Какая формула плотности в физике. Масса и плотность

Не поднять и силачу. Свинцовое же грузило для удочки легко поднимет даже ма­лыш. Выходит, приведенные выше выражения - неправильные? По­дождите делать выводы - давайте разберемся.

1.Проводим некоторые измерения и делаем расчеты

На рис. 2.8 вы видите два бруска, оба бруска изготовлены из одного и того же вещества - свинца, но имеют разные размеры. Наша задача - найти отношение массы каждого бруска к его объему.

Рис. 2. 8. Два свинцовых бруска, имеющих разный объем



Рис. 2.5 Измерение масс свинцовых брусков, имеющих разный объем


Для начала измерьте длину, ширину и высоту брусков и вычислите их объемы . (Если вы правильно выполните измерения и не ошибетесь в расче­тах, то вы получите такие результаты: объем меньшего бруска равен 4 см 3 , большего бруска - 10 см 3 .)

Определив объемы брусков, взвесим их. На левую чашу весов поместим один из брусков, на правую - разновесы (рис. 2.9). Весы находятся в рав­новесии, ваша задача - сосчитать массу разновесов.

Нам осталось найти отношение массы каждого бруска к его объему, т. е. вычислить, чему равняется масса свинца объемом 1 см 3 для меньшего и для большего брусков. Очевидно, что если масса меньшего бруска 45,2 г и он занимает объем 4 см3, то масса свинца объемом 1 см 3 для этого бруска равняется 45,2: 4 = 11,3 (г). Выполнив аналогичные расчеты для большего бруска, получим 113: 10 = 11,3 (г). Таким образом, отношение массы свинцового бруска к его объему (масса свинца единичного объема) одинаково как для большего, так и для меньшего брусков.

Если теперь взять бруски, изготовленные из другого вещества (например алюминия), и повторить те же действия, то отношение массы алюминиевого бруска к его объему также не будет зависеть от размеров бруска. Мы снова получим постоянное число, но уже другое, чем в опыте со свинцом.

2. Даем определение плотности вещества

Физическая величина, характеризующая данное вещество и численно равная массе вещества единичного объема, называется плотностью вещества.

Плотность обозначается символом р и вычисляется по формуле


где V - объем, занятый веществом массой m.


Рис. 2.10. Плотность численно равна массе единицы объема. На рисунке указана масса 1 см 3 вещества

Плотность - это характеристика вещества, не зависящая от массы вещества и его объема. Если увеличить массу вещества, например, в два раза, то объем, который оно займет, также возрастет в два раза*.

Из определения плотности вещества получим единицу плотности. Пос­кольку в СИ единицей массы является килограмм, а единицей объема - метр кубический, то единицей плотности в СИ будет килограмм на метр кубический (кг/м 3).

1 кг/м 3 - это плотность такого однородного вещества, масса которо­го в объеме один кубический метр равняется одному килограмму.

На практике также очень часто применяется единица плотности грамм на сантиметр кубический (г/см 3).

Единицы плотности килограмм на метр кубический (кг/м 3) и грамм на сан­тиметр кубический (г/см 3) связаны между собой соотношением:

3. Сравниваем плотности разных веществ

Плотности разных веществ и материалов могут существенно отли­чаться друг от друга (рис. 2.10). Рассмотрим несколько примеров. Плот­ность водорода при температуре 0 С и давлении 760 мм рт. ст. составляет 0,090 кг/м 3 - это значит, что масса водорода объемом 1 м 3 равна 0,090 кг, или 90 г. Плотность свинца 11 300 кг/м 3 . Это означает, что свинец объемом 1 м 3 имеет массу 11 300 кг, или 11,3 т. Плотность вещества нейтронной звезды достигает 1018 кг/м 3 . Масса такого вещества объемом 1см 3 равняется 1 млрд тонн. Ниже в таблице приведены плотности некоторых веществ.

Плотность, однако, существенно изменяется в случае изменения температуры и агре­гатного состояния вещества. С причинами изменения плотности вещества мы познако­мимся далее.

Таблица плотностей некоторых веществ в твердом состоянии

Вещество р, кг/м 3 р, г/см 3 Вещество р, кг/м 3 р, г/см 3
Осмий 22 500 22,5 Мрамор 2700 2,7
Иридий 22 400 22,4 Гранит 2600 2,6
Платина 21 500 21,5 Стекло 2500 2,5
Золото 19 300 19,3 Фарфор 2300 2,3
Свинец 11 300 11,3 Бетон 2200 2,2
Серебро 10 500 10,5 Оргстекло 1200 1,2
Медь 8900 9,9 Капрон 1140 1,1
Латунь 8500 8,5 Полиэтилен 940 0,9
Сталь, железо 7800 7,8 Парафин 900 0,9
Олово 7300 7,3 Лед 900 0,9
Цинк 7100 7,1 Дуб сухой 800 0,8
Чугун 7000 7,0 Сосна сухая 440 0,4
Алюминий 2700 2,7 Пробка 240 0,2

