Кпд фотосинтеза в среднем составляет. Характеристика основных показателей фотосинтеза. Ждать осталось недолго

«В связи с нашей проблемой, с той проблемой, которую я вначале поставил - как же быть со всё нарастающей численностью людей на Земле, возникает вопрос: «Что может большой биологический круговорот в биосфере давать людям?» Эту проблему можно рассмотреть по трём основным пунктам или местам только что описанной мною биосферы:

1) на энергетическом входе,
2) в биологическом круговороте биосферы и
3) на выходе из биологического круговорота в геологию.

Начнём с энергетического входа. На поверхность Земли падает определённое количество солнечной энергии. Конечно, сработать биологически может только та её часть, которая поглощается организмами-автотрофами. Из всей падающей на Землю солнечной энергии лишь определённый процент (точно его подсчитать не так-то легко), скажем, примерно от трёх до восьми процентов , поглощается зелёными растениями. Из поглощенной энергии не вся идёт на фотосинтез. Как и в технике, в живой природе мы можем говорить о КПД - о коэффициенте полезного действия фотосинтеза. Он составляет (опять-таки подсчитать его очень нелегко) примерно от двух до восьми процентов .

При этом очень существенно заметить, что разные виды и группы растений обладают разными КПД.

Так вот, уже на входе человечество может кое-что сделать для того, чтобы растительность поглощала больше поступающей на Землю солнечной энергии, и для этого необходимо повысить плотность зелёного покрова Земли. Пока же мы, люди, в своей хозяйственной, промышленной деятельности и в быту скорее сокращаем плотность зелёного покрова Земли, небрежно обращаясь с лесами, лугами, полями, строительными площадками. Недостаточно озеленяя пустыни, степи, мы снижаем плотность зелёного покрова. Но как раз уровень современной техники и промышленности теоретически позволяет проделать обратную работу - повышать всемерно на всех пригодных для этого площадях земной поверхности и в водоёмах, особенно пресноводных, плотность зелёного покрова.

Причём повысить его, как показывают расчёты, можно минимум в полтора, может быть, даже и в два раза и тем самым повысить биологическую производительность Земли.

Выше было сказано, что КПД - коэффициенты полезного действия - разных видов растений могут быть очень различны, варьируя от двух до восьми, а у ряда форм растений и более процентов. И здесь открывается для человечества ещё одна возможность: разумно, конечно, на основе предварительного точного изучения КПД различных видов растений специалистами-физиологами стараться повышать процент участия в растительных сообществах, покрывающих Землю, растений с наивысшим, а не наинизшим КПД. Этим опять-таки можно на какую-то цифру, в полтора раза, или меньше, или больше, повысить уже тот процент солнечной энергии, который усваивается растениями и через фотосинтез растений ведёт к производству органического вещества на Земле.

Значит, уже на входе в биосферу, на энергетическом входе можно выиграть, повысить биологическую производительность Земли, скажем, в два раза. Напомню - это то, что будет нам совершенно необходимо через сто лет».

Тимофеев-Ресовский Н.В., Воспоминания, М., «Вагриус», 2008 г., с. 344-345.

Характеристика основных показателей фотосинтеза:

интенсивности и продуктивности.

Фотосинтез характеризуется следующими количественными показателями:

интенсивностью фотосинтеза,

продуктивностью фотосинтеза.

Интенсивность (скорость) фотосинтеза - это количество углекислого газа, которое усваивается единицей листовой поверхности за единицу времени. В зависимости от вида растения этот показатель колеблется от 5 до 25 мг СО2/дм2. ч.

Продуктивность фотосинтеза - это отношение суточного увеличения массы всего растения (в граммах) к площади листьев. В среднем эта величина составляет от 5 до 12 г сухого вещества на 1 м2 листовой поверхности в сутки.

Существует большое количество методов определения этих количественных показателей.

Интенсивность фотосинтеза можно определять:

газометрическими методами,

радиометрическими методами.

С помощью газометрических методов можно определить либо количество усвоенного углекислого газа, либо количество выделенного кислорода. При этом используют как весовые показатели поглощаемых или выделяемых газов, так и объемные показатели, показатели давления, показатели окраски, показатели теплопроводности определяемых газов.

