Математическая модель состоит из. Математическое моделирование

Математическая модель - это система математических соотношений - формул, уравнений, неравенств и т.д., отражающих существенные свойства объекта или явления.

Всякое явление природы бесконечно в своей сложности . Проиллюстрируем это с помощью примера, взятого из книги В.Н. Тростникова "Человек и информация" (Издательство "Наука", 1970).

Обыватель формулирует математику задачу следующим образом: "Сколько времени будет падать камень с высоты 200 метров?" Математик начнет создавать свой вариант задачи приблизительно так: "Будем считать, что камень падает в пустоте и что ускорение силы тяжести 9,8 метра в секунду за секунду. Тогда..."

- Позвольте, - может сказать "заказчик", - меня не устраивает такое упрощение. Я хочу знать точно, сколько времени будет падать камень в реальных условиях, а не в несуществующей пустоте.

- Хорошо, - согласится математик. - Будем считать, что камень имеет сферическую форму и диаметр... Какого примерно он диаметра?

- Около пяти сантиметров. Но он вовсе не сферический, а продолговатый.

- Тогда будем считать, что он имеет форму эллипсоида с полуосями четыре, три и три сантиметра и что он падает так, что большая полуось все время остается вертикальной . Давление воздуха примем равным 760 мм ртутного столба , отсюда найдем плотность воздуха ...

Если тот, кто поставил задачу на "человеческом" языке не будет дальше вмешиваться в ход мысли математика, то последний через некоторое время даст численный ответ. Но "потребитель" может возражать по-прежнему: камень на самом деле вовсе не эллипсоидальный, давление воздуха в том месте и в тот момент не было равно 760 мм ртутного столба и т.д. Что же ответит ему математик?

Он ответит, что точное решение реальной задачи вообще невозможно . Мало того, что форму камня , которая влияет на сопротивление воздуха, невозможно описать никаким математическим уравнением; его вращение в полете также неподвластно математике из-за своей сложности. Далее, воздух не является однородным, так как в результате действия случайных факторов в нем возникают флуктуации колебания плотности. Если пойти ещё глубже, нужно учесть, что по закону всемирного тяготения каждое тело действует на каждое другое тело . Отсюда следует, что даже маятник настенных часов изменяет своим движением траекторию камня.

Короче говоря, если мы всерьез захотим точно исследовать поведение какого-либо предмета, то нам предварительно придется узнать местонахождение и скорость всех остальных предметов Вселенной. А это, разумеется. невозможно .

Наиболее эффективно математическую модель можно реализовать на компьютере в виде алгоритмической модели - так называемого "вычислительного эксперимента" (см. [1 ], параграф 26).

Конечно, результаты вычислительного эксперимента могут оказаться и не соответствующими действительности, если в модели не будут учтены какие-то важные стороны действительности.

Итак, создавая математическую модель для решения задачи, нужно:

    1. выделить предположения, на которых будет основываться математическая модель;
    2. определить, что считать исходными данными и результатами;
    3. записать математические соотношения, связывающие результаты с исходными данными.

При построении математических моделей далеко не всегда удается найти формулы, явно выражающие искомые величины через данные. В таких случаях используются математические методы, позволяющие дать ответы той или иной степени точности. Существует не только математическое моделирование какого-либо явления, но и визуально-натурное моделирование, которое обеспечивается за счет отображения этих явлений средствами машинной графики, т.е. перед исследователем демонстрируется своеобразный "компьютерный мультфильм", снимаемый в реальном масштабе времени. Наглядность здесь очень высока.

Другие записи

10.06.2016. 8.3. Какие основные этапы содержит процесс разработки программ? 8.4. Как проконтролировать текст программы до выхода на компьютер?

8.3. Какие основные этапы содержит процесс разработки программ? Процесс разработки программы можно выразить следующей формулой: Наличие ошибок в только что разработанной программе это вполне нормальное…

10.06.2016. 8.5. Для чего нужны отладка и тестирование? 8.6. В чем заключается отладка? 8.7. Что такое тест и тестирование? 8.8. Какими должны быть тестовые данные? 8.9. Из каких этапов состоит процесс тестирования?

8.5. Для чего нужны отладка и тестирование? Отладка программы - это процесс поиска и устранения ошибок в программе, производимый по результатам её прогона на компьютере. Тестирование…

10.06.2016. 8.10. Каковы характерные ошибки программирования? 8.11. Является ли отсутствие синтаксических ошибок свидетельством правильности программы? 8.12. Какие ошибки не обнаруживаются транслятором? 8.13. В чем заключается сопровождение программы?

8.10. Каковы характерные ошибки программирования? Ошибки могут быть допущены на всех этапах решения задачи - от ее постановки до оформления. Разновидности ошибок и соответствующие примеры приведены…

ЭВМ прочно вошла в нашу жизнь, и практически нет такой области человеческой деятельности, где не применялась бы ЭВМ. ЭВМ сейчас широко используется в процессе создания и исследования новых машин, новых технологических процессов и поиске их оптимальных вариантов; при решении экономических задач, при решении задач планирования и управления производством на различных уровнях. Создание же крупных объектов в ракетотехнике, авиастроении, судостроении, а также проектирование плотин, мостов, и др. вообще невозможно без применения ЭВМ.

Для использования ЭВМ при решении прикладных задач, прежде всего прикладная задача должна быть "переведена" на формальный математический язык, т.е. для реального объекта, процесса или системы должна быть построена его математическая модель.

Слово "Модель" происходит от латинского modus (копия, образ, очертание). Моделирование - это замещение некоторого объекта А другим объектом Б. Замещаемый объект А называется оригиналом или объектом моделирования, а замещающий Б - моделью. Другими словами, модель - это объект-заменитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.

