс в полупроводниках, который заключается в появлении или изменении проводящих свойств полупроводника под действием какого-либо излучения (инфракрасного, видимого или ультрафиолетового). Как правило, облучение полупроводника светом сопровождается увеличением его электропроводности. Увеличение проводимости объясняется ростом концентрации свободных носителей (подвижность неравновесных носителей практически не отличается от подвижности равновесных). Образование избыточных подвижных носителей при воздействии света возможно по следующим трем основным причинам:

  • кванты света, взаимодействуя с электронами, находящимися на примесных донорных уровнях, и отдавая им свою энергию, переводят их в зону проводимости, увеличивая тем самым концентрацию электронов проводимости;
  • кванты света возбуждают электроны, находящиеся в валентной зоне, и переводят их на акцепторные уровни, создавая тем самым свободные дырки в валентной зоне и увеличивая дырочную проводимость полупроводника;
  • кванты света переводят электроны из валентной зоны непосредственно в зону проводимости, создавая тем самым одновременно и подвижные дырки, и свободные электроны.

В настоящее время полупроводниковые приборы используются практически во всех областях электроники и радиотехнике. Однако, несмотря на чрезвычайное разнообразие этих приборов, в основе их, как правило, лежит работа обычного p-n-перехода или системы из нескольких p-n-переходов. Полупроводниковый диод содержит лишь один p-n-переход, к каждой из областей которого подведены с помощью омических контактов металлические вводы. Полупроводниковые диоды применяются в основном для выпрямления переменного тока.

В отличие от полупроводниковых диодов транзисторы представляют собой полупроводниковые системы, состоящие уже из трех областей, разделенных между собой двумя p-n-переходами. Каждая из областей имеет свой вывод. Поэтому по аналогии с вакуумными триодами транзисторы часто называют полупроводниковыми триодами. И по назначению транзисторы аналогичны вакуумным триодам: основная область их использования -усиление электрических сигналов по напряжению и по мощности. Для получения транзисторов в полупроводниковую монокристаллическую пластинку с определенным типом проводимости на двух ее противоположных гранях осуществляет вплавление или диффузионное проникновение примеси, сообщающей приповерхностным областям проводимость противоположного типа. Можно создать транзистор как p-n-p-типа, так и n-p-n-типа. Принципиальной разницы между ними нет. Просто главную роль в транзисторах p-n-p-типа играют дырки, а в транзисторах n-p-n-типа –электроны.

Полупроводники стремительно ворвались в науку и технику. Колоссальная экономия в энергопотреблении, удивительная компактность аппаратуры за счет необычайно большой плотности упаковки элементов в схемах, высокая надежность позволили полупроводникам завоевать ведущее положение в электронике, радиотехнике и науке. Исследования в космосе, где так критичны требования к размерам, весу и энергозатратам, в настоящее время немыслимы без полупроводниковых устройств, которые, кстати и энергию-то в автономном полете аппарата получают от солнечных батарей, работающих на полупроводниковых элементах. Удивительные перспективы в развитии полупроводниковой техники открыла микроэлектроника. Однако возможности полупроводников еще далеко не исчерпаны, и они ждут своих новых исследователей.

Применение полупроводников

В настоящее время полупроводниковые приборы используются практически во всех областях электроники и радиотехники. Однако, несмотря на чрезвычайное разнообразие этих приборов, в основе их, как правило, лежит работа обычного p-n-перехода или системы из нескольких p-n-переходов.

Полупроводниковый диод содержит лишь один p-n-переход, к каждой из областей которого подведены с помощью омических контактов металлические вводы.

Выпрямительные диоды. Полупроводниковые диоды применяются в основном для выпрямления переменного тока. Простейшая схема использования полупроводникового диода в качестве выпрямляющего элемента показана на рисунке 1. Источник переменного напряжения и-, диод Д и нагрузочный резистор Rn соединяются последовательно. Пропускное направление диода обозначено стрелкой (от анода к катоду).