С помощью радиометрических методов определяют интенсивность поглощения С14О2 растением по наличию в нем С14 или изменение радиоактивности газовой смеси.

Продуктивность фотосинтеза определяют по накоплению ассимилятов в растении. При этом используют такие методы, как:

изменение количества сухого вещества высечек из листа через определенный временной промежуток,

накопление углеводов в листе через определенный временной промежуток,

изменение теплоты сгорания сухого вещества листьев за период экспозиции их на свету.

В процессе вегетации интенсивность и продуктивность фотосинтеза возрастают постепенно от начала развития, достигают максимума в фазе цветения-плодообразования, а затем постепенно убывают.

Усвоение растением фотосинтетически активной радиации.

Фотосинтетически активная радиация (ФАР) - это та часть солнечного излучения, которая способна поглощаться хлорофиллами в процессе фотосинтеза. ФАР имеет спектр волн от 380 до 710 нм и состоит из прямыцх солнечных лучей и рассеянного света, интенсивность которого равна 1/3 прямой солнечной радиации. В рассеянном свете на долю ФАР приходится до 90%, то есть рассеянный свет в отличие от прямых солнечных лучей может быть поглощен растением почти полностью.

Интенсивность фотосинтеза максимальна в красной части спектра и минимальна в синей и зеленой частях.

ФАР по разному поглощается листьями разных растений. Этот процесс определяется количественным и качественным составом пигментов в листе. Утром и вечером фотосинтез у растений с достаточным запасом хлорофилла наиболее интенсивен.

О степени использования растением фотохимической активности хлорофилла судят по ассимиляционному числу - то есть по количеству углекислого газа, ассимилированного единицей хлорофилла в единицу времени.

У растений с темно-зелеными листьями ассимиляционное число невелико, это растения, обитающие в основном в тени, у растений со светло-зеленой окраской - этот показатель значительно выше, так как это светолюбивые растения.

Основное поглощение ФАР происходит в верхних ярусах посева, так же и содержится большее количество хлорофилла.

Поглощение лучистой энергии листом выражается формулой:

где Q - количество радиации, падающей на лист, R - отраженная радиация, в%, Т - пропущенная радиация, в%, А - поглощенная радиация, в%. Все три показателя зависят от содержания хлорофилла в листе.

Фотосинтез возможен при минимальной интенсивности света, при увеличении интенсивности света до 1/3 от полного солнечного освещения интенсивность фотосинтеза возрастает, при еще более высокой освещенности интенсивность фотосинтеза повышается незначительно, а при максимальном освещении наступает световое насыщение фотосинтеза и вступает в действие механизм фотодыхания.

Общее количество солнечной радиации, падающее на 1 га за период вегетации, составляет 21.109 кДж, из них ФАР - только 8.109 кДж, то есть всего около одной трети.

Количество ФАР, поглощенной посевом определяют по формуле:

П = Q - R - Тп + Rп

где П - поглощенная посевом радиация, Q - суммарная радиация, падающая на посев, R - радиация, отраженная от посева и вышедшая за пределы его верхней границы, Тп - радиация, проникшая к почве, Rп - радиация, отраженная от почвы под растительностью.

Коэффициент поглощения энергии ФАР (Qп) посевом определяют делением обеих частей формулы на Q:

Qп = П/Q = 1 - R/Q - Тп/Q + Rп/Q,

где R/Q - альбедо посева, показывающее, какая доля падающей радиации отражается посевом, Тп/Q- коэффициент пропускания, показывающий, какая доля падающей радиации (Q) достигает почвы под растительностью, Rп/Q - альбедо почвы под растительностью.

Эффективность фотосинтеза можно характеризовать коэффициентом полезного действия, который определяют по формуле:

Е% (КПД) = В.100/А,

где А - количество энергии, поступившей за период вегетации на 1 га посева, или энергии, которая была поглощена посевом, в кДж, В - количество энергии, накопившейся в органической массе урожая (биологического или хозяйственного), в кДж.

Доказано, что для образования продуктов фотосинтеза при всех благоприятных условиях (орошение, высокая концентрация СО2) солнечная энергия используется только на 2%. В среднем КПД фотосинтеза сельскохозяйственных растений в реальных условиях составляет около 0,5-1% (то есть около 16 кДж/м2 в час), теоретически же возможно повышение уровня этого показателя до 4-6%. Одной из самых насущных задач, стоящих перед практическим сельскохозяйственным производством, и является повышение эффективности фотосинтеза.