Целью моделирования являются получение, обработка, представление и использование информации об объектах, которые взаимодействуют между собой и внешней средой; а модель здесь выступает как средство познания свойств и закономерности поведения объекта.

Математическое моделирование - это средство изучения реального объекта, процесса или системы путем их замены математической моделью, более удобной для экспериментального исследования с помощью ЭВМ.

Математическое моделирование - процесс построения и изучения математических моделей реальных процессов и явлений. Все естественные и общественные науки, использующие математический аппарат, по сути занимаются математическим моделированием: заменяют реальный объект его моделью и затем изучают последнюю. Как и в случае любого моделирования, математическая модель не описывает полностью изучаемое явление, и вопросы о применимости полученных таким образом результатов являются весьма содержательными. Математическая модель - это упрощенное описание реальности с помощью математических понятий.



Математическая модель выражает существенные черты объекта или процесса языком уравнений и других математических средств. Собственно говоря, сама математика обязана своим существованием тому, что она пытается отразить, т.е. промоделировать, на своем специфическом языке закономерности окружающего мира.

При математическом моделировании исследование объекта осуществляется посредством модели, сформулированной на языке математики с использованием тех или иных математических методов.

Путь математического моделирования в наше время гораздо более всеобъемлющ, нежели моделирования натурного. Огромный толчок развитию математического моделирования дало появление ЭВМ, хотя сам метод зародился одновременно с математикой тысячи лет назад.

Математическое моделирование как таковое отнюдь не всегда требует компьютерной поддержки. Каждый специалист, профессионально занимающийся математическим моделированием, делает все возможное для аналитического исследования модели. Аналитические решения (т.е. представленные формулами, выражающими результаты исследования через исходные данные) обычно удобнее и информативнее численных. Возможности аналитических методов решения сложных математических задач, однако, очень ограниченны и, как правило, эти методы гораздо сложнее численных.

Математическая модель является приближенным представлением реальных объектов, процессов или систем, выраженным в математических терминах и сохраняющим существенные черты оригинала. Математические модели в количественной форме, с помощью логико-математических конструкций, описывают основные свойства объекта, процесса или системы, его параметры, внутренние и внешние связи

Все модели можно разделить на два класса:

  1. вещественные,
  2. идеальные.

В свою очередь вещественные модели можно разделить на:

  1. натурные,
  2. физические,
  3. математические.

Идеальные модели можно разделить на:

  1. наглядные,
  2. знаковые,
  3. математические.

Вещественные натурные модели - это реальные объекты, процессы и системы, над которыми выполняются эксперименты научные, технические и производственные.

Вещественные физические модели - это макеты, муляжи, воспроизводящие физические свойства оригиналов (кинематические, динамические, гидравлические, тепловые, электрические, световые модели).

Вещественные математические - это аналоговые, структурные, геометрические, графические, цифровые и кибернетические модели.

Идеальные наглядные модели - это схемы, карты, чертежи, графики, графы, аналоги, структурные и геометрические модели.

Идеальные знаковые модели - это символы, алфавит, языки программирования, упорядоченная запись, топологическая запись, сетевое представление.

Идеальные математические модели - это аналитические, функциональные, имитационные, комбинированные модели.

В приведенной классификации некоторые модели имеют двойное толкование (например - аналоговые). Все модели, кроме натурных, можно объединить в один класс мысленных моделей, т.к. они являются продуктом абстрактного мышления человека.

Элементы теории игры

В общем случае решение игры представляет довольно трудную задачу, причем сложность задачи и объем необходимых для решения вычислений резко возрастает с увеличением . Однако это трудности не носят принципиального характера и связаны только сочень большим объемом расчетов, который в ряде случаев может оказаться практически невыполнимым. Принципиальная сторона метода отыскания решения остается при любом одной и той же.

Проиллюстрируем это на примере игры . Дадим ей геометрическую интерпретацию - уже пространственную. Три наши стратегии , изобразим тремя точками на плоскости ; первая лежит в начале координат (рис.1). вторая и третья - на осях Ох и Оу на расстояниях 1 от начала.

Через точки проводятся оси I-I, II-II и III-III, перпендикулярные к плоскости . На оси I-I откладываются выигрыши при стратегии на осях II-II и III-III - выигрыши при стратегиях . Каждая стратегия противника изобразится плоскостью, отсекающей на осях I-I, II-II и III-III, отрезки, равные выигрышам

при соответствующих стратегия и стратегия . Построив, таким образом, все стратегии противника, мы по­лучим семейство плоскостей над треугольником (рис2) .

Для этого семейства также можно построить нижнюю границу выигрыша, как мы это делали в случае, и найти на этой границе точку N с максимальной высотой нал плоскостью . Эта высота и будет ценой игры .

Частоты стратегий в оптимальной стра­тегии будут определяться координатами (x, у) точки N, а именно:

Однако такое геометрическое построение даже для случая нелегко осуществимо и требует большой затраты времени и усилий воображения. В общем же случае игры оно переносится в - мерное пространство и теряет всякую наглядность, хотя употребление геометрической терминологии в ряде случаев может оказаться полезным. При решении игр на практике удобнее пользоваться не геометрическими аналогиями, а расчетными аналитическими методами, тем более, что для решения задачи на вычислительных машинах эти методы единственно пригодны.

Все эти методы по существу сводятся к решению задачи путем последовательных проб, но упорядочение последо­вательности проб позволяет построить алгоритм, приводящий к решению наиболее экономичным способом.

Здесь мы вкратце остановимся на одном расчетном методе решения игр - на так называемом методе «линейного программирования».

Для этого дадим сначала общую постановку задачи о нахождении решения игры . Пусть дана игра с т стратегиями игрока А и n стра­тегиями игрока В и задана платежная ма­трица

Требуется найти решение игры, т. е. две оптимальные смешанные стратегии игроков А и В

где (некоторые из чисел и могут быть равными нулю).

