Open Library - открытая библиотека учебной информации. Приближенное значение величины и погрешности измерений


В большинстве случаев числовые данные в задачах приближенные. В условиях задач могут встретиться и точные значения, например результаты счета небольшого числа предметов, некоторые константы и др.

Для обозначения приближенного значения числа употребляют знак приближенного равенства ; читают так: «приближенно равно» (не следует читать: «приблизительно равно»).

Выяснение характера числовых данных – важный подготовительный этап при решении любой задачи.

Приводимые ниже указания могут помочь в распознании точных и приближенных значений чисел:

Точные значения Приближенные значения
1.Значения ряда переводных множителей перехода от одних единиц измерения к другим (1м = 1000 мм; 1ч = 3600 с) Многие переводные множители измерены и вычислены со столь высокой (метрологической) точностью, что практически их считают сейчас точными. 1. Большинство значений математических величин, заданных в таблицах (корни, логарифмы, значения тригонометрических функций, а также применяемые на практике значение числа и основания натуральных логарифмов (число е))
2.Масштабные множители. Если, например, известно, что масштаб равен 1:10000, то числа 1 и 10000 считают точными. Если указано, что в 1см – 4 м, то 1 и 4 – точные значения длины 2. Результаты измерений. (Некоторые основные константы: скорость света в вакууме, гравитационная постоянная, заряд и масса электрона и др.) Табличные значения физических величин (плотность вещества, температуры плавления и кипения и др.)
3.Тарифы и цены. (стоимость 1 кВт∙ч электроэнергии – точное значение цены) 3. Проектные данные также являются приближенными, т.к. их задают с некоторыми отклонениями, которые нормируются ГОСТами. (Например, по стандарту размеры кирпича: длина 250 6 мм, ширина 120 4 мм, толщина 65 3 мм) К этой же группе приближенных значений чисел относятся размеры, взятые с чертежа
4.Условные значения величин (Примеры: абсолютный нуль температуры -273,15 С, нормальное атмосферное давление 101325 Па)
5.Коэффициенты и показатели степени, встречающиеся в физических и математических формулах ( ; %; и т.д.).
6. Результаты счета предметов (количество аккумуляторов в батарее; число пакетов молока, выпущенных заводом и подсчитанных фотоэлектрическим счетчиком)
7. Заданные значения величин (Например, в задаче, «Найти периоды колебаний маятников длиной 1 и 4 м» числа 1 и 4 можно считать точными значениями длины маятника)


Выполните следующие задания, ответ оформите в виде таблицы:

1. Укажите, какие из приведенных значений точные, какие – приближенные:

1) Плотность воды (4 С)………..………………………..……………1000кг/м 3

2) Скорость звука (0 С)………………………………………………….332 м/с

3) Удельная теплоемкость воздуха….……………………………1,0 кДж/(кг∙К)

4) Температура кипения воды…………….……………………………….100 С

5) Постоянная Авогадро….…………………………………..…..6,02∙10 23 моль -1

6) Относительная атомная масса кислорода…………………………………..16

2. Найдите точные и приближенные значения в условиях следующих задач:

1) У паровой машины бронзовый золотник, длина и ширина которого соответственно 200 и 120 мм, испытывает давление 12 МПа. Найдите силу, необходимую для перемещения золотника по чугунной поверхности цилиндра. Коэффициент трения равен 0,10.

2) Определите сопротивление нити накала электрической лампы по следующим маркировочным данным: «220В, 60 Вт».

3. Какие ответы – точные или приближенные – получим при решении следующих задач?

1) Какова скорость свободно падающего тела в конце 15-й секунды, считая промежуток времени указанным точно?

2) Какова скорость шкива, если его диаметр 300 мм, частота вращения 10 об/с? Данные считайте точными.

3) Определите модуль силы . Масштаб 1 см – 50Н.

4) Определите коэффициент трения покоя для тела, находящегося на наклонной плоскости, если тело начинает равномерно скользить по наклону при = 0,675, где - угол наклона плоскости.