Фотосинтезом непосредственно управлять практически невозможно, но косвенными путями можно.

    Регулирование экологических факторов (свет, температура, СО 2 , Н 2 О, минеральное питание и др.)

    Создание посевов с оптимальными параметрами для фотосинтеза:

    1. Площадь листьев. ИЛП должен быть не менее 4-5, т.е. на 1 га площадь листьев должна составлять 40-50 тыс. м 2 .

      Оптисеская плотность посевов, которая позволяет лучше использовать свет. Это достигается нормами высева семян, что позволяет формировать или загущенные (например, на семенных участках картофеля), или более изреженные посевы (например, семенные посевы зерновых).

      Большую роль играет форма расположения листьев на растении. Плохо как с горизонтальным, так и строго вертикальным (лук) расположением. Лучше – воронкообразная как у кукурузы, зерновых.

Большую роль играет лист флага – самый верхний лист у зерновых. За счет его работы формируется около 50 % продуктов фотосинтеза после цветения, в период налива зерна.

    Продление периода активной вегетации растений путем высадки рассадой, проращенными клубнями, ранними сроками сева. Необходимо поддерживать растения в активном физиологическом состоянии.

В формировании урожая участвуют не только листья, но и колосья, стебли и даже ости, в которых протекает фотосинтез. Их доля различна, но вполне ощутимая.

    Внедрение принципиально новых видов посевов, в которых продуктивность растений возрастает в 1,5-2 раза за счет более высокой фотосинтетической деятельности. Такими являются узкополосные посевы: чередование полос шириной около 1 м высокостебельных культур (зерновые) и пропашных (свекла, картофель и др.) В таких посевах улучшается использование света за счет световых боковых эффектов, повышается концентрация СО 2 за счет продувания посевов и внесения органики под пропашные культуры и ряд других преимуществ.

Фотосинтез является основным высокорентабельным способом использования солнечной энергии.

Зависимость фотосинтеза от факторов внешней среды и особенностей растений

Зависимость ИФ от содержания ХЛ объясняется показателем ассимиляционное число (АЧ) или число Вильштеттера. АЧ – количество ассимилированной листом СО 2 за 1 час на единицу содержащегося хлорофилла. Чем выше содержание хлорофилла, тем ниже содержание АЧ. У растений со светло-зелеными листьями величина АЧ 60-80, у темно-зеленых – 5-7 мг СО 2 /час мг ХЛ.

Хлорофилл един во всем растительном мире и его содержание в зависимости от условий произрастания колеблется от 0,7 до 9 мг/дм 2 .

Чем больше растение поглощает света, тем меньше в листьях содержание ХЛ. В умеренной зоне, например, РБ листья темно-зеленые, в южных районах -–светло-зеленые. Растения обычно синтезируют хлорофилл с некоторым избытком. Его содержание в растениях от сотых до десятых долей процента на естественную влажность (0,05-0,32 %).

    Изменение фотосинтеза в онтогенезе.

Для изучения этой зависимости обычно используют этиолированный проростки, т.е. выращенные в темноте. Они не содержат хлорофилла. При их освещении хлорофилл образуется через несколько минут, а через четыре часа начинается в них фотосинтез. У однолетних растений происходит одновершинное изменение ИФ в онтогенезе. ИФ устанавливается на определенном уровне через двое суток после зеления. Максимальное значение ИФ – при переходе от вегетации к репродукции (фаза цветения). В стареющих листьях ИФ понижена.

2. Интенсивность фотосинтеза и факторы внешней среды .

2.1 ИФ зависит как от силы света (потока фотонов), так и от его спектрального состава. Зависимость ИФ от ИО (интенсивности света) описывается световой кривой фотосинтеза, которая имеет вид параболы, состоящей из двух фаз. Первая фаза представляет собой линейную зависимость ИФ от ИО со световым компенсационным пунктом (СКП). СКП – интенсивность света, при которой ИФ = ИД. Вторая фаза – уменьшение наклона кривой по мере увеличения ИО и выход ее на плато. Это световое насыщение фотосинтеза.