Пусть напряжение на зажимах источника изменяется по синусоидальному закону (рис.2,а). Во время положительного полупериода, когда на анод диода подан «+», а на катод « - », диод оказывается включенным в прямом направлении и через него проходит ток. При этом мгновенное значение силы тока I определяется мгновенным значением напряжения и на зажимах источника и сопротивлением нагрузки (сопротивление диода в пропускном направлении мало, и им можно пренебречь). Во время отрицательного полупериода ток через диод практически не течет. Таким образом, в цепи протекает пульсирующий ток, график которого приведен на рисунке 2, б. Таким же пульсирующим будет и напряжение ип на нагрузочном резисторе. Так как u=iR, то изменение напряжения u повторяет ход изменения тока i. Полярность напряжения, создаваемого на сопротивлении нагрузки, всегда одна и та же, и определяется она в соответствии с направлением пропускаемого тока: на конце сопротивления, обращенного к катоду, бу дет « + », а на противоположном конце «- ».

Рассмотренная схема выпрямления является однополупериодной. Для уменьшения пульсаций выпрямленного напряжения используют сглаживающие фильтры. Наиболее простой метод сглаживания состоит в подключении параллельно нагрузочному резистору конденсатора С (на рисунке 1 он показан пунктиром). Во время положительного полупериода часть тока, пропускаемого диодом, идет на заряжение конденсатора. Во время же отрицательного полупериода, когда диод заперт, конденсатор разряжается через Rп создавая в нем ток в прежнем направлении. Благодаря этому пульсации напряжения на нагрузочном резисторе оказываются в значительной мере сглаженными.

В этой статье ну нет ничего экстраординарно важного и интересного, только ответ на простой вопрос для "чайников", какие основные свойства отличают полупроводники от металлов и диэлектриков?

Полупроводники - материалы (кристаллы, поликристаллические и аморфные материалы, элементы или соединения) с существованием запрещенной зоны (между зоной проводимости и валентной зоной).

Электронными полупроводниками называют кристаллы и аморфные вещества, которые по величине электропроводности занимают промежуточное положение между металлами (σ = 10 4 ÷10 6 Ом -1 ·см -1) и диэлектриками (σ = 10 -10 ÷10 -20 Ом -1 ·см -1). Однако приведённые граничные значения проводимости весьма условны.

Зонная теория позволяет сформулировать критерий, который даёт возможность разделить твёрдые тела на два класса - металлы и полупроводники (изоляторы). Металлы характеризуются наличием в валентной зоне свободных уровней, на которые могут переходить электроны, получающие дополнительную энергию, например, вследствие ускорения в электрическом поле. Отличительная особенность металлов заключается в том, что у них в основном, невозбуждённом состоянии (при 0 К) имеются электроны проводимости, т.е. электроны, которые участвуют в упорядоченном движении по действием внешнего электрического поля.

У полупроводников и изоляторов при 0 К валентная зона заселена полностью, а зона проводимости отделена от неё запрещённой зоной и не содержит носителей. Поэтому не слишком сильное электрическое поле не в состоянии усилить электроны, расположенные в валентной зоне, и перевести их в зону проводимости. Иными словами, такие кристаллы при 0 К должны быть идеальными изоляторами. При повышении температуры или облучении подобного кристалла электроны могут поглотить кванты тепловой или лучистой энергии, достаточные для перехода в зону проводимости. В валентной зоне при этом переходе появляются дырки, которые также могут участвовать в переносе электричества. Вероятность перехода электрона из валентной зоны в зону проводимости пропорциональна ( g / kT ), где Е g - ширина запрещённой зоны. При большой величине Е g (2-3 эВ) эта вероятность оказывается очень малой.

Таким образом, подразделение веществ на металлы и неметаллы имеет вполне определённую основу. В отличие от этого деление неметаллов на полупроводники и диэлектрики такой основы не имеет и является чисто условным.

Ранее считали, что к диэлектрикам можно отнести вещества с величиной запрещённой зоны Е g ≈ 2÷3 эВ, однако позже выяснилось, что многие из них являются типичными полупроводниками. Более того, было показано, что в зависимости от концентрации примесей или избыточных (сверх стехиометрического состава) атомов одного из компонентов один и тот же кристалл может быть и полупроводником, и изолятором. Это относится, например, к кристаллам алмаза, оксида цинка, нитрида галлия и т.д. Даже такие типичные диэлектрики как титанаты бария и стронция, а также рутил при частичном восстановлении приобретают свойства полупроводников, что связано с появлением в них избыточных атомов металлов.

