Отличия днк от рнк. РНК и ДНК. РНК - это что такое? РНК: строение, функции, виды

Время, в которое мы живем, отмечено потрясающими переменами, огромным прогрессом, когда люди получают ответы на все новые и новые вопросы. Жизнь стремительно движется вперед, и то, что еще совсем недавно казалось невозможным, начинает претворяться в жизнь. Вполне возможно, что представляется сегодня сюжетом из жанра фантастики, скоро тоже приобретет черты реальности.

Одним из важнейших открытий во второй половине двадцатого столетия стали нуклеиновые кислоты РНК и ДНК, благодаря которым человек приблизился к разгадкам тайн природы.

Нуклеиновые кислоты

Нуклеиновые кислоты - это органические соединения, обладающие высокомолекулярными свойствами. В их состав входят водород, углерод, азот и фосфор.

Они были открыты в 1869 году Ф. Мишером, который исследовал гной. Однако тогда его открытию не придали особого значения. Лишь позже, когда эти кислоты обнаружили во всех животных и растительных клетках, пришло понимание огромной их роли.

Существуют два вида нуклеиновых кислот: РНК и ДНК (рибонуклеиновые и дезоксирибонуклеиновые кислоты). Настоящая статья посвящена рибонуклеиновой кислоте, но для общего понимания рассмотрим также, что собой представляет ДНК.

Что такое

ДНК — это состоящая из двух нитей, которые соединены по закону комплементарности водородными связями азотистых оснований. Длинные цепи закручены в спираль, один виток содержит почти десять нуклеотидов. Диаметр двойной спирали составляет два миллиметра, расстояние между нуклеотидами - около половины нанометра. Длина одной молекулы порой достигает нескольких сантиметров. Длина ДНК ядра человеческой клетки составляет почти два метра.

В структуре ДНК содержится вся генетическая информация. ДНК обладает репликацией, что означает процесс, в ходе которого из одной молекулы образуются две совершенно одинаковые - дочерние.

Как уже было отмечено, цепь складывается из нуклеотидов, состоящих, в свою очередь, из азотистых оснований (аденина, гуанина, тимина и цитозина) и остатка кислоты фосфора. Все нуклеотиды различаются азотистыми основаниями. Водородная связь возникает не между всеми основаниями, аденин, к примеру, может соединяться только с тимином или гуанином. Таким образом, адениловых нуклеотидов в организме столько же, сколько тимидиловых, а число гуаниловых равно цитидиловым (правило Чаргаффа). Получается, что последовательность одной цепочки предопределяет последовательность другой, и цепи как бы зеркально отражают друг друга. Такая закономерность, где нуклеотиды двух цепей располагаются упорядоченно, а также соединяются избирательно, называется принципом комплементарности. Кроме водородных соединений, двойная спираль взаимодействует и гидрофобно.

Две цепи разнонаправлены, то есть расположены в противоположных направлениях. Поэтому напротив трех"-конца одной находится пяти"-конец другой цепи.

Внешне напоминает винтовую лестницу, перилом которой является сахарофосфатный остов, а ступеньками — комплементарные основания азота.

Что такое рибонуклеиновая кислота?

РНК — это нуклеиновая кислота с мономерами, называющимися рибонуклеотидами.

По химическим свойствам она очень похожа на ДНК, так как обе являются полимерами нуклеотидов, представляющих собой фосфолированный N-гликозид, который выстроен на остатке пентозы (пятиуглеродного сахара), с фосфатной группой пятого углеродного атома и основания азота при первом углеродном атоме.

Она представляет собой одну полинуклеотидную цепочку (кроме вирусов), которая намного короче, чем у ДНК.

Один мономер РНК — это остатки следующих веществ:

  • основания азота;
  • пятиуглеродного моносахарида;
  • кислоты фосфора.

РНК имеют пиримидиновые (урацил и цитозин) и пуриновые (аденин, гуанин) основания. Рибоза является моносахаридом нуклеотида РНК.

Отличия РНК и ДНК

Нуклеиновые кислоты отличаются друг от друга следующими свойствами:

  • количество ее в клетке зависит от физиологического состояния, возраста и органной принадлежности;
  • ДНК содержит углевод дезоксирибозу, а РНК — рибозу;
  • азотистое основание у ДНК — тимин, а у РНК — урацил;
  • классы выполняют различные функции, но синтезируются на матрице ДНК;
  • ДНК состоит из двойной спирали, а РНК — из одинарной цепи;
  • для нее нехарактерны действующие у ДНК;
  • в РНК больше минорных оснований;
  • цепи существенно отличаются по длине.

История изучения

Клетка РНК впервые была открыта биохимиком из Германии Р. Альтманом при исследовании дрожжевых клеток. В середине двадцатого века была доказана роль ДНК в генетике. Лишь тогда описали и типы РНК, функции и так далее. До 80-90% массы в клетке приходится на р-РНК, образующих совместно с белками рибосому и участвующих в биосинтезе белка.

В шестидесятых годах прошлого столетия впервые предположили, что должен существовать некий вид, который несет в себе генетическую информацию для синтеза белка. После этого научно установили, что есть такие информационные рибонуклеиновые кислоты, представляющие комплементарные копии генов. Их еще называют матричными РНК.

В декодировании записанной в них информации участвуют так называемые транспортные кислоты.

Позже стали разрабатываться способы выявления последовательности нуклеотидов и устанавливаться структура РНК в пространстве кислоты. Так было обнаружено, что некоторые из них, которые назвали рибозимами, могут расщеплять полирибонуклеотидные цепи. Вследствие этого стали предполагать, что в то время, когда зарождалась жизнь на планете, РНК действовала и без ДНК и белков. При этом все превращения производились с ее участием.

Строение молекулы рибонуклеиновой кислоты

Почти все РНК - это одиночные цепи полинуклеотидов, которые, в свою очередь, состоят из монорибонуклеотидов — пуриновых и пиримидиновых оснований.