На практике мы почти никогда не знаем точных значений величин. Никакие весы, как бы точны они ни были, не показывают вес абсолютно точно; любой термометр показывает температуру с той или иной ошибкой; никакой амперметр не может дать точных показаний тока и т. д. К тому же наш глаз не в состоянии абсолютно правильно прочитать показания измерительных приборов. Поэтому, вместо того чтобы иметь дело с истинными значениями величин, мы вынуждены оперировать с их приближенными значениями.

Тот факт, что а" есть приближенное значение числа а , записывается следующим образом:

а ≈ а" .

Если а" есть приближенное значение величины а , то разность Δ = а - а" называется погрешностью приближения *.

* Δ - греческая буква; читается: дельта. Далее встречается еще одна греческая буква ε (читается: эпсилон).

Например, если число 3,756 заменить его приближенным значением 3,7, то погрешность будет равна: Δ = 3,756 - 3,7 = 0,056. Если в качестве приближенного значения взять 3,8, то погрешность будет равна: Δ = 3,756 - 3,8 = -0,044.

На практике чаще всего пользуются не погрешностью приближения Δ , а абсолютной величиной этой погрешности |Δ |. В дальнейшем эту абсолютную величину погрешности мы будем называть просто абсолютной погрешностью . Считают, что одно приближение лучше другого, если абсолютная погрешность первого приближения меньше абсолютной погрешности второго приближения. Например, приближение 3,8 для числа 3,756 лучше, чем приближение 3,7, поскольку для первого приближения
|Δ | = | - 0,044| =0,044, а для второго |Δ | = |0,056| = 0,056.

Число а" а с точностью до ε , если абсолютная погрешность этого приближения меньше чем ε :

|а - а" | < ε .

Например, 3,6 есть приближенное значение числа 3,671 с точностью до 0,1, поскольку |3,671 - 3,6| = | 0,071| = 0,071< 0,1.

Аналогично, - 3 / 2 можно рассматривать как приближенное значение числа - 8 / 5 с точностью до 1 / 5 , поскольку

Если а" < а , то а" называется приближенным значением числа а с недостатком .

Если же а" > а , то а" называется приближенным значением числа а с избытком.

Например, 3,6 есть приближенное значение числа 3,671 с недостатком, поскольку 3,6 < 3,671, а - 3 / 2 есть приближенное значение числа - 8 / 5 c избытком, так как - 3 / 2 > - 8 / 5 .

Если мы вместо чисел а и b сложим их приближенные значения а" и b" , то результат а" + b" будет приближенным значением суммы а + b . Возникает вопрос: как оценить точность этого результата, если известна точность приближения каждого слагаемого? Решение этой и подобных ей задач основано на следующем свойстве абсолютной величины:

|а + b | < |a | + |b |.

Конец работы -

Эта тема принадлежит разделу:

Методическое пособие для выполнения практических работ по дисциплине математика часть 1

Методическое пособие для выполнения практических работ по дисциплине.. для профессий начального профессионального образования и специальностей среднего профессионального образования..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Пояснительная записка
Методическое пособие составлено в соответствии с рабочей программой по дисциплине «Математика», разработанной на основе Федерального государственного образовательного стандарта третьего поколения п

Пропорции. Проценты.
Цели урока: 1) Обобщить теоретические знания по теме «Проценты и пропорции». 2) Рассмотреть виды и алгоритмы решений задач на проценты, составление пропорций решить

Пропорция.
Пропорция (от лат. proportio - соотношение, соразмерность), 1) в математике - равенство между двумя отношениями четырёх величин а, в, с,

ПРАКТИЧЕСКАЯ РАБОТА № 2
«Уравнения и неравенства» Цели урока: 1) Обобщить теоретические знания по теме: «Уравнения и неравенства». 2) Рассмотреть алгоритмы решений заданий теме «Ур

Уравнения, содержащие переменную под знаком модуля.
Модуль числа а определяется следующим образом: П р и м е р: Решить уравнение. Р е ш е н и е. Если, то и данное уравнение примет вид. Можно записать так:

Уравнения с переменной в знаменателе.
Рассмотрим уравнения вида. (1) Решение уравнения вида (1) основано на следующем утверждении: дробь равна 0 тогда и только тогда, когда ее числитель равен 0, а знаменатель отличен от нуля.