Деление неметаллов на полупроводники и диэлектрики также имеет определённый смысл, поскольку известен целый ряд кристаллов, электронную проводимость которых не удается заметно повысить ни путём введения примесей, ни путём освещения или нагрева. Это связано либо с очень малым временем жизни фотоэлектронов, либо с существованием в кристаллах глубоких ловушек, либо с очень малой подвижностью электронов, т.е. с чрезвычайно низкой скоростью их дрейфа в электрическом поле.

Электропроводность пропорциональна концентрации n, заряду e и подвижности носителей заряда. Поэтому температурная зависимость проводимости различных материалов определяется температурными зависимостями указанных параметров. Для всех электронных проводников заряд е постоянен и не зависит от температуры. В большинстве материалов величина подвижности обычно слабо уменьшается с ростом температуры из-за увеличения интенсивности столкновений между движущимися электронами и фононами, т.е. из-за рассеяния электронов на колебаниях кристаллической решётки. Поэтому различное поведение металлов, полупроводников и диэлектриков связано в основном с концентрацией носителе заряда и её температурной зависимостью:

1) в металлах концентрация носителей заряда n велика и слабо изменяется при изменении температуры. Переменной величиной, входящей в уравнение для электропроводности, является подвижность. А поскольку подвижность слабо уменьшается с температурой, то также уменьшается и электропроводность;

2) в полупроводниках и диэлектриках n обычно экспоненциально растёт с температурой. Этот стремительный рост n вносит наиболее существенный вклад в изменение проводимости, чем уменьшение подвижности. Следовательно, электропроводность быстро увеличивается с повышением температуры. В этом смысле диэлектрики можно рассматривать как некоторый предельный случай, так как при обычных температурах величина n в этих веществах крайне мала. При высоких температурах проводимость отдельных диэлектриков достигает полупроводникового уровня из-за роста n . Наблюдается и обратное - при низких температурах некоторые полупроводники становятся диэлектриками.

Список литературы

  1. Вест А. Химия твердого тела. Ч.2 Пер. с англ. - М.: Мир, 1988. - 336 с.
  2. Современная кристаллография. Т.4. Физические свойства кристаллов. - М.: Наука, 1981.

Студенты 501 группы химического факультета: Беззубов С.И., Воробьева Н.А., Ефимов А.А.

Полупроводники - это вещества, в которых электрический ток образуется движением электронов, а величина удельного сопротивления находится в пределах между проводниками и диэлектриками. Полупроводниками являются химические элементы IV, У и VI групп периодической системы Д. И. Менделеева - графит, кремний, германий, селен и другие, а также многие окислы и другие соединения различных металлов. Количество подвижных носителей зарядов в полупроводниках в обычных условиях невелико, однако оно возрастает в сотни и тысячи раз при некоторых внешних воздействиях (нагревание, действие света и т. д.), а также при наличии в полупроводнике определенных примесей.

Полупроводники делятся на электронные (типа n ) и дырочные (типа p ). В полупроводниках типа n в качестве носителей зарядов рассматриваются электроны, которые при образовании тока перемещаются по всему полупроводнику подобно свободным электронам в металлах. В полупроводниках типа p в качестве носителей зарядов рассматриваются так называемые дырки (под дырками понимается свободное место у атома, которое может быть занято посторонним ему электроном). Дырки считаются эквивалентом положительного заряда, равного электрону. При образовании тока в полупроводнике типа p электроны совершают только направленные перескоки между соседними атомами; при перескоке электрона из одной дырки в другую дырка перемещается в противоположном направлении, что и рассматривается как образование тока.

Основные области применения полупроводников. Полупроводники, сопротивление которых при нагревании вследствие освобождения носителей зарядов значительно снижается, применяются в качестве электротермометров, или термисторов; по сравнению с ртутными термометрами они отличаются значительно более высокой чувствительностью и отсутствием тепловой инерции. Термистор (рис. 1, а) обычно имеет форму шарика 1, в который заделаны выводы 2 из тонкой проволоки. Термистор окружен тонкой пластмассовой изоляцией 3 и укреплен на конце измерительной ручки 1 (рис. 1,6). Провода от термистора включаются в одно плечо измерительной схемы (мостик Уитстона), в другое плечо которой включен микроамперметр 2 (рис. 1, б). Шкала прибора градуируется в градусах Цельсия. В одном корпусе с прибором помещаются сухие элементы и другие детали измерительной схемы. Благодаря малой величине термистор может применяться для измерения кожной, полостной и даже внутритканевой температуры; в последнем случае он заделывается внутрь иглы, которая вкалывается в ткань.