Наша оптимальная стратегия S* A должна обеспечивать нам выигрыш, не меньший , при любом поведении про­тивника, и выигрыш, равный , при его оптимальном пове­дении (стратегия S* B ).Аналогично стратегия S* B должна обе­спечивать противнику проигрыш, не больший , при любом нашем поведении и равный при нашем оптимальном пове­дении (стратегия S* A ).

Величина цены игры в данном случае нам неизвестна; будем считать, что она равна некоторому положительному числу. Полагая так, мы не нарушаем общности рассуждений; для того чтобы было > 0, очевидно, достаточно, чтобы все элементы матрицы были неотрицательными. Этого всегда можно добиться, прибавляя к элементам доста­точно большую положительную величину L;при этом цена игры увеличится на L, а решение не изменится.

Пусть мы выбрали свою оптимальную стратегию S* A . Тогда наш средний выигрыш при стратегии противника будет равен:

Наша оптимальная стратегия S* A обладает тем свойством, что при любом поведении противника обеспечивает выигрыш не меньший, чем ; следовательно, любое из чисел не может быть меньше . Получаем ряд условий:

(1)

Разделим неравенства (1) на положительную величину и обозначим:

Тогда условие (1) запишется виде

(2)

где - неотрицательные числа. Так как величины удовле­творяют условию

Мы хотим сделать свой гарантированный выигрыш максимально возможным; очевидно, при этом правая часть равенства (3) принимает минимальное значение.

Таким образом, задача нахождения решения игры сво­дится к следующей математической задаче: определить не­отрицательные величины , удовлетворяющие условиям (2), так, чтобы их сумма

была минимальной.

Обычно при решении задач, связанных с нахождением экстремальных значений (максимумов и минимумов), функцию дифференцируют и приравнивают производные нулю. Но такой прием в данном случае бесполезен, так как функ­ция Ф, которую нужно обратить в минимум, линейна, и ее производные по всем аргументам равны единице, т. е. нигде не обращаются в нуль. Следовательно, максимум функции достигается где-то на границе области изменения аргумен­тов, которая определяется требованием неотрицательности аргументов и условиями (2). Прием нахождения экстре­мальных значений при помощи дифференцирования непри­годен и в тех случаях, когда для решения игры опреде­ляется максимум нижней (или минимум верхней) границы выигрыша, как мы. например, делали при решении игр .Действительно, нижняя граница составлена из участков прямых линий, и максимум достигается не в точке, где производная равна нулю (такой точки вообще нет), а на границе интер­вала или в точке пересечения прямолинейных участков.

Для решения подобных задач, довольно часто встречаю­щихся на практике, в математике разработан специальный аппарат линейного программирования.

Задача линейного программирования ставится следующим образом.

Дана система линейных уравнений:

(4)

Требуется найти неотрицательные значения величин удовлетворяющие условиям (4) и вместе с тем обращающие в минимум заданную однородную линейную функцию величин (линейную форму):

Легко убедиться, что поставленная выше задача теории игр является частным случаем задачи линейного программирование при

С первого взгляда может показаться, что условия (2) не эквивалентны условиям (4), так как вместо знаков равенства они содержат знаки неравенства. Однако от знаков неравенства легко избавиться, вводя новые фиктивные неотрицательные переменные и записывая условия (2) в виде:

(5)

Форма Ф, которую нужно обратить в минимум, равна

Аппарат линейного программирования позволяет путем сравнительно небольшого числа последовательных проб подобрать величины , удовлетворяющие поставленным требованиям. Для большей ясности мы здесь продемонстрируем применение этого аппарата прямо на материале решения конкретных игр.

По учебнику Советова и Яковлева : «модель (лат. modulus - мера) - это объект-заместитель объекта-оригинала, обеспечивающий изучение некоторых свойств оригинала.» (с. 6) «Замещение одного объекта другим с целью получения информации о важнейших свойствах объекта-оригинала с помощью объекта-модели называется моделированием.» (с. 6) «Под математическим моделированием будем понимать процесс установления соответствия данному реальному объекту некоторого математического объекта, называемого математической моделью, и исследование этой модели, позволяющее получать характеристики рассматриваемого реального объекта. Вид математической модели зависит как от природы реального объекта, так и задач исследования объекта и требуемой достоверности и точности решения этой задачи.»

Наконец, наиболее лаконичное определение математической модели: "Уравнение , выражающее идею . "

Классификация моделей

Формальная классификация моделей

Формальная классификация моделей основывается на классификации используемых математических средств. Часто строится в форме дихотомий. Например, один из популярных наборов дихотомий :

и так далее. Каждая построенная модель является линейной или нелинейной, детерминированной или стохастической, … Естественно, что возможны и смешанные типы: в одном отношении сосредоточенные (по части параметров), в другом - распределённые модели и т. д.

Классификация по способу представления объекта

Наряду с формальной классификацией, модели различаются по способу представления объекта:

  • Структурные или функциональные модели

Структурные модели представляют объект как систему со своим устройством и механизмом функционирования. Функциональные модели не используют таких представлений и отражают только внешне воспринимаемое поведение (функционирование) объекта. В их предельном выражении они называются также моделями «чёрного ящика» Возможны также комбинированные типы моделей, которые иногда называют моделями «серого ящика».

Содержательные и формальные модели

Практически все авторы, описывающие процесс математического моделирования, указывают, что сначала строится особая идеальная конструкция, содержательная модель . Устоявшейся терминологии здесь нет, и другие авторы называют этот идеальный объект концептуальная модель , умозрительная модель или предмодель . При этом финальная математическая конструкция называется формальной моделью или просто математической моделью, полученной в результате формализации данной содержательной модели (предмодели). Построение содержательной модели может производиться с помощью набора готовых идеализаций, как в механике, где идеальные пружины, твёрдые тела, идеальные маятники, упругие среды и т. п. дают готовые структурные элементы для содержательного моделирования. Однако в областях знания, где не существует полностью завершенных формализованных теорий (передний край физики , биология , экономика , социология , психология , и большинство других областей), создание содержательных моделей резко усложняется.