Нуклеотиды обозначают начальными буквами оснований:

  • аденина (А), А;
  • гуанина (G), Г;
  • цитозина (С), Ц;
  • урацила (U), У.

Они связаны между собой трех- и пятифосфодиэфирными связями.

Самое разное количество нуклеотидов (от нескольких десятков до десятков тысяч) входит в строение РНК. Они могут формировать вторичную структуру, состоящую в основном из коротких двуцепочных тяжей, которые образовались комплементарными основаниями.

Структура молекулы рибнуклеиновой кислоты

Как уже было сказано, у молекулы имеется однонитевое строение. РНК получает вторичную структуру и форму в результате взаимодействия нуклеотидов между собой. Это полимер, мономером которого является нуклеотид, состоящий из сахара, остатка кислоты фосфора и основания азота. Внешне молекула похожа на одну из цепей ДНК. Нуклеотиды аденин и гуанин, входящие в состав РНК, относятся к пуриновым. Цитозин и урацил являются пиримидиновыми основаниями.

Процесс синтеза

Чтобы молекула РНК синтезировалась, матрицей является молекула ДНК. Бывает, правда, и обратный процесс, когда новые молекулы дезоксирибонуклеиновой кислоты образуются на матрице рибонуклеиновой. Такое встречается при репликации некоторых видов вирусов.

Основой для биосинтеза могут служить также другие молекулы рибонуклеиновой кислоты. В ее транскрипции, которая происходит в ядре клетки, участвуют много ферментов, но самым значимым из них является РНК-полимераза.

Виды

В зависимости от вида РНК, функции ее также отличаются. Существуют несколько видов:

  • информационная и-РНК;
  • рибосомальная р-РНК;
  • транспортная т-РНК;
  • минорная;
  • рибозимы;
  • вирусные.

Информационная рибонуклеиновая кислота

Такие молекулы еще называют матричными. Они составляют в клетке примерно два процента от всего количества. В клетках эукариот они синтезируются в ядрах на ДНК-матрицах, переходя затем в цитоплазму и связываясь с рибосомами. Далее, они становятся матрицами для синтеза белка: к ним присоединяются транспортные РНК, которые несут аминокислоты. Так происходит процесс преобразования информации, которая реализуется в уникальной структуре белка. В некоторых вирусных РНК она к тому же является хромосомой.

Жакоб и Мано являются открывателями этого вида. Не имея жесткой структуры, ее цепь образует изогнутые петли. Не работая, и-РНК собирается в складки и сворачивается в клубок, а в рабочем состоянии разворачивается.

и-РНК несет в себе информацию о последовательности аминокислот в белке, который синтезируется. Каждая аминокислота закодирована в определенном месте при помощи генетических кодов, которым свойственны:

  • триплетность — из четырех мононуклеотидов возможно выстроить шестьдесят четыре кодона (генетического кода);
  • неперекрещиваемость — информация движется в одном направлении;
  • непрерывность — принцип работы сводится к тому, что одна и-РНК — один белок;
  • универсальность — тот или иной вид аминокислоты кодируется у всех живых организмов одинаково;
  • вырожденность — известными являются двадцать аминокислот, а кодонов — шестьдесят один, то есть они кодируются несколькими генетическими кодами.

Рибосомальная рибонуклеиновая кислота

Такие молекулы составляют подавляющее большинство клеточных РНК, а именно от восьмидесяти до девяноста процентов от общего количества. Они соединяются с белками и формируют рибосомы — это органоиды, выполняющие синтез белков.

Рибосомы состоят на шестьдесят пять процентов из р-РНК и на тридцать пять процентов из белка. Эта полинуклеотидная цепь без труда изгибается вместе с белком.

Рибосома состоит из аминокислотного и пептидного участков. Они расположены на контактирующих поверхностях.

Рибосомы свободно передвигаются нужных местах. Они не очень специфичны и могут не только считывать информацию с и-РНК, но и образовывать с ними матрицу.

Транспортная рибонуклеиновая кислота

т-РНК наиболее изучены. Они составляют десять процентов клеточной рибонуклеиновой кислоты. Эти виды РНК связываются с аминокислотами благодаря специальному ферменту и доставляются на рибосомы. При этом аминокислоты переносятся транспортными молекулами. Однако бывает, что аминокислоту кодируют разные кодоны. Тогда переносить их будут несколько транспортных РНК.

Она сворачивается в клубочек, когда неактивна, а функционируя, имеет вид клеверного листа.

В ней различаются следующие участки:

  • акцепторный стебель, имеющий последовательность нуклеотидов АЦЦ;
  • участок, служащий для присоединения к рибосоме;
  • антикодон, кодирующий аминокислоту, которая присоединена к этой т-РНК.

Минорный вид рибонуклеиновой кислоты

Недавно виды РНК пополнились новым классом, так называемыми малыми РНК. Они, скорее всего, являются универсальными регуляторами, которые включают или выключают гены в эмбриональном развитии, а также контролируют процессы внутри клеток.

Рибозимы также недавно выявлены, они активно принимают участие, когда кислота РНК ферментируется, являясь при этом катализатором.

Вирусные виды кислот

Вирус способен содержать либо рибонуклеиновую кислоту, либо дезоксирибонуклеиновую. Поэтому с соответствующими молекулами они называются РНК-содержащими. При попадании в клетку такого вируса происходит обратная транскрипция — на базе рибонуклеиновой кислоты появляются новые ДНК, которые встраиваются в клетки, обеспечивая существование и размножение вируса. В другом случае происходит образование комплиментарной на поступившей РНК. Вирусы белков, жизнедеятельность и размножение идет без ДНК, а лишь на основе информации, содержащейся в РНК вируса.

Репликация

В целях улучшения общего понимания необходимо рассмотреть процесс репликации, в результате которого появляются две идентичные молекулы нуклеиновой кислоты. Так начинается деление клетки.

В ней участвуют ДНК-полимеразы, ДНК-зависимые, РНК-полимеразы и ДНК-лигазы.