Обобщенная световая кривая имеет следующий вид.

Световое насыщение у С 3 -растений происходит при значениях ИО равной 0,4-0,6 от ПСО, а у С 4 оно практически не наблюдается.

Солнечная радиация, соответствующая точке изгиба световой кривой, называется радиацией приспособления (РП). КПД фотосинтеза при РП достигает максимальных значений. Однако в посевах из-за взаимного затенения растения находятся в условиях недостаточного освещения.

По отношению к свету растения подразделяются на светолюбивые (СР) и теневыносливые (ТР). Они отличаются по своим морфолого-анатомическим и физиологическим особенностям. Листья СР более мелкие, толще, у них густое жилкование, имеют более светло-зеленую окраску и меньшее содержание хлорофилла. У ТР все наоборот: листья больших размеров, тоньше, редкое жилкование, темно-зеленая окраска, больше хлорофилла, особенно Хлв. СР более продуктивны.

ТР и СР различаются ходом световых кривых фотосинтеза (рис.2). При низких ИО у ТР ИФ выше, чем у СР, а при увеличении ИО ИФ у ТР ↓, а у СР .

Способность отдельных видов растений, гибридов, сортов осуществлять фотосинтез при низких значениях ИО пытаются использовать в селекционной работе. Подобный отбор возможен даже среди С 4 -культур – облигатных светолюбов.

Спектральный состав света . ИФ сильно зависит от качества света. Согласно квантовой теории 1 Дж красных лучей (КС) содержит в 1,5 раза больше квантов, чем 1 Дж сине-фиолетовых лучей (СФ). При выравнивании СФ и КС по падающим квантам, ИФ оказывается выше на КС, чем на СФ и белом свету (БС). Однако на насыщающем свету преимущество переходит к СФ. У растений, выращенных на СФ, насыщение Фс происходит при более высокой освещенности и они эффективнее используют мощные лучистые потоки, чем растение на КС.

Качество света не влияет на число и размеры хлоропластов в завершившем рост листе, поэтому ИФ обусловлены, главным образом, активностью единичного хлоропласта, которая выше у растений на СС.

От качества света зависит состав синтезируемых веществ. На СФ больше накапливается белков и липидов, а на КС – растворимых углеводов и крахмала. Эффект добавления даже 20 % СФ и КС подобен эффекту монохроматического синего света. Примечание: под СФ понимает синий свет. Это используют при конструкции фотосинтетических ламп.

Минеральное питание.

Водный режим.

Газовый состав воздуха.

Минимальное содержание СО 2 в воздухе - для С3– 0,005 %, для С4– 0,0005%

Повышение СО 2 с 0,03 % до 0,3 % вызывает увеличение интенсивности фотосинтеза. Дальнейшее возрастание СО 2 до 1 % не сказывается на фотосинтезе,

При большом водном дефиците интенсивность фотосинтеза снижается из-за закрытия устьиц, что уменьшает поступление СО 2 в листья, снижает транспирацию и приводит к повышению температуры листа. Кроме того, обезвоживание изменяет конформацию и, следовательно, активность ферментов.

Максимальна интенсивность фотосинтеза при водном дефиците 5-10 %, при 20 % - резко падает и при 50 % фотосинтез прекращается

Исключение любого ЭМП отрицательно сказывается на фотосинтезе. Калий активирует процессы фосфорилирования и участвует в открывании устьиц. Магний входит в состав хлорофиллов, активирует реакции карбоксилирования и восстановления НАДФ. Железо необходимо для синтеза хлорофиллов. Марганец и хлор участвуют в фоторазложении воды. Медь входит в состав пластоцианина. Азот необходим для формирования хлоропластов и образования пигментов. Сера входит в состав белков ЭТЦ

КПД фотосинтеза – характеризует процент запасания энергии ФАР в продуктах фотосинтеза. КПД растений биосферы невелик: около 0,2 %, у сах.тростника – 1,9%, у к-ля – 0,5-0,6%. КПД в производственных посевах 0,5-1,5%. Расчёты показывают, что теоретически реально получать в посевах КПД до 12%. В посевах кукурузы уже получен КПД 7-8%.