Содержательная классификация моделей

Никакая гипотеза в науке не бывает доказана раз и навсегда. Очень чётко это сформулировал Ричард Фейнман :

«У нас всегда есть возможность опровергнуть теорию, но, обратите внимание, мы никогда не можем доказать, что она правильна. Предположим, что вы выдвинули удачную гипотезу, рассчитали, к чему это ведет, и выяснили, что все ее следствия подтверждаются экспериментально. Значит ли это, что ваша теория правильна? Нет, просто-напросто это значит, что вам не удалось ее опровергнуть.»

Если модель первого типа построена, то это означает что она временно признаётся за истину и можно сконцентрироваться на других проблемах. Однако это не может быть точкой в исследованиях, но только вре́менной паузой: статус модели первого типа может быть только вре́менным.

Тип 2: Феноменологическая модель (ведем себя так, как если бы …)

Феноменологическая модель содержит механизм для описания явления. Однако этот механизм недостаточно убедителен, не может быть достаточно подтверждён имеющимися данными или плохо согласуется с имеющимися теориями и накопленным знанием об объекте. Поэтому феноменологические модели имеют статус вре́менных решений. Считается, что ответ всё ещё неизвестен и необходимо продолжить поиск «истинных механизмов». Ко второму типу Пайерлс относит, например, модели теплорода и кварковую модель элементарных частиц.

Роль модели в исследовании может меняться со временем, может случиться так, что новые данные и теории подтвердят феноменологические модели и те будут повышены до статуса гипотезы. Аналогично, новое знание может постепенно прийти в противоречие с моделями-гипотезами первого типа и те могут быть переведены во второй. Так, кварковая модель постепенно переходит в разряд гипотез; атомизм в физике возник как временное решение, но с ходом истории перешёл в первый тип. А вот модели эфира , проделали путь от типа 1 к типу 2, а сейчас находятся вне науки.

Идея упрощения очень популярна при построении моделей. Но упрощение бывает разным. Пайерлс выделяет три типа упрощений в моделировании.

Тип 3: Приближение (что-то считаем очень большим или очень малым )

Если можно построить уравнения, описывающие исследуемую систему, то это не значит, что их можно решить даже с помощью компьютера. Общепринятый прием в этом случае - использование приближений (моделей типа 3). Среди них модели линейного отклика . Уравнения заменяются линейными. Стандартный пример - закон Ома .

А вот и тип 8, широко распространенный в математических моделях биологических систем.

Тип 8: Демонстрация возможности (главное - показать внутреннюю непротиворечивость возможности )

Это тоже мысленные эксперименты с воображаемыми сущностями, демонстрирующие, что предполагаемое явление согласуется с базовыми принципам и внутренне непротиворечиво. В этом основное отличие от моделей типа 7, которые вскрывают скрытые противоречия.

Один из самых знаменитых таких экспериментов - геометрия Лобачевского (Лобачевский называл её «воображаемой геометрией»). Другой пример - массовое производство формально - кинетических моделей химических и биологических колебаний, автоволн и др. Парадокс Эйнштейна - Подольского - Розена был задуман как модель 7 типа, для демонстрации противоречивости квантовой механики. Совершенно незапланированным образом он со временем превратился в модель 8 типа - демонстрацию возможности квантовой телепортации информации.

Пример

Рассмотрим механическую систему, состоящую из пружины, закрепленной с одного конца, и груза массой m , прикрепленного к свободному концу пружины. Будем считать, что груз может двигаться только в направлении оси пружины (например, движение происходит вдоль стержня). Построим математическую модель этой системы. Будем описывать состояние системы расстоянием x от центра груза до его положения равновесия. Опишем взаимодействие пружины и груза с помощью закона Гука (F = − k x ) после чего воспользуемся вторым законом Ньютона , чтобы выразить его в форме дифференциального уравнения :

где означает вторую производную от x по времени: .

Полученное уравнение описывает математическую модель рассмотренной физической системы. Эта модель называется «гармоническим осциллятором ».

По формальной классификация эта модель линейная, детерминисткая, динамическая, сосредоточенная, непрерывная. В процессе её построения мы сделали множество допущений (об отсутствии внешних сил, отсутствии трения, малости отклонений и т.~д.), которые в реальности могут не выполняться.

По отношению к реальности это, чаще всего, модель типа 4 упрощение («опустим для ясности некоторые детали»), поскольку опущены некоторые существенные универсальные особенности (например, диссипация). В некотором приближении (скажем, пока отклонение груза от равновесия невелико, при малом трении, в течение не слишком большого времени и при соблюдении некоторых других условий), такая модель достаточно хорошо описывает реальную механическую систему, поскольку отброшенные факторы оказывают пренебрежимо малое влияние на её поведение. Однако модель можно уточнить, приняв во внимание какие-то из этих факторов. Это приведет к новой модели, с более широкой (хотя и снова ограниченной) областью применимости.

Впрочем, при уточнении модели сложность её математического исследования может существенно возрасти и сделать модель фактически бесполезной. Зачастую более простая модель позволяет лучше и глубже исследовать реальную систему, чем более сложная (и, формально, «более правильная»).

Если применять модель гармонического осциллятора к объектам, далёким от физики, её содержательный статус может быть другим. Например, при приложении этой модели к биологическим популяциям, её следует отнести, скорее всего, к типу 6 аналогия («учтём только некоторые особенности»).