Процесс репликации состоит из следующих этапов:

  • деспирализация — происходит последовательное раскручивание материнской ДНК, захватывающей всю молекулу;
  • разрыв водородных связей, при котором цепи расходятся, и появляется репликативная вилка;
  • подстройка дНТФ к освободившимся основаниям материнских цепей;
  • отщепление пирофосфатов от дНТФ молекул и образование фосфорнодиэфирных связей за счет выделяющейся энергии;
  • респирализация.

После образования дочерней молекулы делится ядро, цитоплазма и остальное. Таким образом, образуются две дочерние клетки, полностью получившие всю генетическую информацию.

Кроме этого, кодируется первичная структура белков, которые в клетке синтезируются. ДНК в этом процессе принимает косвенное участие, а не прямое, заключающееся в том, что именно на ДНК происходит синтез, участвующих в образовании белков, РНК. Этот процесс получил название транскрипции.

Транскрипция

Синтез всех молекул происходит во время транскрипции, то есть переписывании генетической информации с определенного оперона ДНК. Процесс в некоторых моментах похож на репликацию, а в других существенно отличается от нее.

Сходствами являются следующие части:

  • начало идет с деспирализации ДНК;
  • происходит разрыв водородных связей между основаниями цепей;
  • к ним комплементарно подстраиваются НТФ;
  • происходит образование водородных связей.

Отличия от репликации:

  • при транскрипции расплетается лишь участок ДНК, соответствующий транскриптону, в то время как при репликации расплетению подвергается вся молекула;
  • при транскрипции подстраивающиеся НТФ содержат рибозу, и вместо тимина урацил;
  • информация списывается лишь с определенного участка;
  • после образования молекулы водородные связи и синтезированная цепь разрываются, а цепь соскальзывает с ДНК.

Для нормального функционирования первичная структура РНК должна состоять только из списанных с экзонов ДНК-участков.

У только что образованных РНК начинается процесс созревания. Молчащие участки вырезаются, а информативные сшиваются, образуя полинуклеотидную цепь. Далее, каждый вид имеет присущие только ему превращения.

В и-РНК происходит присоединение к начальному концу. К конечному участку присоединяется полиаденилат.

В т-РНК модифицируются основания, образуя минорные виды.

У р-РНК также метилируются отдельные основания.

Защищают от разрушения и улучшают транспортировку в цитоплазму белки. РНК в зрелом состоянии с ними соединяются.

Значение дезоксирибонуклеиновых и рибонуклеиновых кислот

Нуклеиновые кислоты имеют огромное значение в жизнедеятельности организмов. В них хранится, переносится в цитоплазму и передается по наследству дочерним клеткам информация о белках, синтезирующихся в каждой клетке. Они присутствуют во всех живых организмах, стабильность этих кислот играет важнейшую роль для нормального функционирования как клеток, так и всего организма. Любые изменения в их строении приведут к клеточным изменениям.

Различают два типа нуклеиновых кислот - дезоксирибонуклеиновые (ДНК) и рибонуклеиновые (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.Нуклеотиды, входящие в состав РНК, содержат пяти-углеродный сахар - рибозу, одно из четырех органических соединений, которые называют азотистыми основаниями: аденин, гуанин, цитозин, урацил (А, Г, Ц, У) - и остаток фосфорной кислоты.Нуклеотиды, входящие в состав ДНК, содержат пяти-углеродный сахар - дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т)-и остаток фосфорной кислоты.В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых оснований.Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основаниеЦ. А (аденин) - Т (тимин) Т (тимин) - А (аденин) Г (гуанин) - Ц (цитозин) Ц (цитозин) -Г (гуанин)Эти пары оснований называют комплиментарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг другу - называют комплиментарными нитями. Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации. Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка считывается с ДНК и передается особыми молекулами РНК, которые называются информационными (и-РНК). И-РНК переносится в цитоплазму, где с помощью специальных органоидов - рибосом - идет синтез белка. Именно и-РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах. В синтезе белка принимает участие другой вид РНК - транспортная (т-РНК), которая подносит аминокислоты к рибосомам. В состав рибосом входит третий вид РНК, так называемая рибосомная РНК (р-РНК), которая определяет структуру рибосом. Молекула РНК в отличие от молекулы ДНК представлена одной нитью; вместо дезоксирибозы - рибоза и вместо тимина - урацил. Значение РНК определяется тем, что они обеспечивают синтез в клетке специфических для нее белков.Удвоение ДНК. Перед каждым клеточным делением при абсолютно точном соблюдении нуклеотидной последовательности происходит самоудвоение (редупликация) молекулы ДНК. Редупликация начинается с того, что двойная спираль ДНК временно раскручивается. Это происходит под действием фермента ДНК-полимеразы в среде, в которой содержатся свободные нуклеотиды. Каждая одинарная цепь по принципу химического сродства (А-Т, Г-Ц) притягивает к своим нуклеотидным остаткам и закрепляет водородными связями свободные нуклеотиды, находящиеся в клетке. Таким образом, каждая полинуклеотидная цепь выполняет роль матрицы для новой комплиментарной цепи. В результате получаются две молекулы ДНК, у каждой из них одна половина происходит от родительской молекулы, а другая является вновь синтезированной, т.е. две новые молекулы ДНК представляют собой точную копию исходной молекулы.

Чем отличается ДНК от РНК

Изначально людям казалось, что фундаментальной основой жизни являются белковые молекулы. Однако, научные исследования позволили выявить тот важный аспект, который отличает живую природу от неживой: нуклеиновые кислоты.

Что такое ДНК?

ДНК (дезоксирибонуклеиновая кислота) – это макромолекула, которая хранит в себе и передает из поколения в поколение наследственную информацию. В клетках же основная функция молекулы ДНК – это сохранение точной информации о строении белков и РНК. У животных и растений молекула ДНК содержится в составе ядра клетки, в хромосомах. Чисто с химической точки зрения молекула ДНК состоит из фосфатной группы и азотистого основания. В пространстве она представлена как две спирально закрученные нити. Азотистые основания – это аденин, гуанин, цитозин и тимин, причем соединяются они между собой только по принципу комплиментарности – гуанин с цитозином, а аденин с тимином. Расположение нуклеотидов в различной последовательности позволяет кодировать различную информацию о типах РНК, участвующих в процессе синтеза белка.