Пути повышения КПД:

1) регулирование экологических факторов (свет, влажность, температура)

2) создание посевов с оптимальными параметрами для фотосинтеза:

площадь листьев . ИЛП - не менее 4-5, т.е. на 1 га площадь листьев должна составлять 40-50 тыс. м 2 .

оптическая плотность посевов , которая позволяет лучше использовать свет. Это достигается нормами высева, что позволяет формировать загущенные (на семенных участках картофеля), или более изреженные посевы (семенные посевы зерновых).

– большую роль играет форма расположения листьев на растении . Плохо как с горизонтальным, так и строго вертикальным (лук) расположением. Лучше – воронкообразная как у кукурузы и зерновых.

3) продление периода активной вегетации растений:

Путём высадки рассадой, проращенными клубнями.

Ранние сроки сева.

Необходимо поддерживать растения в активном физиологичес-ком состоянии. В формировании урожая участвуют не только листья, но и колосья, стебли и даже ости, в которых протекает Ф.

4) внедрение принципиально новых видов посевов, в которых продуктивность растений возрастает в 1,5-2 раза за счёт более высокой фотосинтетической деятельности (полосный и др. посевы).

Бесконтрольное потребление ископаемых ресурсов привело мир на порог эколого-энергетического кризиса. В подобной обстановке необходим принципиально иной источник энергии, который, с одной стороны, вписывался бы в наш нефтяной мир, а с другой - был бы возобновим, экологически чист и экономически выгоден. Возможное решение - искусственный фотосинтез (ИФ), благодаря которому на свет уже появились рукотворные установки для синтеза органики из электричества, света, а также удивительные полупроводниковые бронебактерии-фотосинтетики.

Глобальный энергетический кризис, или Зачем нужен искусственный фотосинтез

Сегодня и без того большое население планеты увеличивается на 1% ежегодно . Растущие с каждым годом энергетические потребности человечество удовлетворяет прежде всего за счет ископаемых ресурсов. Но уже ни для кого не секрет, что запасы нефти и угля ограничены и в большинстве случаев невозобновимы . Когда их объемы перестанут соответствовать глобальным темпам развития (или даже израсходуются), мир столкнется с энергетическим кризисом небывалых масштабов.

Уже сейчас можно наблюдать ожесточенную борьбу, развязавшуюся на мировой арене за крупные источники ископаемого топлива. В перспективе горючего будет всё меньше, а конфликты интересов будут происходить всё чаще.

Последние два века человечество было ослеплено доступностью ископаемых энергоносителей и разработало множество основанных на них технологий, без которых жизнь сегодня просто немыслима. Сначала были уголь и паровозы, затем люди научились получать электричество, сжигая тот же уголь, производить газовые плиты, частный и общественный транспорт - всё это требует расхода запасенных миллионы лет назад органических веществ. Используя энергию этих веществ, человечество совершило скачок во многих областях общественной жизни: численность мирового населения превысила 7 млрд , в пустынях возникли цветущие города и государства, производственные мощности и уровень потребления увеличиваются год от года. Без сомнения, современный мир немыслим без угля, нефтепродуктов и газа.

Здесь проявляется дилемма современной энергетики: с одной стороны, абсолютно очевидна необходимость перехода на возобновляемые источники энергии, с другой - мир не приспособлен для потребления такой энергии. Однако в последнее десятилетие всё активнее ведутся разработки источника энергии, который мог бы решить эту дилемму. Речь идет об искусственном фотосинтезе (ИФ) - способе превращать энергию солнца в удобную форму органического горючего.

Нельзя забывать, что сжигание топлива приводит к массивным выбросам СО 2 в атмосферу, негативно влияющим на состояние всей биосферы. В крупных городах это влияние особенно заметно: тысячи дымящих машин и предприятий образуют смог, и каждый горожанин, выбравшись за город, прежде всего восхищается свежим воздухом. Создание источника энергии, который подобно растениям поглощал бы СО 2 и вырабатывал О 2 , могло бы остановить идущую на всех парáх деградацию окружающей среды.

Таким образом, ИФ - потенциальное решение как мирового энергетического, так и экологического кризисов. Но как же работает ИФ и чем он отличается от природного?