Жёсткие и мягкие модели

Гармонический осциллятор - пример так называемой «жёсткой» модели. Она получена в результате сильной идеализации реальной физической системы. Для решения вопроса о её применимости необходимо понять, насколько существенными являются факторы, которыми мы пренебрегли. Иными словами, нужно исследовать «мягкую» модель, получающуюся малым возмущением «жёсткой». Она может задаваться, например, следующим уравнением:

Здесь - некоторая функция, в которой может учитываться сила трения или зависимость коэффициента жёсткости пружины от степени её растяжения, - некоторый малый параметр. Явный вид функции f нас в данный момент не интересует. Если мы докажем, что поведение мягкой модели принципиально не отличается от поведения жёсткой (вне зависимости от явного вида возмущающих факторов, если они достаточно малы), задача сведется к исследованию жёсткой модели. В противном случае применение результатов, полученных при изучении жёсткой модели, потребует дополнительных исследований. Например, решением уравнения гармонического осциллятора являются функции вида , то есть колебания с постоянной амплитудой. Следует ли из этого, что реальный осциллятор будет бесконечно долго колебаться с постоянной амплитудой? Нет, поскольку рассматривая систему со сколь угодно малым трением (всегда присутствующим в реальной системе), мы получим затухающие колебания . Поведение системы качественно изменилось.

Если система сохраняет свое качественное поведение при малом возмущении, говорят, что она структурно устойчива. Гармонический осциллятор - пример структурно-неустойчивой (негрубой) системы. Тем не менее, эту модель можно применять для изучения процессов на ограниченных промежутках времени.

Универсальность моделей

Важнейшие математические модели обычно обладают важным свойством универсальности : принципиально разные реальные явления могут описываться одной и той же математической моделью. Скажем, гармонический осциллятор описывает не только поведение груза на пружине, но и другие колебательные процессы, зачастую имеющие совершенно иную природу: малые колебания маятника, колебания уровня жидкости в U -образном сосуде или изменение силы тока в колебательном контуре. Таким образом, изучая одну математическую модель, мы изучаем сразу целый класс описываемых ею явлений. Именно этот изоморфизм законов, выражаемых математическими моделями в различных сегментах научного знания, подвиг Людвига фон Берталанфи на создание «Общей теории систем ».

Прямая и обратная задачи математического моделирования

Существует множество задач, связанных с математическим моделированием. Во-первых, надо придумать основную схему моделируемого объекта, воспроизвести его в рамках идеализаций данной науки. Так, вагон поезда превращается в систему пластин и более сложных тел из разных материалов, каждый материал задается как его стандартная механическая идеализация (плотность, модули упругости, стандартные прочностные характеристики), после чего составляются уравнения, по дороге какие-то детали отбрасываются, как несущественные, производятся расчёты, сравниваются с измерениями, модель уточняется, и так далее. Однако для разработки технологий математического моделирования полезно разобрать этот процесс на основные составные элементы.

Традиционно выделяют два основных класса задач, связанных с математическими моделями: прямые и обратные.

Прямая задача : структура модели и все её параметры считаются известными, главная задача - провести исследование модели для извлечения полезного знания об объекте. Какую статическую нагрузку выдержит мост? Как он будет реагировать на динамическую нагрузку (например, на марш роты солдат, или на прохождение поезда ни различной скорости), как самолёт преодолеет звуковой барьер, не развалится ли он от флаттера , - вот типичные примеры прямой задачи. Постановка правильной прямой задачи (задание правильного вопроса) требует специального мастерства. Если не заданы правильные вопросы, то мост может обрушиться, даже если была построена хорошая модель для его поведения. Так, в 1879 г. в Англии обрушился металлический мост через реку Тей , конструкторы которого построили модель моста, рассчитали его на 20-кратный запас прочности на действие полезной нагрузки, но забыли о постоянно дующих в тех местах ветрах. И через полтора года он рухнул.

В простейшем случае (одно уравнение осциллятора, например) прямая задача очень проста и сводится к явному решению этого уравнения.

Обратная задача : известно множество возможных моделей, надо выбрать конкретную модель на основании дополнительных данных об объекте. Чаще всего, структура модели известна, и необходимо определить некоторые неизвестные параметры. Дополнительная информация может состоять в дополнительных эмпирических данных, или в требованиях к объекту (задача проектирования ). Дополнительные данные могут поступать независимо от процесса решения обратной задачи (пассивное наблюдение ) или быть результатом специально планируемого в ходе решения экперимента (активное наблюдение ).

Одним из первых примеров виртуозного решения обратной задачи с максимально полным использованием доступных данных был построенный И. Ньютоном метод восстановления сил трения по наблюдаемым затухающим колебаниям.

Дополнительные примеры

где x s - «равновесный» размер популяции, при котором рождаемость в точности компенсируется смертностью. Размер популяции в такой модели стремится к равновесному значению x s , причем такое поведение структурно устойчиво.

Эта система имеет равновесное состояние , когда число кроликов и лис постоянно. Отклонение от этого состояния приводит к колебаниям численности кроликов и лис, аналогичным колебаниям гармонического осциллятора . Как и в случае гармонического осциллятора, это поведение не является структурно устойчивым : малое изменение модели (например, учитывающее ограниченность ресурсов, необходимых кроликам) может привести к качественному изменению поведения . Например, равновесное состояние может стать устойчивым, и колебания численности будут затухать . Возможна и противоположная ситуация, когда любое малое отклонение от положения равновесия приведет к катастрофическим последствиям, вплоть до полного вымирания одного из видов. На вопрос о том, какой из этих сценариев реализуется, модель Вольтерра - Лотки ответа не дает: здесь требуются дополнительные исследования.