Что такое РНК?

Молекула РНК известна нам под названием «рибонуклеиновая кислота». Как и ДНК, эта макромолекула неотъемлемо содержится в клетках всех живых организмов. Их строение во многом совпадает – РНК, так же как и ДНК, состоит из звеньев – нуклеотидов, которые представлены в виде фосфатной группы, азотистого основания и сахара рибозы. Расположение нуклеотидов в различной последовательности позволяет кодировать индивидуальный генетический код. РНК бывают трёх видов: и-РНК – отвечает за передачу информации, р-РНК – является составляющей рибосом, т-РНК – отвечает за доставку аминокислот к рибосомам. Помимо всего прочего, так называемая матричная РНК используется всеми клеточными организмами для синтеза белка. У отдельных молекул РНК можно отметить собственную ферментативную активность. Проявляется она способностью как бы “разрывать” другие молекулы РНК или же соединять два РНК-фрагмента.РНК так же является составной частью геномов большинства вирусов, у которых она выполняет ту же функцию что и у высших организмов макромолекула ДНК.

Сравнение ДНК и РНК

Итак, мы выяснили, что оба эти понятия относятся к нуклеиновым кислотам с разными функциями: РНК занимается переносом биологической информации, записанной в молекулах ДНК, которая в свою очередь отвечает за сохранение информации и передаёт её по наследству. Молекула РНК такой же полимер, как и ДНК, только более короткий. Кроме того ДНК представляет собой двойную цепь, РНК – это одноцепочная структура.

TheDifference.ru определил, что разница между ДНК и РНК заключается в следующем:

    В состав ДНК входят дезоксирибонуклеотиды, в состав РНК – рибонуклеотиды.

    Азотистые основания в молекуле ДНК – тимин, аденин, цитозин, гуанин; в РНК вместо тимина участвует урацил.

    ДНК является матрицей для транскрипции, она хранит генетическую информацию. РНК участвует в синтезе белка.

    У ДНК двойная цепь, закрученная по спирали; у РНК – одинарная.

    ДНК есть в ядре, пластидах, митохондриях; РНК – образуется в цитоплазме, в рибосомах, в ядре, собственная РНК есть в пластидах и митохондриях.

Несмотря на высокую сходство базовых механизмов работы двух типов полимераз, осуществляющих синтез нуклеиновых кислот, существуют принципиальные различия между ними. Главная особенность заключается в том, что для ДНК-полимеразы ДНК является одновременно и матрицей, и продуктом реакции, и это создает существенные проблемы.

Поскольку при синтезе РНК в активном центре РНК-полимеразы временно существует гибридная двойная спираль ДНК-РНК (см. разделы 5, 6), РНК-полимераза может легко дискриминировать гибрид от обычной двойной спирали ДНК. Высокое сродство окружения активного центра РНК-полимеразы к гибрида и канала выхода транскрипта в РНК обеспечивает высокую процесивнисть фермента? способность работать без диссоциации после однократного акта инициации транскрипции. ДНК-полимераза имеет двойную спираль ДНК как в окружении своего активного центра, так и везде вне полимеразной комплексом. Соответственно, существует высокая вероятность ее диссоциации: процесивнисть ДНК-полимеразы является очень низкой? она может синтезировать к диссоциации лишь участок длиной 10? 20 нуклеотидов. Итак, должен существовать определенный дополнительный механизм повышения процесивности.

Высокое сродство РНК-полимеразы к гибрида ДНК-РНК позволяет легко разрушать двойную спираль ДНК по ходу движения полимеразы при элонгации транскрипции? транскрипт просто вытесняет нематричний цепь ДНК из дуплекса. Для ДНК-полимеразы такой механизм невозможно: дуплексы ДНК в комплексе с полимеразой и впереди нее ничем не отличаются друг от друга, т.е. ДНК-полимераза требует наличия одноцепочечной матричной ДНК, которая должна быть изъята из двойной спирали.

Третья проблема заключается в том, что ДНК-полимераза способна делать только одну операцию? продолжать (редактируя) 3"-конец цепи ДНК, она может инициировать синтез, создать первый фосфодиэфирных связь. Это означает, что определенная короткий участок должен быть создан как-то иначе, чтобы дальше ДНК-полимераза могла продолжать ее синтез. Такой участок, без которой невозможна работа ДНК-полимеразы, называют праймером (primer).

Обе нуклеиновые кислоты - ДНК и РНК - были открыты швейцарским биохимиком Фридрихом Мишером в 1869 году, задолго до выяснения их роли в передаче наследствен ной информации. А наиболее полную информацию об их химическом строении получил Фабус Арон Теодор Левин (1869-1940), американский ученый, родившийся в России и получивший образование в Петербурге.

"Несущей конструкцией" у обеих кислот является так называемый "сахарофосфатный остов", который у ДНК похож на перила спирально закрученной лестницы. Он состоит из остатков сахаров, соединенных между собой в цепочку с помощью остатков фосфорной кислоты. Именно эта конструкция скрепляет и поддерживает структуру молекулы нуклеиновой кислоты.

К молекулам сахаров остова прикреплены азотистые "основания", которые расположены как ступени лестницы (внутри от "перил"). Именно благодаря взаимодействиям между атомами водорода, азота и кислорода азотистых оснований одиночные цепочки ДНК могут объединяться в двухцепочечные структуры.