Рациональные уравнения.
Уравнение f(x) = g(x) называется рациональным, если f(x) и g(x) -рациональные выражения. При этом если f(x) и g(x) - целые выражения, то уравнение называют целым;

Решение уравнений методом введения новой переменной.
Суть метода поясним на примере. П р и м е р: Решить уравнение. Р е ш е н и е. Положим, получим уравнение, откуда находим. Задача сводится к решению совокупности уравнений

Иррациональные уравнения.
Иррациональным называется уравнение, в котором переменная содержится под знаком корня или под знаком возведения в дробную степень. Одним из методов решения таких уравнений является метод воз

Метод интервалов
Пример:Решить неравенство. Решение. ОДЗ: откуда имеем x [-1; 5) (5; +) Решим уравнение Числитель дроби равен 0 при x = -1, это и есть корень уравнения.

Упражнения для самостоятельной работы.
3х + (20 – х) = 35,2, (х – 3) - х = 7 – 5х. (х + 2) - 11(х + 2) = 12. х = х, 3у = 96, х + х + х + 1 = 0, – 5,5n(n – 1)(n + 2,5)(n -

ПРАКТИЧЕСКАЯ РАБОТА № 4
«Функции, их свойства и графики» Цели урока: 1) Обобщить теоретические знания по теме: «Функции, свойства и графики». 2) Рассмотреть алгори

Будет грубой ошибкой, если при оформлении чертежа по небрежности допустить пересечение графика с асимптотой.
Пример 3 Построить правую ветвь гиперболы Используем поточечный метод построения, при этом, значения выгодно подбирать так, чтобы делилось нацело:

Графики обратных тригонометрических функций
Построим график арксинуса Построим график арккосинуса Построим график арктангенса Всего лишь перевернутая ветка тангенса. Перечислим основн

Математические портреты пословиц
Современная математика знает множество функций, и у каждой свой неповторимый облик, как неповторим облик каждого из миллиардов людей, живущих на Земле. Однако при всей непохожести одного человека н


Построить графики функций а)у=х2 ,у=х2+1 ,у=(х-2)2 б)у=1/х, у=1/(x-2),y=1/x -2 на одной координатной плоскости. Построить графики функций c

Натуральные числа

Свойства сложения и умножения натуральных чисел
a + b = b + a - переместительное свойство сложения (a + b) + c = a + (b +c) - сочетательное свойство сложения ab = ba

Признаки делимости натуральных чисел
Если каждое слагаемое делится на некоторое число, то и сумма делится на это число. Если в произведении хотя бы один из множителей делится на некоторое число, то и произведение делитс

Шкалы и координаты
Длины отрезков измеряют линейкой. На линейке (рис. 19) нанесены штрихи. Они разбивают линейку на равные части. Эти части называют делениями. На рисунке 19 длина ка

Рациональные числа
Цели урока: 1) Обобщить теоретические знания по теме «Натуральные числа». 2) Рассмотреть виды и алгоритмы решений задач связанных с понятием натурального числа.

Десятичные дроби. Перевод десятичной дроби в обыкновенную дробь.
Десятичная дробь - это другая форма записи дроби со знаменателем Например, . Если в разложении знаменателя дроби на простые множители содержатся только 2 и 5, то эту дробь можно записать в виде дес

Корень из 2
Допустим противное: рационален, то есть представляется в виде несократимой дроби, где - целое число, а - натуральное число. Возведём предполагаемое равенство в квадрат: . Отсюда

Абсолютная величина суммы любых двух чисел не превышает суммы их абсолютных величин.
ПОГРЕШНОСТИ Разница между точным числом x и его приближенным значением a называется погрешностью данного приближенного числа. Если известно, что | x - a | < a, то величина a называется

Базовый уровень
Пример.Вычислить. Решение: . Ответ: 2,5. Пример. Вычислить. Решение: Ответ: 15.