Примечания

  1. «A mathematical representation of reality»(Encyclopaedia Britanica)
  2. Новик И. Б. , О философских вопросах кибернетического моделирования. М., Знание, 1964.
  3. Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  4. Самарский А. А. , Михайлов А. П. Математическое моделирование. Идеи. Методы. Примеры. . - 2-е изд., испр.. - М.: Физматлит, 2001. - ISBN 5-9221-0120-X
  5. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  6. Wiktionary: mathematical model
  7. CliffsNotes
  8. Model Reduction and Coarse-Graining Approaches for Multiscale Phenomena, Springer, Complexity series, Berlin-Heidelberg-New York, 2006. XII+562 pp. ISBN 3-540-35885-4
  9. «Теория считается линейной или нелинейной в зависимости от того, какой - линейный или нелинейный - математический аппарат, какие - линейные или нелинейные - математические модели она использует. … ез отрицание последней. Современный физик, доведись ему заново создавать определение столь важной сущности, как нелинейность, скорее всего, поступил бы иначе, и, отдав предпочтение нелинейности как более важной и распространенной из двух противоположностей, определил бы линейность как „не нелинейность“.» Данилов Ю. А. , Лекции по нелинейной динамике. Элементарное введение. Серия «Синергетика: от прошлого к будущему». Изд.2. - M.: URSS, 2006. - 208 с. ISBN 5-484-00183-8
  10. «Динамические системы, моделируемые конечным числом обыкновенных дифференциальных уравнений, называют сосредоточенными или точечными системами. Они описываются с помощью конечномерного фазового пространства и характеризуются конечным числом степеней свободы. Одна и та же система в различных условиях может рассматриваться либо как сосредоточенная, либо как распределенная. Математические модели распределенных систем - это дифференциальные уравнения в частных производных, интегральные уравнения или обыкновенные уравнения с запаздывающим аргументом. Число степеней свободы распределенной системы бесконечно, и требуется бесконечное число данных для определения ее состояния.» Анищенко В. С. , Динамические системы, Соросовский образовательный журнал, 1997, № 11, с. 77-84.
  11. «В зависимости от характера изучаемых процессов в системе S все виды моделирования могут быть разделены на детерминированные и стохастические, статические и динамические, дискретные, непрерывные и дискретно-непрерывные. Детерминированное моделирование отображает детерминированные процессы, то есть процессы, в которых предполагается отсутствие всяких случайных воздействий; стохастическое моделирование отображает вероятностные процессы и события. … Статическое моделирование служит для описания поведения объекта в какой-либо момент времени, а динамическое моделирование отражает поведение объекта во времени. Дискретное моделирование служит для описания процессов, которые предполагаются дискретными, соответственно непрерывное моделирование позволяет отразить непрерывные процессы в системах, а дискретно-непрерывное моделирование используется для случаев, когда хотят выделить наличие как дискретных, так и непрерывных процессов.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2
  12. Обычно в математической модели отражается структура (устройство) моделируемого объекта, существенные для целей исследования свойства и взаимосвязи компонентов этого объекта; такая модель называется структурной. Если же модель отражает только то, как объект функционирует - например, как он реагирует на внешние воздействия,- то она называется функциональной или, образно, черным ящиком. Возможны и модели комбинированного типа. Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4
  13. «Очевидный, но важнейший начальный этап построения или выбора математической модели - это получение по возможности более четкого представления о моделируемом объекте и уточнение его содержательной модели, основанное на неформальных обсуждениях. Нельзя жалеть времени и усилий на этот этап, от него в значительной мере зависит успех всего исследования. Не раз бывало, что значительный труд, затраченный на решение математической задачи, оказывался малоэффективным или даже потраченным впустую из-за недостаточного внимания к этой стороне дела.» Мышкис А. Д. , Элементы теории математических моделей. - 3-е изд., испр. - М.: КомКнига, 2007. - 192 с ISBN 978-5-484-00953-4, с. 35.
  14. «Описание концептуальной модели системы. На этом подэтапе построения модели системы: а) описывается концептуальная модель М в абстрактных терминах и понятиях; б) дается описание модели с использованием типовых математических схем; в) принимаются окончательно гипотезы и предположения; г) обосновывается выбор процедуры аппроксимации реальных процессов при построении модели.» Советов Б. Я., Яковлев С. А. , Моделирование систем: Учеб. для вузов - 3-е изд., перераб. и доп. - М.: Высш. шк., 2001. - 343 с. ISBN 5-06-003860-2, с. 93.

Виды математических моделей

В зависимости от того, какими средствами, при каких условиях и по отношению к каким объектам познания реализуется способность моде­лей отображать действительность, возникает их большое разнообразие, а вместе с ним - классификации. Путем обобщения существующих клас­сификаций выделим базовые модели по применяемому математическому аппарату, на основе которых получают раз­витие специальные модели (рисунок 8.1).

Рисунок 8.1 - Формальная классификация моделей

Математические модели отображают изучаемые объекты (процессы, системы) в виде явных функциональных соотношений: алгебраических равенств и неравенств, интегральных и дифферен­циальных, конечно-разностных и других математических выражений (закон распределения случайной величины, регрессионные модели и т.д.), а также отношений математической логики.

В зависимости от двух фундаментальных признаков построения математической модели - вида описания причинно-следственных связей и изменений их во вре­мени - различают детерминистические и стохастические, статические и динамические модели (рисунок 8.2).

Цель схемы, представленной на рисунке, - отобразить следующие особенности:

1) математические модели могут быть и детерминистическими, и стохастическими;

2) детерминистические и стохастические модели могут быть и статическими, и динамическими.

Математическая модель называется детерминистической (детерминированной) , если все ее параметры и переменные являются однозначно определяемыми ве­личинами, а также выполняется условие полной определенности ин формации. В противном случае, в условиях неопределенности инфор­мации, когда параметры и переменные модели - случайные величи­ны, модель называется стохастической (вероятностной) .