Нуклеиновые кислоты синтезируются в клетке из нуклеотидов - комплексов азотистого основания, сахара и остатков фосфорной кислоты, служащих универсальными блоками для построения ДНК и РНК. Существуют пять видов азотистых оснований - аденин (обозначаемый на схемах буквой А), тимин (Т), гуанин (G), цитозин (C) и урацил (U). Особенностью взаимодействий оснований, благодаря которым они могут формировать двухцепочечные нити, является их строгая специфичность: А может взаимодействовать только с Т, а G - с С (такое точное соответствие оснований и нитей ДНК называют комплементарностью, а сами нити и основания - комплементарными друг другу).

Отличия между РНК и ДНК сводятся к тому, что в состав сахарофосфатного остова РНК входит сахар рибоза, тогда как у ДНК рибоза "теряет" один атом кислорода и превращается в дезоксирибозу. Кроме того, вместо тимина (Т) в состав РНК входит урацил (U). Урацил отличается от тимина почти так же мало, как рибоза от дезоксирибозы: у него отсутствует лишь боковая метиловая группа (_СН3). Однако такие минимальные отличия в строении РНК и ДНК ведут к существенной разнице в структуре и функциях этих молекул.

Одно из наиболее очевидных различий состоит в том, что РНК большинства организмов, в отличие от двухнитчатой ДНК, существует в виде одной нити. Объясняется это двумя причинами. Во-первых, у всех клеточных организмов отсутствует фермент для катализа реакции образования РНК на матрице РНК. Такой фермент есть лишь у некоторых вирусов, гены которых "записаны" в виде двухнитчатой РНК. Остальные организмы могут синтезировать молекулы РНК только на ДНК-матрице. Во-вторых, из-за потери метильной группы урацилом связь между ним и аденином получается малоустойчивой, поэтому "удержание" второй (комплементарной) нити для РНК также является проблемой.

В силу вынужденной однонитчатости РНК, в отличие от ДНК, не закручивается в спираль, а благодаря взаимодействиям внутри одной и той же молекулы образует структуры типа "шпилек", "головки молотка", петель, крестов, клубков и прочего.

РНК копируется с ДНК по тем же законам, которые управляют синтезом самой ДНК: каждому основанию ДНК соответствует строго комплементарное основание в строящейся молекуле РНК. Однако, в отличие от копирования ДНК, когда копированию (репликации) подвергается вся молекула, РНК копирует лишь определенные участки на ДНК. В подавляющем большинстве эти участки являются генами, кодирующими белки. Для нашего рассказа важно, что благодаря такому выборочному копированию молекулы РНК всегда короче, а у высших организмов гораздо короче своих "сестер" - ДНК. Также важно то, что ДНК в водных растворах более устойчива, чем РНК. Различия во времени их полужизни (то есть времени, за которое разрушается половина данного количества молекул) составляют тысячи раз.

Итак, к середине 60-х годов ХХ века науке стали известны подробности функционирования двух молекул, которые более, чем белки, подходили для роли "молекул первожизни", - ДНК и РНК. Обе они кодируют генетическую информацию, и обе могут использоваться для ее переноса. Но одно дело - возможность нести информацию, и совершенно другое - способность передавать ее потомкам самостоятельно, без посторонней помощи. Во всех современных живых системах, от вирусов до высших животных, ДНК или РНК "пользуются услугами" белков-ферментов для того, чтобы быстро и эффективно, с помощью катализа, передавать свою закодированную информацию в ряду поколений. Ни одна из нуклеиновых кислот в современном мире не может копировать себя самостоятельно. Могла ли такая же кооперация существовать при зарождении жизни на Земле? Как образовалась триада сотрудничающих молекул - ДНК, РНК и белков, на которой построена вся современная жизнь? Кто и почему мог стать "прародителем" этих трех "молекулярных китов"?

МИР РНК

Мы остановились на деталях строения РНК неслучайно. В конце ХХ века произошел очередной переворот в теории возникновения жизни, "виновницей" которого как раз и стала эта молекула, до того времени казавшаяся тщательно изученной и достаточно предсказуемой.

Началась эта история в 70-х годах ХХ века, когда в клетках некоторых организмов были обнаружены необычные ферменты: они включали в свой состав кроме белка еще и молекулу РНК. В конце 70-х годов американские биохимики Томас Чек и Сидни Альтман независимо друг от друга изучали структуру и функции таких ферментов. Одной из задач было выяснение роли РНК, входящей в их состав. Вначале, следуя общепринятому мнению, ученые полагали, что молекула РНК является в таких комплексах лишь вспомогательным элементом, отвечающим, может быть, за построение правильной структуры фермента или за правильную ориентацию при взаимодействии фермента и субстрата (то есть той молекулы, которая и подвергается изменению), а саму катализируемую реакцию выполняет белок.

Для того чтобы прояснить ситуацию, исследователи отделили белковую и РНК составляющие друг от друга и исследовали их способности к катализу. К своему огромному удивлению, они заметили, что даже после удаления из фермента белка оставшаяся РНК была способна катализировать свою специфическую реакцию. Такое открытие означало бы переворот в молекулярной биологии: ведь раньше считалось, что к катализу способны лишь белки, но никак не нуклеиновые кислоты.

Последним, самым убедительным доказательством способности РНК к катализу стала демонстрация того, что даже искусственно синтезированная РНК, входящая в состав изучаемых ферментов, может самостоятельно катализировать реакцию.

Молекулы РНК, способные к катализу, были названы рибозимами (по аналогии с энзимами, то есть белковыми ферментами). За их открытие в 1989 году Чек и Альтман были удостоены Нобелевской премии по химии.

Эти результаты не замедлили сказаться на теории происхождения жизни: "фаворитом" стала молекула РНК. В самом деле, была обнаружена молекула, способная нести генетическую информацию и вдобавок к этому катализировать химические реакции! Более подходящего кандидата для зарождения доклеточной жизни трудно было представить.

Сценарий развития жизни преобразовался. Вначале, по новой гипотезе, в условиях молодой Земли спонтанно появились короткие цепочки молекул РНК. Некоторые из них, опять же спонтанно, приобретали способность к катализу реакции собственного воспроизведения (репликации). Из-за ошибок при репликации некоторые из дочерних молекул отличались от материнских и обладали новыми свойствами, например, могли катализировать другие реакции.