Рис. 1. Схема устройства термистора.

Если нагревать один конец стержня из полупроводника, то освобождающиеся в нем носители зарядов с высокой кинетической энергией (электроны или дырки) будут диффундировать к другому концу стержня, образуя на нем избыток заряда соответствующего знака. Между горячим и холодным концами полупроводника образуется разность потенциалов, прямо пропорциональная разности температур этих концов. Обычно составляют пару из электронного и дырочного полупроводника. При нагревании их спая между холодными концами образуется термоэлектродвижущая сила, равная сумме разностей потенциалов, образующейся в каждом из полупроводников. Она в сотни раз превышает термоэлектродвижущую силу металлических термопар.

Термоэлектрические явления обратимы: если через спай электронного и дырочного полупроводника пропускать в определенном направлении ток от постороннего источника, то спай будет охлаждаться по отношению к температуре свободных концов полупроводника. Это явление используется при устройстве холодильных элементов. На рис. 2 показан полупроводниковый лабораторный холодильник. Холодильные элементы расположены в форме кольца, спаями внутрь. В это кольцо вставляется сосуд с охлаждаемой жидкостью. Противоположные концы элементов снабжены радиаторами, при помощи которых у них поддерживается температура окружающей среды. Постоянный ток от аккумулятора подводится к клеммам.


Рис. 2. Полупроводниковый лабораторный холодильник.

При тесном соприкосновении полупроводника с электронной и дырочной проводимостью (такой контакт называется электронно-дырочным переходом) происходит диффузия электронов из электронного полупроводника в дырочный и дырок из дырочного полупроводника в электронный. При этом в прилежащих к контакту слоях полупроводника количество основных носителей зарядов уменьшается, и электропроводность их снижается. Если к электронно-дырочному переходу приложена внешняя разность потенциалов, вызывающая движение основных носителей зарядов в полупроводнике навстречу друг другу, то пограничные слои обогащаются ими, электропроводность их повышается и ток в этом направлении образуется беспрепятственно. Если внешняя разность потенциалов вызывает движение основных носителей зарядов в полупроводнике в противоположные стороны от контакта, то электропроводность пограничных слоев снижается до минимума. Ток в этом направлении не образуется. В связи с этим электронно-дырочный переход называется «запирающим слоем» и применяется для выпрямления переменного тока. Купроксные или селеновые выпрямительные элементы состоят из опорной шайбы со слоем полупроводника, в котором образован запирающий слой. Необходимое (в зависимости от величины выпрямляемого напряжения) число элементов собирается на стержне в форме столбика (рис.3). Площадь элементов сообразуется с силой выпрямляемого тока.


Рис. 3. Купроксный выпрямительный элемент.


Рис. 4. Схема устройства фотоэлемента.

Фотоэлементы - это полупроводниковые приборы, в которых под действием света образуется самостоятельная разность потенциалов. Селеновый фотоэлемент (рис. 4) состоит из слоя полупроводника, расположенного между двумя электродами: опорным 1 и вторым 3 в виде тонкого прозрачного для света слоя металла. Внутри полупроводника образован запирающий слой 2.

При действии света в полупроводниках происходит освобождение электронов и дырок, которые стремятся распределиться по всему полупроводнику. Однако через запирающий слой могут проходить заряды только одного какого-нибудь знака. В результате этого в полупроводнике происходит разделение зарядов и между прилегающими к нему электродами образуется разность потенциалов. Кривая спектральной чувствительности селенового фотоэлемента близка к аналогичной кривой для глаза. В связи с этим он широко применяется в приборах для объективной фотометрии (люксметрах) и колориметрии (фотоколориметрах).

Электронно-дырочный переход используется также при устройстве кристаллических диодов и триодов - приборов, аналогичных по свойствам электронным лампам и во многих случаях применяющихся вместо них.