Рисунок 8.2 – Классы математических моделей

Модель называется динами­ческой , если как минимум одна переменная изменяется по периодам времени, и статической , если принимается гипотеза, что переменные не изменяются по периодам времени.

В простейшем случае балансовые модели выступают в виде уравнения баланса, где в левой части располагается сумма каких-либо поступлений, а в правой - расходная часть также в виде суммы. Например, в таком виде представляется годовой бюджет организации.

На основе статистических данных могут строиться не только балан­совые, но и корреляционно-регрессионные модели.

Если функция Y зависит не только от переменных х 1 , х 2 , … х n , но и от других факторов, связь между Y и х 1 , х 2 , … х n является неточной или корреляционной в отличие от точной или функциональной связи. Корреляционными, например, в большинстве случаев являются связи, наблюда­ющиеся между выходными параметрами ОПС и факторами ее внутренней и внешней среды (см. тему 5).

Корреляционно-регрессионные модели получают при исследовании влияния целого комплекса факторов на величину того или иного признака путем примене­ния статистического аппарата. При этом ставится задача не только установить корреляционную связь, но и выразить эту связь аналитически, то есть подобрать уравнения, описываю­щие данную корреляционную зависимость (уравнение регрессии).

Для нахождения численного значения параметров уравне­ния регрессии пользуются методом наименьших квадратов. Суть этого метода состоит в том, чтобы выбрать такую линию, при которой сумма квадратов отклонений от нее ординат Y отдель­ных точек была бы наименьшей.

Корреляционно-регрессионные модели часто используются при исследовании явлений, когда возникает необходимость установить зависимость между соответствующими характеристиками в двух и более рядах. При этом преимущественно используется парная и множественная линейная регрессия вида

y = a 1 x 1 + a 2 x 2 + … + a n x n + b .

В результате применения метода наименьших квадратов ус­танавливаются значения параметров a или a 1 , a 2 , …, a n и b, а затем выполняются оценки точности аппроксимации и значимости полученного уравнения регрессии.

В особую группу выделяют графоаналитиче­ские модели . Они используют различные графические изображения и поэтому обладают хорошей наглядностью.

Теория графов - одна из теорий дискретной математики, изучает графы, под которыми понимается совокупность точек и линий их соединяющих. Граф - это самостоятельный математи­ческий объект (впервые ввел Кёниг Д.). На основе теории гра­фов наиболее часто строят древовидные и сетевые модели.

Древовидная модель (дерево) - это неориентированный связ­ный граф, не содержащий петель и циклов. Примером такой модели является дерево целей.

Сетевые модели нашли широкое применение в управлении производством работ. Сетевые модели (графики) отражают последовательность выполнения работ и продолжи­тельность каждой работы (рисунок 8.3).

Рисунок 8.3 - Сетевая модель производства работ

Каждая линия сетевого графика - это некоторая работа. Цифра рядом с ней означает продолжительность ее выполнения.

Сетевые модели позволяют найти так называемый критический путь и оптимизировать график производства работ по времени при ограничениях на другие ресурсы.

Сетевые модели могут быть детерминированными и стоха­стическими. В последнем случае продолжительности выполнения работ задаются законами распределения случайных величин.

Оптимизационные модели служат для определения оптимальной траектории достижения системой поставленной цели при наложении некоторых ограничений на управление ее поведениям и движением. В этом случае оптимизационные модели описывают различного рода задачи нахождения экстремума некоторой целевой функции (критерия оптимизации).

Для выявления оптимального способа достижения цели управления в условиях ограниченных ресурсов – технических, материальных, трудовых и финансовых – применяют методы исследования операций. К ним относятся методы математическо­го программирования (линейное и нелинейное, целочисленное, ди­намическое и стохастическое программирование), аналитические и вероятностно-статистические методы, сетевые методы, методы тео­рии массового обслуживания, теории игр (теории конфликтных си­туаций) и др.

Оптимизационные модели применяются для объемного и календар­ного планирования, управления запасами, распределения ресурсов и работ, замены, параметризации и стандартизации оборудования, рас­пределения потоков товарных поставок на транспортной сети и дру­гих задач управления.



Одним из основных достижений теории исследования операций считается типизация моделей управления и методов решения задач. Например, для решения транспортной задачи, в зависимости от ее раз­мерности, разработаны типовые методы - метод Фогеля, метод по­тенциалов, симплекс-метод. Также при решении задачи управления запасами, в зависимости от ее постановки, могут использоваться ана­литические и вероятностно-статистические методы, методы динами­ческого и стохастического программирования.

В управлении особое значение придается сетевым методам плани­рования. Эти методы позволили найти новый и весьма удобный язык для описания, моделирования и анализа сложных многоэтапных работ и проектов. В исследовании операций значительное место отво­дится совершенствованию управления сложными системами с при­менением методов теории массового обслуживания (см. раздел8.3) и аппарата марков­ских процессов.

Модели марковских случайных процессов - система дифференци­альных уравнений, описывающих функционирование системы или ее процессов в виде множества упорядоченных состояний на некоторой траектории поведения системы. Этот класс моделей широко исполь­зуется при математическом моделировании функционирования слож­ных систем.

Модели теории игр служат для выбора оптимальной стратегии в ус­ловиях ограниченной случайной информации или полной неопреде­ленности.

Игра - математическая модель реальной конфликтной си­туации, разрешение которой ведется по определенным правилам, алгоритмам, описывающим некоторую стратегию поведения лица, принимающего решение в условиях неопределенности.

Различают «игры с природой» и «игры с противником». Исходя из ситуации опре­деляются методы и критерии оценки принятия решений. Так, при «играх с природой» применяют критерии: Лапласа, максиминный (кри­терий Вальда) и минимаксный, Гурвица и Сэвиджа и ряд других алго­ритмических правил. При «играх с противником» для принятия реше­ний используются платежные матрицы, максиминный и минимаксный критерии, а также специальные математические преобразования в свя­зи с тем, что лицу, принимающему решение, противостоит недобро­желательный противник.