Еще одно важнейшее свидетельство того, что "вначале была РНК", принесли исследования рибосом. Рибосомы - структуры в цитоплазме клетки, состоящие из РНК и белков и отвечающие за синтез клеточных протеинов. В результате их изучения было выявлено, что у всех организмов именно РНК, находящаяся в каталитическом центре рибосом, отвечает за главный этап в сборке белков - соединение аминокислот между собой. Открытие этого факта еще более упрочило позиции сторонников РНК-мира. Действительно, если спроецировать современную картину жизни на ее возможное начало, разумно предположить, что рибосомы - структуры, специально существующие в клетке, чтобы "расшифровывать" код нуклеиновых кислот и производить белок, - появились когда-то как комплексы РНК, способные к соединению аминокислот в одну цепочку. Так на основе мира РНК мог появиться мир белков.

Совсем недавно были сделаны наблюдения, приведшие к еще одной сенсации. Оказывается, РНК не только катализирует химические реакции, но и защищает клетки растений и низших животных от вторжения вирусов. Эту функцию выполняет особый класс РНК - так называемые короткие, или малые, РНК, названные так потому, что их длина обычно не превышает двадцати одного "звена"-нуклеотида. У высших животных, например у млекопитающих, малые РНК также не остаются без работы и могут участвовать в регуляции считывания генной информации с хромосом.

СТРУКТУРНАЯ ОРГАНИЗАЦИЯ РНК

ДНК РНК
Строение сахар дезоксирибоза Строение сахар рибоза
двуцепочечная (двойная спираль) одноцепочечная
Основания - аденин - гуанин - цитозин - тимин Основания вместо тимина урацил
Локализация в клетке - в ядре (в хромосомах); - в митохондриях кольцевая двуцепочечная; - в хлоропластах высших растений. Локализация в клетке - м-РНК в ядрышке - р-РНК в рибосомах - т-РНК в цитоплазме
Функции Кодирует последовательность аминокислот в белке, ᴛ.ᴇ. хранит генетическую информацию Функции - м-РНК служит матрицей, ᴛ.ᴇ. передает информацию ДНК м-РНК белок; - т-РНК транспортирует аминокислоты к месту синтеза белка; - р-РНК в составе рибосом, составляет 65% от их вида, выполняет структурную функцию

Известно несколько типов РНК. Рибосомные рибонуклеиновые кислоты (рРНК) , связываясь с рибосомными белками, образуют рибосомы, в к-рых осуществляется синтез белка. Матричные рибонуклеиновые кислоты(мРНК) служат матрицами для синтеза белков (трансляции). Транспортные рибонуклеиновые кислоты(тРНК) осуществляют связывание соответствующей аминокислоты и ее перенос к рибосомам.

Обнаружены так называемые малые ядерные РНК , участвующие в процессе созревания м-РНК (ʼʼвырезанииʼʼ интронов).

Существуют также вирусные РНК (в РНК-содержащих вирусах).

Рибонуклеиновые кислоты представляют из себяполимеры из нуклеозидфосфатных звеньев, соединœенных фосфодиэфирной связью. В качестве азотистых оснований в РНК присутствуют урацил, цитозин, аденин и тимин. В РНК можно также встретить множество необычных и модифицированных азотистых оснований.

РНК принимают участие во всœех стадиях процесса генной экспрессии и биосинтеза белка. На рисунке показана вторичная структура молекулы т-РНК.

В отличие от ДНК, РНК не образуют двойных спиралей, но содержат короткие участки со спаренными основаниями. Это приводит к образованию субструктур, которые при двумерном изображении напоминают ʼʼшпилькиʼʼ и петли, образующие фигуру типа ʼʼклеверного листаʼʼ. В таких структурах двухцепочечные участки соединœены петлями.

Различные виды PHK клетки существенно различаются по размерам, строению и продолжительности существования. Преобладающую часть представляют рибосомные РНК [рРНК (rRNA)], которые в различных формах составляют структурный и функциональные части рибосом. Рибосомные РНК синтезируются в ядре в процессе транскрипции на ДНК, там же подвергаются процессингу и ассоциируют с рибосомными белками, образуя рибосому. Бактериальная 16S-рРНК, включающая 1542 нуклеотида, является компонентом малой рибосомной субчастицы, в то время как небольшая 5S-рРНК (из 120 нуклеотидов) входит в состав большой субчастицы.

Матричная РНК [мРНК (mRNA)] переносит генетическую информацию из клеточного ядра в цитоплазму. Ее транскрипты также сильно модифицируются в ядре (созревание м-PHK) Так как мРНК считывается на рибосоме кодон за кодоном она не должна складываться в стабильную третичную структуру. Спариванию оснований препятствуют белки, ассоциированные с мРНК. Из-за различного объёма информации, которую могут нести мРНК, РНК этого типа сильно варьируют по размерам. Для мРНК характерно короткое время жизни, так как они быстро распадаются после трансляции. В сплайсинге предшественников мРНК принимают участие малые ядерные РНК [мяРНК (snRNA, от англ. small nuclear RNA)]. Οʜᴎ ассоциированы c рядом белков, образуя ʼʼсплайсомыʼʼ.

Макромолекулярная структура т-РНК. т-РНК состоит из одной полинуклеотидной цепи, закрученной на себя, образует короткие двуспиральные шпильки в палиндромных участках (Г с Ц, А с У). тРНК- самые мелкие молекулы (ММ=23-30 тыс.) тРНК- переносчик аминокислот. Каждая тРНК переносит только одну аминокислоту, но на одну аминокислоту имеется более одной тРНК. Всего известно 61 тРНК.