Несовершенство зелени

Рисунок 2. Нециклический фотосинтез у растений. Электрон покидает возбужденный светом хлорофилл фотосистемы II (ФС-II), а получившуюся «дырку» заполняют электроны, высвободившиеся при расщеплении воды. Конечный приёмник электронов - не пигмент фотосистемы, как у пурпурных бактерий, а НАДФ + . Еще одно отличие - у растений две фотосистемы (ФС-I и ФС-II) образуют сопряженный механизм, и для одного такта его работы требуется поглощение двух фотонов . На рисунке не показан b 6 f-комплекс.

Полученный градиент H + предоставляет энергию для синтеза АТФ с помощью фермента АТФ-синтазы , подобно тому, как падающая вода становится источником энергии для водяной мельницы (рис. 3). АТФ - универсальный переносчик химической энергии в клетке и участвует в абсолютном большинстве энергозатратных реакций, в том числе - в реакциях цикла Кальвина, обеспечивающих превращение СО 2 в восстановленную органику . В этом цикле бóльшая часть энергии расходуется на борьбу с побочными реакциями. Есть и другие пути ассимиляции углерода - например, путь Вуда-Льюнгдала , о котором будет написано дальше.

Рисунок 3. Запасание энергии света. При фотосинтезе белки-фотосистемы переносят протоны через мембрану за счет энергии фотонов. Фермент АТФ-синтаза сбрасывает образующийся градиент концентраций Н + и производит универсальный переносчик энергии в клетке - АТФ. Аналогия с вращающейся водяной мельницей, на самом деле, очень близка к реальности.

Хотя фотосинтез в конечном счете обеспечивает всю биосферу энергией, КПД этого процесса оставляет желать лучшего (табл. 1). Рекордсмен фотосинтеза - выращиваемое для производства биотоплива сорго , у которого эффективность перевода солнечной энергии в химическую составляет 6,6%. Для сравнения: у картофеля, пшеницы и риса - около 4% .

Таблица 1. Энергетические параметры фотосинтеза. Фотосинтез - многостадийный процесс, и на каждой его стадии теряется часть энергии солнечного света. Низкий КПД фотосинтеза - главный его недостаток в сравнении с современными солнечными батареями. За 100% принята энергия падающего на лист солнечного света. Таблица составлена по данным из .
Причина потери энергии Потеря энергии Остаток
Поглощение фотонов только видимой части спектра 47% 53%
Лишь часть светового потока проходит через фотосинтезирующие части листа 70% 37%
Хотя в видимом свете есть высоко- и низкоэнергетические фотоны, все они поглощаются фотосистемами как низкоэнергетические (своеобразный принцип каравана) 24% 28%
Потери при синтезе глюкозы 68% 9%
Очистка листа от побочных продуктов фотосинтеза (см. фотодыхание) 32% 6%

В то же время типичный КПД для современных солнечных батарей - 15-20%, а опытные образцы достигли значения 46% , . Такая разница в КПД рукотворных фотоячеек и живых растений объясняется прежде всего отсутствием стадий синтеза. Но есть и более тонкое отличие: растительные фотосистемы извлекают энергию только из фотонов видимого света с длинами волн 400–700 нм, причем выход от высокоэнергетических фотонов ровно такой же, как и от низкоэнергетических. Полупроводники, применяемые в солнечных батареях, улавливают фотоны более широкого спектра. А для максимального выхода в одну батарею объединяются материалы, созданные специально для разных частей спектра солнечного света.

Конечная цель инженеров ИФ - создать установку (или искусственный организм), который бы осуществлял фотосинтез лучше растений. Сегодня биоинженерная мысль достигла уровня, на котором можно попытаться это сделать. И от года к году попытки ученых становятся всё ближе и ближе к заветной цели, заставляя нас дивиться невероятным открытиям.

Такой разный ИФ

Самая простая схема ИФ - полностью абиотический синтез органики на катализаторе . В 2014 году был открыт рутениевый катализатор, который при освещении синтезирует метан из H 2 и СО 2 . При оптимальных условиях, подразумевающих нагрев до 150 °С и интенсивное освещение, один грамм этого катализатора создает один миллимоль метана в час, что, конечно же, очень мало. Сами ученые, исследующие катализатор, признают, что такая скорость реакции при довольно высокой стоимости катализатора слишком низка для его практического применения.