Существуют различные типы упражнений на тождественные преобразования выражений. Первый тип: явно указано то преобразование, которое необходимо выполнить. Например. 1

Задачи для самостоятельного решения
Отметьте номер правильного ответа: Результат упрощения выражения имеет вид 1. ; 4. ; 2. ; 5. . 3. ; Значение выражения равно 1) 4; 2) ; 3)

Задачи для самостоятельного решения
Найдите значение выражения 1. .2. . 2. . 3. . 4. . 5. .7. . 6.. при. 7.. при. 8.. при. 9. при. 1

Задачи для самостоятельного решения
Вопрос 1. Найдите логарифм 25 по основанию 5. Вопрос 2. Найдите логарифм по основанию 5. Вопрос 3.

ПРАКТИЧЕСКАЯ РАБОТА № 17
«Аксиомы стереометрии и следствия из них» Цель урока: 1) Обобщить теоретические знания

Для современных задач необходимо использовать сложный математический аппарат и развитые методы их решения. При этом часто приходится встречаться с задачами, для которых аналитическое решение, т.е. решение в виде аналитического выражения, связывающего исходные данные с требуемыми результатами, либо вообще невозможно, либо выражается такими громоздкими формулами, что использование их для практических целей нецелесообразно.

В этом случае применяются численные методы решения, которые позволяют достаточно просто получить численное решение поставленной задачи. Численные методы реализуются с помощью вычислительных алгоритмов.

Все многообразие численных методов подразделяют на две группы:

Точные – предполагают, что если вычисления ведутся точно, то с помощью конечного числа арифметических и логических операций могут быть получены точные значения искомых величин.

Приближенные– которые даже в предположении, что вычисления ведутся без округлений, позволяют получить решение задачи лишь с заданной точностью.

1. величина и число. Величиной называется то, что в определенных единицах может быть выражено числом.

Когда говорят о значении величины, то имеют в виду некоторое число, называемое числовым значением величины, и единицу ее измерения.

Таким образом, величиной называют характеристику свойства объекта или явления, которая является общей для множества объектов, но имеет индивидуальные значения для каждого из них.

Величины могут быть постоянными и переменными. Если при некоторых условиях величина принимает только одно значение и не может его изменять, то она называется постоянной, если же она может принимать различные значения, то – переменной. Так, ускорение свободного падения тела в данном месте земной поверхности есть величина постоянная, принимающая единственное числовое значение g=9,81… м/с2, в то время как путь s, проходимый материальной точкой при ее движении, – величина переменная.

2. приближенные значения чисел. Значение величины, в истинности которого мы не сомневаемся, называется точным. Часто, однако, отыскивая значение какой-либо величины, получают лишь ее приближенное значение. В практике вычислений чаще всего приходится иметь дело с приближенными значениями чисел. Так, p – число точное, но вследствие его иррациональности можно пользоваться лишь его приближенным значением.

Во многих задачах из-за сложности, а часто и невозможности получения точных решений применяются приближенные методы решения, к ним относятся: приближенное решение уравнений, интерполирование функций, приближенное вычисление интегралов и др.

Главным требованием к приближенным расчетам является соблюдение заданной точности промежуточных вычислений и конечного результата. При этом в одинаковой степени недопустимы как увеличение погрешностей (ошибок) путем неоправданного загрубления расчетов, так и удержание избыточных цифр, не соответствующих фактической точности.


Существуют два класса ошибок, получающихся при вычислениях и округлении чисел – абсолютные и относительные.

1. Абсолютная погрешность (ошибка).

Введем обозначения:

Пусть А – точное значение некоторой величины, Запись а » А будем читать "а приближенно равно А". Иногда будем писать А = а, имея в виду, что речь идет о приближенном равенстве.

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем: D а = ½а А ½<= D а пред . . и тогда

а – D а пред . ≤ А а + D а пред . . (4)

Значит, а – D а пред . будет приближенным значением А с недостатком, а а + D а пред приближенным значением А с избытком. Пользуются также краткой записью: А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбратьвозможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.

Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред.

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред.