Рассмотренные типы математических моделей не охватыва­ют всего их возможного многообразия, а лишь характеризуют отдельные виды в зависимости от принятого аспекта классифи­кации. В.А.Кардашем была предпринята попытка создания сис­темы классификации моделей по четырем аспектам детализации (рисунок 8.4).

А - модели без пространственной дифференциации параметров;

В - модели с пространственной дифференци­ацией параметров

Рисунок 8.4 - Классификация моделей по четырем аспектам детализации

С развитием вычислительных средств одним из распространенных методов принятия решений выступает деловая игра, представляющая собой численный эксперимент с активным участием человека. Существуют сотни деловых игр. Они применяются для изу­чения целого ряда проблем управления, экономики, теории организа­ции, психологии, финансов и торговли.

МАТЕМАТИЧЕСКАЯ МОДЕЛЬ - представление изучаемого в конкретно-научном знании явления или процесса на языке математических понятий. При этом ряд свойств исследуемого явления предполагается получить на пути исследования собственно математических характеристик модели. Построение М.м. чаще всего диктуется необходимостью иметь количественный анализ изучаемых явлений и процессов, без которого, в свою очередь, невозможно делать проверяемые на опыте предсказания об их протекании.

Процесс математического моделирования, как правило, проходит следующие этапы. На первом этапе происходит выявление связей между основными параметрами будущей М.м. Речь идет прежде всего о качественном анализе исследуемых явлений и формулировании закономерностей, связывающих основные объекты исследования. На этой основе проводится выявление объектов, допускающих количественное описание. Этап завершается построением гипотетической модели, другими словами, записью на языке математических понятий качественных представлений о взаимосвязях между основными объектами модели, которые могут быть количественно охарактеризованы.

На втором этапе происходит исследование собственно математических задач, к которым приводит построенная гипотетическая модель. Главное на данном этапе - получить в результате математического анализа модели эмпирически проверяемые теоретические следствия (решение прямой задачи). При этом нередки случаи, когда для построения и исследования М.м. в различных областях конкретно-научного знания применяется один и тот же математический аппарат (например, дифференциальные уравнения) и возникают однотипные, хотя и весьма нетривиальные в каждом конкретном случае, математические проблемы. Кроме того, на этом этапе огромное значение приобретает использование быстродействующей вычислительной техники (ЭВМ), которая дает возможность получить приближенное решение задач, часто невозможное в рамках чистой математики, с недоступной ранее (без применения ЭВМ) степенью точности.

Для третьего этапа характерна деятельность по выявлению степени адекватности построенной гипотетической М.м. тем явлениям и процессам, для исследования которых она была предназначена. А именно, в том случае, если все параметры модели были заданы, исследователи пытаются выяснить, насколько, в пределах точности наблюдений, их результаты согласуются с теоретическими следствиями модели. Отклонения, выходящие за пределы точности наблюдений, свидетельствуют о неадекватности модели. Однако нередки случаи, когда при построении модели ряд ее параметров остается

неопределенным. Задачи, в которых устанавливаются параметрические характеристики модели таким образом, чтобы теоретические следствия были сопоставимы в пределах точности наблюдений с результатами эмпирических проверок, называют обратными задачами.

На четвертом этапе с учетом выявления степени адекватности построенной гипотетической модели и появления новых экспериментальных данных об изучаемых явлениях происходит последующий анализ и модификация модели. Здесь принимаемое решение варьируется от безусловного отказа от применяемых математических средств до принятия построенной модели в качества фундамента для построения принципиально новой научной теории.

Первые М.м. появились еще в античной науке. Так, для моделирования Солнечной системы греческий математик и астроном Евдокс придал каждой планете четыре сферы, комбинация движения которых создавала гиппопеду - математическую кривую, сходную с наблюдаемым движением планеты. Поскольку, однако, эта модель не могла объяснить все наблюдаемые аномалии в движении планет, позже она была заменена эпициклической моделью Апполония из Перги. Последнюю модель использовал в своих исследованиях Гиппарх, а затем, подвергнув ее некоторой модификации, и Птолемей. Эта модель, как и ее предшественницы, основывалась на убеждении, что планеты совершают равномерные круговые движения, наложение которых и объясняло видимые нерегулярности. При этом следует отметить, что модель Коперника была принципиально новой лишь в качественном смысле (но не как М.м.). И лишь Кеплер, основываясь на наблюдениях Тихо Браге, построил новую М.м. Солнечной системы, доказав, что планеты движутся не по круговым, а по эллиптическим орбитам.

В настоящее время наиболее адекватными признаются М.м., построенные для описания механических и физических явлений. Об адекватности М.м. за пределами физики можно, за некоторыми исключениями, говорить с изрядной долей осторожности. Тем не менее, фиксируя гипотетичность, а часто и просто неадекватность М.м. в различных областях знания, не следует недооценивать их роль в развитии науки. Нередки случаи, когда даже далекие от адекватности модели в значительной мере организовывали и стимулировали дальнейшие исследования, наряду с ошибочными выводами содержавшими и те зерна истины, которые вполне оправдывали усилия, затраченные на разработку этих моделей.

Литература:

Математическое моделирование. М., 1979;

Рузавин Г.И. Математизация научного знания. М., 1984;

Тутубалин В.Н., Барабашева Ю.М., Григорян А.А., Девяткова Г.Н.,Угер Е. Г. Дифференциальные уравнения в экологии: историко-методологическое размышление // Вопросы истории естествознания и техники. 1997. №3.

Словарь философских терминов. Научная редакция профессора В.Г. Кузнецова. М., ИНФРА-М, 2007, с. 310-311.