т-РНК имеет АКЦЕПТИРНЫЙ УЧАСТОК (присоединяет АК, при участии АТФ), ОБЩИЙ УЧАСТОК (петля дигидроуридина) обеспечивает связь со специфическим ферментом, ХАРАКТЕРНЫЙ УЧАСТОК (петля псевдоуридина) всœегда содержит последовательность 5 "-TyЦГ-3", этой петлей взаимодействует с рибосомой. АНТИКОДОНОВАЯ ПЕТЛЯ - содержит АНТИКОДОН - три нуклеотида, комплементарных кодону данной аминокислоты в мРНК. К примеру, кодону 5"-ГЦЦ-3" в мРНК соответствует антикодон 3"-ЦГГ-5" в тРНК, чем обеспечивается специфичность взаимодействия с матричной РНК.

Несмотря на высокую сходство базовых механизмов работы двух типов полимераз, осуществляющих синтез нуклеиновых кислот, существуют принципиальные различия между ними. Главная особенность заключается в том, что для ДНК-полимеразы ДНК является одновременно и матрицей, и продуктом реакции, и это создает существенные проблемы.

Поскольку при синтезе РНК в активном центре РНК-полимеразы временно существует гибридная двойная спираль ДНК-РНК (см. разделы 5, 6), РНК-полимераза может легко дискриминировать гибрид от обычной двойной спирали ДНК. Высокое сродство окружения активного центра РНК-полимеразы к гибрида и канала выхода транскрипта в РНК обеспечивает высокую процесивнисть фермента? способность работать без диссоциации после однократного акта инициации транскрипции. ДНК-полимераза имеет двойную спираль ДНК как в окружении своего активного центра, так и везде вне полимеразной комплексом. Соответственно, существует высокая вероятность ее диссоциации: процесивнисть ДНК-полимеразы является очень низкой? она может синтезировать к диссоциации лишь участок длиной 10? 20 нуклеотидов. Итак, должен существовать определенный дополнительный механизм повышения процесивности.

Высокое сродство РНК-полимеразы к гибрида ДНК-РНК позволяет легко разрушать двойную спираль ДНК по ходу движения полимеразы при элонгации транскрипции? транскрипт просто вытесняет нематричний цепь ДНК из дуплекса. Для ДНК-полимеразы такой механизм невозможно: дуплексы ДНК в комплексе с полимеразой и впереди нее ничем не отличаются друг от друга, т.е. ДНК-полимераза требует наличия одноцепочечной матричной ДНК, которая должна быть изъята из двойной спирали.

Третья проблема заключается в том, что ДНК-полимераза способна делать только одну операцию? продолжать (редактируя) 3"-конец цепи ДНК, она может инициировать синтез, создать первый фосфодиэфирных связь. Это означает, что определенная короткий участок должен быть создан как-то иначе, чтобы дальше ДНК-полимераза могла продолжать ее синтез. Такой участок, без которой невозможна работа ДНК-полимеразы, называют праймером (primer).



Обе нуклеиновые кислоты - ДНК и РНК - были открыты швейцарским биохимиком Фридрихом Мишером в 1869 году, задолго до выяснения их роли в передаче наследствен ной информации. А наиболее полную информацию об их химическом строении получил Фабус Арон Теодор Левин (1869-1940), американский ученый, родившийся в России и получивший образование в Петербурге.

"Несущей конструкцией" у обеих кислот является так называемый "сахарофосфатный остов", который у ДНК похож на перила спирально закрученной лестницы. Он состоит из остатков сахаров, соединенных между собой в цепочку с помощью остатков фосфорной кислоты. Именно эта конструкция скрепляет и поддерживает структуру молекулы нуклеиновой кислоты.

К молекулам сахаров остова прикреплены азотистые "основания", которые расположены как ступени лестницы (внутри от "перил"). Именно благодаря взаимодействиям между атомами водорода, азота и кислорода азотистых оснований одиночные цепочки ДНК могут объединяться в двухцепочечные структуры.

Нуклеиновые кислоты синтезируются в клетке из нуклеотидов - комплексов азотистого основания, сахара и остатков фосфорной кислоты, служащих универсальными блоками для построения ДНК и РНК. Существуют пять видов азотистых оснований - аденин (обозначаемый на схемах буквой А), тимин (Т), гуанин (G), цитозин (C) и урацил (U). Особенностью взаимодействий оснований, благодаря которым они могут формировать двухцепочечные нити, является их строгая специфичность: А может взаимодействовать только с Т, а G - с С (такое точное соответствие оснований и нитей ДНК называют комплементарностью, а сами нити и основания - комплементарными друг другу).

Отличия между РНК и ДНК сводятся к тому, что в состав сахарофосфатного остова РНК входит сахар рибоза, тогда как у ДНК рибоза "теряет" один атом кислорода и превращается в дезоксирибозу. Кроме того, вместо тимина (Т) в состав РНК входит урацил (U). Урацил отличается от тимина почти так же мало, как рибоза от дезоксирибозы: у него отсутствует лишь боковая метиловая группа (_СН 3). Однако такие минимальные отличия в строении РНК и ДНК ведут к существенной разнице в структуре и функциях этих молекул.

Одно из наиболее очевидных различий состоит в том, что РНК большинства организмов, в отличие от двухнитчатой ДНК, существует в виде одной нити. Объясняется это двумя причинами. Во-первых, у всех клеточных организмов отсутствует фермент для катализа реакции образования РНК на матрице РНК. Такой фермент есть лишь у некоторых вирусов, гены которых "записаны" в виде двухнитчатой РНК. Остальные организмы могут синтезировать молекулы РНК только на ДНК-матрице. Во-вторых, из-за потери метильной группы урацилом связь между ним и аденином получается малоустойчивой, поэтому "удержание" второй (комплементарной) нити для РНК также является проблемой.

В силу вынужденной однонитчатости РНК, в отличие от ДНК, не закручивается в спираль, а благодаря взаимодействиям внутри одной и той же молекулы образует структуры типа "шпилек", "головки молотка", петель, крестов, клубков и прочего.