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

МУНИЦИПАЛЬНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

«КУРЛЕКСКАЯ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА»

Томского района
«Математика

в науке и жизни»

«Урок  семинар» по теме:

«Приближенные значения величин»
(О прикладной направленности абсолютной и относительной погрешностей)
Алгебра 7 класс

Учитель математики:

Серебренникова Вера Александровна

Курлек - 2006


«Математика в науке и жизни»
«Язык математики –

это всеобщий язык науки»
Тема: Приближенные значения величин. (Обобщающий урок - семинар)

Цель: 1. Обобщить знания учащихся по данной теме с учетом прикладной направленности (в физике, трудового обучения);

2. Умение работать в группах и принимать участие в выступлениях

Оборудование: 2 линейки с делениями в 0,1см и 1см, термометр, весы, раздаточный материал (лист, копирка, карточки)
Вступительное слово и представление участников семинара (учитель)

Рассмотрим один из важных вопросов – приближенные вычисления. Несколько слов о его важности.

При решении практических задач часто приходится иметь дело с приближенными значениями различных величин.

Напомню, в каких случаях получаются приближенные значения:


  1. при подсчете большого количества предметов;

  2. при измерениях с помощью приборов различных величин (длины, массы, температуры);

  3. при округлении чисел.
Обсудим вопрос: «Когда качество измерения, вычисления будет выше ».

Участниками семинара сегодня будут 3 группы: математики, физики и представители производства (практики).

(Представляют группы «старшие», называют свою фамилию).

Оценивать работу семинара будут гости и компетентное жюри от общественности, где есть «математики», «физики» и «практики».

Оцениваться будет работа групп и отдельных участников баллами.
План работы (на доске)

1. Выступления

2. Самостоятельная работа

3. Викторина

4. Итоги
. Выступления.


  1. Мерой оценки отклонения приближенного значения от точного
служат абсолютная и относительная погрешности. Рассмотрим их определения с точки зрения прикладной направленности.
2
Абсолютная погрешность показывает на сколько

приближенное значение отличается от точного, т.е. точность приближения.

Относительная погрешность оценивает качество измерения и

выражается в процентах.

Если х ≈ α, где х – точное значение, а α – приближенное, то абсолютная погрешность будет: │х – α │, а относительная: │х – α │∕ │α│%


Примеры:

1 . Найдем абсолютную и относительную погрешности приближенного значения, полученного в результате округления числа 0,437 до десятых.

Абсолютная погрешность: │0,437 – 0,4 │= │0,037│= 0,037

Относительная погрешность: 0,037: │0,4│= 0,037: 0,4 = 0,0925 = 9,25%


  1. Найдем по графику функции у = х 2 приближенное значение
функции при х = 1,6

Если х = 1,6, то у ≈ 2,5

Найдем по формуле у = х 2 точное значение у: у = 1,6 2 = 2,56;

Абсолютная погрешность: │2,56 – 2,5 │= │0,06│= 0,06;

Относительная погрешность: 0,06: │2,5│= 0,06: 2,5 = 0,024 = 2,4%

Если сравнить два результата относительной погрешности 9,25% и

2,4%, то во втором случае качество вычисления будет выше, результат будет точнее.
Отчего зависит точность приближенного значения?

Она зависит от многих причин. Если приближенное значение получено при измерении, то его точность зависит от прибора, с помощью которого выполнялось измерение. Никакое измерение не может быть выполнено совершенно точно. Даже сами меры заключают в себе погрешность. Изготовить совершенно точные метровые линейки, килограммовую гирю, литровую кружку чрезвычайно трудно и закон допускает при изготовлении некоторую погрешность.

Например, при изготовлении метровой линейки допускается погрешность 1мм. Само измерение тоже вводит неточность, погрешность в гирях, весах. Например на линейке, которой мы пользуемся, нанесены деления через 1мм, т.е. 0,1см, значит точность измерения этой линейкой до 0,1 (≤ 0,1). На медицинском термометре деления через 0,1 0 , значит точность до 0,1 (≤ 0,1). На весах деления нанесены через 200г, значит точность до 200 (≤ 200).