Таблица плотностей некоторых веществ в жидком состоянии

Вещество р, кг/м 3 р, г/см 3 Вещество р, кг/м 3 р, г/см 3
Ртуть 13600 13,60 Бензол 880 0,88
Жидкое олово
(при t = 409 0C)
6830 6,83 Жидкий воздух
(при t = -194 °С)
860 0,86
Серная кислота 1800 1,80 Нефть 800 0,80
Мед 1420 1,42 Керосин 800 0,80
Вода морская 1030 1,03 Спирт 800 0,80
Вода чистая 1000 1,00 Ацетон 790 0,79
Масло растительное 900 0,90 Эфир 710 0,71
Машинное масло 900 0,90 Бензин 710 0,71

Таблица плотностей некоторых веществ в газообразном состоянии

(при температуре О о C и давлении 760 мм рт. ст.)

4. Учимся вычислять плотность, массу и объем физического тела

На практике часто бывает необходимо определить, из какого вещества состоит то или иное физическое тело . Для этого можно воспользовать­ся таким способом. Вначале вычислить плотность этого тела, т. е. найти отношение массы тела к его объему. Далее, воспользовавшись данными таблицы плотностей, выяснить, какому веществу соответствует найденное значение плотности.

Например, если глыба объемом 3 м 3 имеет массу 2700 кг, то очевидно, что плотность глыбы равна:


По таблице находим, что глыба состоит из льда.

В приведенных выше примерах мы рассматривали так называемые од­нородные тела, т. е. тела, не имеющие пустот и состоящие из одного ее щества (ледяная глыба, свинцовый и алюминиевый бруски). В таких слу­чаях плотность тела равна плотности вещества, из которого оно состоит (плотность ледяной глыбы = плотности льда).

Если в теле есть пустоты или оно изготовлено из различных веществ (например, корабль, футбольный мяч, человек), то говорят о средней плот­ности тела , которая также исчисляется по формуле

где V - объем тела массой m.


Средняя плотность тела человека, напри­мер, составляет 1036 кг/м 3 . Зная плотность вещества, из которого изго­товлено тело (или среднюю плотность тела), и объ­ем тела, можно определить массу данного тела без взвешивания . В самом деле, если р = m/V , то m = pV . Соответственно, зная плотность и массу тела, можно найти его объем:

  • Подводим итоги

Физическая величина, характеризующая данное вещество и числен­но равная массе вещества единичного объема, называется плотностью ве­щества.

Плотность вещества и плотность тела можно рассчитать по формуле

В СИ плотность измеряется в килограммах на метр кубический (кг/м 3). Часто также используют единицу плотности грамм на сантиметр кубичес­кий (г/см 3). Эти единицы связаны между собой соотношением:

Зная массу тела и его плотность, можно найти объем тела: . Соответственно, по известным объему тела и его плотности можно найти массу тела: т = pV .

  • Контрольные вопросы

1. Зависит ли отношение массы вещества к объему, занимаемому этим веществом, от его массы? от объема? от рода вещества?

2. Что называют плотностью вещества?

3. Плотность платины равна 21 500 кг/м 3 . Что это означает?

4. Как определить плотность веще­ства?

5. Какие единицы плотности вы знаете?

6. Как выразить плотность в граммах на сантиметр кубический (г/см 3), если она дана в килограммах на метр кубический (кг/м 3)?

7. Как вычислить массу тела по его плотности и объему?

8. Как определить объем тела, зная его плотность и массу?

  • Физика и техника в Украине

Донецкий физико-технический институт HAH Украины

В 60-е годы прошлого столетия в Донбас­се - важнейшем промышленном регионе Укра­ины - возникла насущная необходимость в ор­ганизации научных исследований, максимально ориентированных на удовлетворение нужд реги­она. Для этого в 1965 году и был создан Донец­кий научный центр Академии наук УССР, одним из ключевых которого стал Донецкий физико-технический институт (ДонФТИ). Результаты исследований сотрудников инсти­тута получили признание научной общественности Украины и многих зарубежных ученых. ДонФТИ поддерживает широкие научно-производственные связи с десятками зарубежных институтов и промышленных предприятий Швейцарии, США, Германии, Испании.

  • Упражнения

1. Найдите по таблице значения плотности воздуха и плотности свин­ца. Что они означают? Какие величины мы на самом деле сравнива­ем, когда говорим: «легкий, как воздух», «тяжелый, как свинец»?

Рисунок 1. Таблица плотностей некоторых веществ. Автор24 - интернет-биржа студенческих работ

Все тела в окружающем нас мире имеют различные размеры и объемы. Но даже при одинаковых объемных данных масса веществ будет существенно отличаться. В физике такое явление называют плотностью вещества.

Плотность – это основное физическое понятие, дающее представление о характеристиках любого известного вещества.

Определение 1

Плотность вещества – физическая величина, которая показывает массу определенного вещества в единице объема.

Единицами объема в пересчете плотности вещества обычно являются кубический метр или кубический сантиметр. Определение плотности вещества осуществляется специальным оборудованием и приборами.