Реальный фотосинтез - многостадийный процесс, на каждой стадии которого происходит потеря энергии . Отчасти это даже хорошо, потому что открывает большой простор для оптимизации. В случае же абиогенного фотосинтеза всё, что можно сделать - это придумать принципиально новый катализатор.

Совершенно иной подход к ИФ - создание биореакторов, работающих на солнечной энергии . В таких биореакторах, как ни странно, используют не фотосинтезирующие микроорганизмы, которые всё же могут фиксировать СО 2 , используя иные источники энергии.

Ознакомимся с несколькими типами конструкций аппаратов для ИФ на конкретных примерах.

В 2014 году были опубликованы результаты испытаний установки, которая переводит ток в биомассу с рекордным КПД 13% . Чтобы получить ИФ-реактор, достаточно подключить солнечную батарею. Эта установка по сути является электрохимической ячейкой (рис. 4а ), где два электрода помещены в питательную среду с бактериями Ralstonia eutropha (они же - Cupriavidus necator ). При подведении внешнего тока катализатор на аноде проводит расщепление воды на кислород и протоны, а катализатор на катоде - восстановление протонов до газообразного водорода. R. еutropha получает энергию для ассимиляции СО 2 в цикле Кальвина за счет окисления Н 2 ферментом гидрогеназой.

Рисунок 4. Биореакторы для ИФ на базе электрохимических ячеек. Ток может генерироваться за счет фотолиза воды на аноде при помощи солнечной батареи (а ) или без неё (б ) . В обоих случаях забранные у воды электроны обеспечивают микробам-автотрофам восстановительные эквиваленты, необходимые для фиксации СО 2 .

Согласно расчетам разработчиков, совмещение их установки с типичной солнечной батареей (18% КПД) приведет к суммарной эффективности фотосинтеза 2,5%, если переводить всю энергию света в рост биомассы, и 0,7% - если использовать генетически модифицированных бактерий, синтезирующих бутанол. Такой результат сравним с эффективностью фотосинтеза в реальных растениях, хотя и не достигает уровня культурных растений. Способность R. еutropha синтезировать органику при наличии Н 2 очень интересна не только в контексте ИФ, но и как возможное приложение водородной энергетики .

В 2015 году ученые из Калифорнии создали не менее интересную установку, где стадии светопоглощения и синтеза связаны более тесно . Фотоанод сконструированного реактора при освещении расщепляет воду на кислород, протоны и электроны, которые направляются по проводнику к катоду (рис. 4б ). Чтобы повысить скорость фотолиза воды, идущего на границе раздела фаз, фотоанод сделан из кремниевых нанопроводков, многократно увеличивающих его поверхность.

Катод этой установки состоит из «леса» TiO 2 -наностержней (рис. 5а ), среди которых растут бактерии Sporomusa ovata . Электроны от фотоанода поступают именно к этим бактериям, которые используют их как восстановительные эквиваленты для превращения растворенного в среде СО 2 в ацетат.

Рисунок 5. Искусственный фотосинтез немыслим без наноматериалов. а - В ИФ-реакторе из статьи СО 2 фиксируют бактерии, растущие в «нанолесу» из кремниевых стрежней, покрытых TiO 2 (слой 30 нм); этот нанолес создает необходимые бактериям анаэробные условия и повышает поверхностную плотность контактов бактерий с проводником. б - При принципиально ином подходе не бактерий помещают на полупроводник, а полупроводник - на бактерий; благодаря панцирю из CdS, умирающие на свету бактерии становятся фотосинтетиками.

Нанолес из TiO 2 выполняет сразу несколько функций: обеспечивает высокую плотность бактерий на контакте, защищает облигатно анаэробных S. ovata от растворенного в среде кислорода и тоже может преобразовывать свет в электричество, помогая бактериям фиксировать СО 2 .

S. ovata - бактерии с очень гибким метаболизмом, который легко подстраивается под рост в так называемом электротрофном режиме. Они фиксируют СО 2 по пути Вуда-Льюнгдала, в котором на рост биомассы идет только 10% ацетата, а оставшиеся 90% выбрасываются в окружающую среду.