Округляя десятичную дробь до десятых точность будет до 0,1 (≤ 0,1); до сотых – точность до 0,01 (≤ 0,01).

Точнейшие в мире измерения производятся в лабораториях Института


Всегда ли можно найти абсолютную и относительную погрешности?

Не всегда можно найти абсолютную погрешность, так как неизвестно

точное значение величины, а отсюда и относительную погрешность.

В этом случае принято считать что абсолютная погрешность не превосходит цены деления шкалы прибора. Т.е. если например цена деления линейки 1мм = 0,1см, то абсолютная погрешность будет с точностью до 0,1 (≤ 0,1) и будет определена только оценка относительной погрешности (т.е. ≤ какому числу %).

Часто приходится с этим встречаться в физике при демонстрации опытов, при выполнении лабораторных работ.

Задача. Найдем относительную погрешность при измерении длины листа тетради линейками: одна – с точностью до 0,1см (деления через 0,1см); вторая - с точностью до 1см (деления через 1см).

ℓ 1 = 20,4см ℓ 2 = 20,2см


0,! : 20,4 = 0,0049 = 0,49% 1: 20,2 = 0,0495 = 4,95%

Говорят, относительная погрешность в первом случае до 0,49%(т.е ≤ 0,49%), во втором случае до 4,95% (т.е. ≤ 4,95%).

В первом случае точность измерения выше. Мы говорим не о величине

относительной погрешности, а ее оценке.

На производстве при изготовлении деталей мы пользуемся

штангенциркулем (для измерения глубины; диаметра: наружного и внутреннего).

Абсолютная погрешность при измерении этим прибором составляет точность до 0,1мм. Найдем оценку относительной погрешности при измерении штангенциркулем:

d = 9,86см = 98,6мм


0,1: │98,6│= 0,1: 98,6 = 0,001 = 0,1%
Относительная погрешность с точностью до 0,1% (т.е. ≤ 0,1%).

Если сравнить с предыдущими двумя измерениями, то получается точность измерения выше.

Из трех практических примеров можно сделать вывод: что точных значений быть не может, производя измерения в обычных условиях.

Но чтобы точнее выполнить измерение нужно взять измерительный прибор цена деления которого как можно меньше.

4
. Самостоятельная работа по вариантам, с последующей проверкой (под копирку).

Вариант 1

Вариант 2



1. Построить график функции у = х 3

1. Построить график функции у = х 2


  1. если х = 1,5, то у ≈
если х = -0,5, то у ≈

б) у = 4 при х ≈



Пользуясь графиком закончить запись:

  1. если х = 2,5, то у ≈
если х = -1,5, то у ≈

б) у = 5 при х ≈



2. Округлить число 0,356 до десятых и найти:

a) абсолютную погрешность

приближения;

б) относительную погрешность

приближения


2. Округлить число 0,188 до десятых и найти:

a) абсолютную погрешность

приближения;

б) относительную погрешность

приближения

(Жюри проверяет самостоятельные работы)


. Викторина. (За каждый правильный ответ – 1 балл)

В каких примерах значения величин точные, а в каких приближенные?


Примеры:

1. В классе 36 учеников

2. В рабочем поселке 1000 жителей

3. Железнодорожный рельс имеет длину 50 м

4. Рабочий получил в кассе 10 тысяч рублей

5. В самолете ЯК – 40 120 пассажирских мест

6. Расстояние между Москвой и Санкт – Петербургом 650 км

7. В килограмме пшеницы содержится 30000 зерен

8.Расстояние от Земли до Солнца 1,5 ∙ 10 8 км

9. Один из школьников на вопрос о том, сколько учащихся учится в школе, ответил: «1000», а другой ответил «950». Чей ответ точнее, если в школе учится 986 учащихся?

10. Буханка хлеба весит 1 кг и стоит 2500 р.

11. Тетрадь в 12 листов стоит 600 р. и имеет толщину 3 мм


v. Подведение итогов, награждение

Если известно, что а < А, то а называют приближенным значением величины А с недостатком. Если а > А, то а называют приближенным значением величины А с избытком.