РНК копируется с ДНК по тем же законам, которые управляют синтезом самой ДНК: каждому основанию ДНК соответствует строго комплементарное основание в строящейся молекуле РНК. Однако, в отличие от копирования ДНК, когда копированию (репликации) подвергается вся молекула, РНК копирует лишь определенные участки на ДНК. В подавляющем большинстве эти участки являются генами, кодирующими белки. Для нашего рассказа важно, что благодаря такому выборочному копированию молекулы РНК всегда короче, а у высших организмов гораздо короче своих "сестер" - ДНК. Также важно то, что ДНК в водных растворах более устойчива, чем РНК. Различия во времени их полужизни (то есть времени, за которое разрушается половина данного количества молекул) составляют тысячи раз.

Итак, к середине 60-х годов ХХ века науке стали известны подробности функционирования двух молекул, которые более, чем белки, подходили для роли "молекул первожизни", - ДНК и РНК. Обе они кодируют генетическую информацию, и обе могут использоваться для ее переноса. Но одно дело - возможность нести информацию, и совершенно другое - способность передавать ее потомкам самостоятельно, без посторонней помощи. Во всех современных живых системах, от вирусов до высших животных, ДНК или РНК "пользуются услугами" белков-ферментов для того, чтобы быстро и эффективно, с помощью катализа, передавать свою закодированную информацию в ряду поколений. Ни одна из нуклеиновых кислот в современном мире не может копировать себя самостоятельно. Могла ли такая же кооперация существовать при зарождении жизни на Земле? Как образовалась триада сотрудничающих молекул - ДНК, РНК и белков, на которой построена вся современная жизнь? Кто и почему мог стать "прародителем" этих трех "молекулярных китов"?

МИР РНК

Мы остановились на деталях строения РНК неслучайно. В конце ХХ века произошел очередной переворот в теории возникновения жизни, "виновницей" которого как раз и стала эта молекула, до того времени казавшаяся тщательно изученной и достаточно предсказуемой.

Началась эта история в 70-х годах ХХ века, когда в клетках некоторых организмов были обнаружены необычные ферменты: они включали в свой состав кроме белка еще и молекулу РНК. В конце 70-х годов американские биохимики Томас Чек и Сидни Альтман независимо друг от друга изучали структуру и функции таких ферментов. Одной из задач было выяснение роли РНК, входящей в их состав. Вначале, следуя общепринятому мнению, ученые полагали, что молекула РНК является в таких комплексах лишь вспомогательным элементом, отвечающим, может быть, за построение правильной структуры фермента или за правильную ориентацию при взаимодействии фермента и субстрата (то есть той молекулы, которая и подвергается изменению), а саму катализируемую реакцию выполняет белок.

Для того чтобы прояснить ситуацию, исследователи отделили белковую и РНК составляющие друг от друга и исследовали их способности к катализу. К своему огромному удивлению, они заметили, что даже после удаления из фермента белка оставшаяся РНК была способна катализировать свою специфическую реакцию. Такое открытие означало бы переворот в молекулярной биологии: ведь раньше считалось, что к катализу способны лишь белки, но никак не нуклеиновые кислоты.

Последним, самым убедительным доказательством способности РНК к катализу стала демонстрация того, что даже искусственно синтезированная РНК, входящая в состав изучаемых ферментов, может самостоятельно катализировать реакцию.

Молекулы РНК, способные к катализу, были названы рибозимами (по аналогии с энзимами, то есть белковыми ферментами). За их открытие в 1989 году Чек и Альтман были удостоены Нобелевской премии по химии.

Эти результаты не замедлили сказаться на теории происхождения жизни: "фаворитом" стала молекула РНК. В самом деле, была обнаружена молекула, способная нести генетическую информацию и вдобавок к этому катализировать химические реакции! Более подходящего кандидата для зарождения доклеточной жизни трудно было представить.

Сценарий развития жизни преобразовался. Вначале, по новой гипотезе, в условиях молодой Земли спонтанно появились короткие цепочки молекул РНК. Некоторые из них, опять же спонтанно, приобретали способность к катализу реакции собственного воспроизведения (репликации). Из-за ошибок при репликации некоторые из дочерних молекул отличались от материнских и обладали новыми свойствами, например, могли катализировать другие реакции.

Еще одно важнейшее свидетельство того, что "вначале была РНК", принесли исследования рибосом. Рибосомы - структуры в цитоплазме клетки, состоящие из РНК и белков и отвечающие за синтез клеточных протеинов. В результате их изучения было выявлено, что у всех организмов именно РНК, находящаяся в каталитическом центре рибосом, отвечает за главный этап в сборке белков - соединение аминокислот между собой. Открытие этого факта еще более упрочило позиции сторонников РНК-мира. Действительно, если спроецировать современную картину жизни на ее возможное начало, разумно предположить, что рибосомы - структуры, специально существующие в клетке, чтобы "расшифровывать" код нуклеиновых кислот и производить белок, - появились когда-то как комплексы РНК, способные к соединению аминокислот в одну цепочку. Так на основе мира РНК мог появиться мир белков.

Совсем недавно были сделаны наблюдения, приведшие к еще одной сенсации. Оказывается, РНК не только катализирует химические реакции, но и защищает клетки растений и низших животных от вторжения вирусов. Эту функцию выполняет особый класс РНК - так называемые короткие, или малые, РНК, названные так потому, что их длина обычно не превышает двадцати одного "звена"-нуклеотида. У высших животных, например у млекопитающих, малые РНК также не остаются без работы и могут участвовать в регуляции считывания генной информации с хромосом.

42. Гормоны: особенности, классификация, механизм действия и физиологическое действие .

Гормо́ны (др.-греч. ὁρμάω - возбуждаю, побуждаю) - биологически активные вещества органической природы, вырабатывающиеся в специализированных клетках желёз внутренней секреции, поступающие в кровь, связывающиеся с рецепторами клеток-мишеней и оказывающие регулирующее влияние на обмен веществ и физиологические функции. Гормоны служат гуморальными (переносимыми с кровью) регуляторами определённых процессов в различных органах и системах.