Но сам по себе ацетат особой ценности не представляет. Для его перевода в более сложные и дорогие вещества в реактор вносят генетически модифицированных Escherichia coli , синтезирующих из ацетата бутанол, изопреноиды или полигидроксибутират. Последнее вещество E. coli производит с наибольшим выходом.

Что же до КПД всей установки, то он весьма низок. Только 0,4% солнечной энергии получается перевести в ацетат, а превращение ацетата в полигидроксибутират идет с КПД 50%. Суммарно только 0,2% световой энергии удается запасти в виде органики, которую можно дальше использовать как топливо или сырьё для химпроизводства. Разработчики считают основным своим достижением то, что созданная ими установка может использоваться для совершенно разных химических синтезов без принципиальных изменений в конструкции. В этом видна аналогия с природным фотосинтезом, где из полученного при ассимиляции СО 2 3-фосфоглицерата в конечном счете синтезируются всевозможные органические вещества .

В обеих описанных технологиях разработчики пытались совместить совершенство полупроводников как поглотителей световой энергии с каталитической мощью биологических систем. И обе полученные установки представляли собой «обратные» топливные элементы, где ток используется для синтеза веществ.

При принципиально ином подходе отдельные клетки объединяются с полупроводниками в единое целое. Так, в самом начале 2016 года была опубликована работа, в которой бактерию-ацетоген Moorella thermoacetica выращивали в среде с высоким содержанием цистеина и кадмия, . В результате обычно погибающая на свету М. thermoacetica покрывалась панцирем из CdS (полупроводника) и тем самым не только получала защиту от солнца, но и становилась фотосинтетиком: электроны от CdS поступали в путь Вуда-Льюнгдала (рис. 5б ).

Опыты над такой «бронированной» бактерией показали, что СО 2 фиксируется не только на свету, но и в темноте (при соблюдении суточного цикла). Причина этого - накопление метаболитов фотосинтеза на свету в таком количестве, что клетки не успевают их перерабатывать. Основное преимущество таких бактерий в сравнении с вышеописанными ячейками - самоорганизация. Для ячеек необходимо заранее изготавливать наноматериалы и катализаторы, а сами эти детали со временем только изнашиваются. В случае М. thermoacetica фотосинтетические единицы делятся, сами производят и ремонтируют всё необходимое, если в среде достаточно кадмия и цистеина. Этих бактерий пока не исследовали как источник топлива, но по значениям квантового выхода фотосинтеза они не уступают растениям.

Ждать осталось недолго...

Технологии ИФ находятся пока на стадии прототипов, но их разработчики видят большой простор для оптимизации. Оптимизировать можно полупроводники-светоуловители, микроорганизмы, пространственную организацию бактерий, прочие катализаторы. Но прежде всего необходимо решить проблему стабильности. КПД изготовленных установок заметно падает уже спустя несколько дней работы. Полностью готовый прибор для ИФ, подобно любой живой системе, должен регенерировать и самовоспроизводиться. В этой связи особенно интересны М. thermoacetica , к которым эти свойства относятся в полной мере.

И хотя существующие образцы далеки от совершенства, работы в области ИФ ценны прежде всего тем, что показывают принципиальную возможность встроить солнечную энергетику в мир, захваченный двигателем внутреннего сгорания. Ветряки и солнечные батареи, безусловно, обладают высоким КПД и уже практически полностью обеспечивают энергопотребление в Уругвае и Дании, а ГЭС - важные узлы в энергосети многих стран , . Но замена горючего электричеством в большинстве случаев требует кардинальной перестройки энергосетей и не всегда возможна.

Дальнейшее развитие ИФ требует массивных инвестиций. Можно представить, что фирмы - производители солнечных батарей, которым футурологи прочат мировое господство в области энергетики уже к 2030 , будут заинтересованы в развитии этой пока молодой и неопытной науки на стыке биоэнергетики, материаловедения и наноинженерии. Кто знает, может ИФ и не станет повседневностью будущего, а может, работа над ним даст толчок водородной энергетике или биофотовольтаике , . Ждать осталось недолго, поживем - увидим.

Литература

  1. Population Pyramids of the World from 1950 to 2100 . (2013). PopulationPyramid.net ;
  2. Корзинов Н. (2007).