Разность точного и приближенного значений величины называется погрешностью приближения и обозначается D, т.е.

D = А – а (1)

Погрешность D приближения может быть как числом положительным, так и отрицательным.

Для того чтобы охарактеризовать отличие приближенного значения величины от точного, часто бывает достаточно указать абсолютную величину разности точного и приближенного значений.

Абсолютная величина разности между приближенным а и точным А значениями числа называется абсолютной погрешностью (ошибкой) приближения и обозначается D а :

D а = ½а А ½ (2)

Пример 1. При измерении отрезка l использовали линейку, цена деления шкалы которой равна 0,5 см. Получили приближенное значение длины отрезка а = 204 см.

Понятно, что при измерении могли ошибиться не более, чем на 0,5 см, т.е. абсолютная погрешность измерения не превышает 0,5 см.

Обычно абсолютная ошибка неизвестна, поскольку неизвестно точное значение числа А. Поэтому в качестве ошибки принимают какую-либо оценку абсолютной ошибки:

D а <= D а пред . (3)

где D а пред . – предельная ошибка (число, большее нуля), задаваемая с учетом того, с какой достоверностью известно число а.

Предельная абсолютная погрешность называется также границей погрешности . Так, в приведенном примере,
D а пред . = 0,5 см.

Из (3) получаем:

D а = ½а А ½<= D а пред . .

а – D а пред . ≤ А а + D а пред . . (4)

а – D а пред . будет приближенным значением А с недостатком,

а + D а пред приближенным значением А с избытком. Пользуются также краткой записью:

А = а ± D а пред (5)

Из определения предельной абсолютной погрешности следует, что чисел D а пред , удовлетворяющих неравенству (3), будет бесконечное множество. На практике стараются выбрать возможно меньшее из чисел D а пред , удовлетворяющих неравенству D а <= D а пред .

Пример 2. Определим предельную абсолютную погрешность числа а=3,14 , взятого в качестве приближенного значения числа π.

Известно, что 3,14<π<3,15. Отсюда следует, что

|а π |< 0,01.

За предельную абсолютную погрешность можно принять число D а = 0,01.

Если же учесть, что 3,14<π<3,142 , то получим лучшую оценку: D а = 0,002, тогда π ≈3,14 ±0,002.

4. Относительная погрешность (ошибка). Знания только абсолютной погрешности недостаточно для характеристики качества измерения.



Пусть, например, при взвешивании двух тел получены следующие результаты:

Р 1 = 240,3 ±0,1 г.

Р 2 = 3,8 ±0,1 г.

Хотя абсолютные погрешности измерения обоих результатов одинаковы, качество измерения в первом случае будет лучшим, чем во втором. Оно характеризуется относительной погрешностью.

Относительной погрешностью (ошибкой) приближения числа А называется отношение абсолютной ошибки D а приближения к абсолютной величине числа А:

Так, как точное значение величины обычно неизвестно, то его заменяют приближенным значением и тогда:

(7)

Предельной относительной погрешностью или границей относительной погрешности приближения, называется число d а пред. >0, такое, что:

d а <= d а пред. (8)

За предельную относительную погрешность можно, очевидно, принять отношение предельной абсолютной погрешности к абсолютной величине приближенного значения:

(9)

Из (9) легко получается следующее важное соотношение:

а пред. = |a | d а пред. (10)

Предельную относительную погрешность принято выражать в процентах:

Пример. Основание натуральных логарифмов для расчета принято равным е =2,72. В качестве точного значения взяли е т = 2,7183. Найти абсолютную и относительную ошибки приближенного числа.

D е = ½е е т ½=0,0017;

.

Величина относительной ошибки остается неизменной при пропорциональном изменении самого приближенного числа и его абсолютной ошибки. Так, у числа 634,7, рассчитанного с абсолютной ошибкой D = 1,3 и у числа 6347 с ошибкой D = 13 относительные ошибки одинаковы: d = 0,2.

О величине относительной ошибки можно примерно судить по количеству верных значащих цифр числа.