Для определения плотности вещества необходимо массу его тела поделить на собственный объем. При расчете плотности вещества используют следующие величины:

массу тела ($m$); объем тела ($V$); плотность тела ($ρ$)

Замечание 1

$ρ$ - это буква греческого алфавита "ро" и ее нельзя путать с похожим обозначением давления – $p$ («пэ»).

Формула плотности вещества

Расчет плотности вещества происходит с использования системы измерений СИ. В ней единицы плотности выражаются в килограммах на кубический метр или граммах на кубический сантиметр. Также можно использовать любую систему измерения.

У вещества бывают разные степени плотности, если оно находится в различных агрегатных состояниях. Иными словами, плотность вещества, находящегося в твердом состоянии, будет иным, чем плотность этого же вещества в жидком или газообразном состоянии. Например, для воды характерна плотность в обычном жидком состоянии 1000 килограммов на кубический метр. В замороженном состоянии вода (лед) будет иметь плотность уже 900 килограммов на кубический метр. Водяной пар при нормальном атмосферном давлении и температуре близкой к нулю градусов будет иметь плотность 590 килограммов на кубический метр.

Стандартная формула плотности вещества выглядит следующим образом:

Помимо стандартной формулы, которая используется только для твёрдых веществ, существует формула для газа в нормальных условиях:

$ρ = M / Vm$, где:

  • $M$ - молярная масса газа,
  • $Vm$ - молярный объём газа.

Существуют два вида твердых тел:

  • пористые;
  • сыпучие.

Замечание 2

Их физические характеристики напрямую влияют на показатели плотности вещества.

Плотность однородных тел

Определение 2

Плотностью однородных тел называют отношение массы тела к его объему.

В понятие плотности вещества вмещают определение плотности однородного и равномерно распределенного тела с неоднородной структурой, которое состоит из этого вещества. Это постоянная величина и для большего понимания информации формируют специальные таблицы, где собраны все распространенные вещества. Значения по каждому веществу разделены на три составляющие:

  • плотность тела в твердом состоянии;
  • плотность тела в жидком состоянии;
  • плотность тела в газообразном состоянии.

Вода достаточно однородное вещество. Некоторые вещества не столь однородны, поэтому для них определяют среднюю плотность тела. Для выведения этого значения необходимо знать результат ρ вещества по каждому компоненту в отдельности. Сыпучие и пористые тела обладают истинной плотностью. Она определяется без учета пустот в своей структуре. Удельную плотность можно рассчитать путём деления массы вещества на весь занимаемый им объём.

Подобные величины связаны между собой коэффициентом пористости. Он представляет собой отношение объёма пустот к общему объёму тела, которое в данный момент исследуется.

Плотность веществ зависит от многих дополнительных факторов. Ряд из них одновременно повышают для одних веществ эту величину, а для остальных - понижают. При низкой температуре происходит увеличение плотности вещества. Некоторые вещества способны реагировать на изменение температурного режима по-разному. В этом случае принято говорить, что плотность при определённом температурном диапазоне ведёт себя аномальным образом. К таким веществам часто относят бронзу, воду, чугун и некоторые другие сплавы. Плотность воды имеет наибольший показатель при 4 градусах по Цельсию. При дальнейшем нагреве или охлаждении этот показатель также существенно может изменяться.

Метаморфозы с плотностью воды происходят при переходе из одного агрегатного состояния в другое. Показатель ρ меняет в этих случаях свои значения скачкообразным образом. Он поступательно увеличивается при переходе в жидкость из газообразного состояния, а также в момент кристаллизации жидкости.

Существует, и немало, исключительных случаев. Например, кремний имеет при затвердевании небольшие значения по плотности.

Измерение плотности вещества

При эффективном измерении плотности вещества обычно используют специальное оборудование. Оно состоит из:

  • весов;
  • измерительного прибора в виде линейки;
  • мерной колбы.

Если исследуемое вещество находится в твердом состоянии, то в качестве измерительного прибора используют мерку в виде сантиметра. Если исследуемое вещество находится в жидком агрегатном состоянии, то при измерениях используют мерную колбу.

Сначала предстоит измерить объем тела при помощи сантиметра или мерной колбы. Исследователь наблюдает за шкалой измерений и фиксирует получившийся результат. Если исследуется деревянный брус кубической формы, то плотность будет равна значению стороны, возведенную в третью степень. При исследовании жидкости необходимо дополнительно учитывать массу сосуда, при помощи которого проводятся измерения. Полученные значения необходимо подставить в универсальную формулу по плотности вещества и рассчитать показатель.

Для газов расчет показателя происходит очень сложно, поскольку необходимо пользоваться различными измерительными приборами.

Обычно для расчета плотности веществ используют ареометр. Он предназначен для получения результатов у жидкостей. Истинную плотность изучают при помощи пикнометра. Почвы исследуют при помощи буров Качиньского и Зайдельмана.

Зависит не только от его размеров, но и от вещества, из которого тело состоит. Так, тела одного объёма, сделанные из разных веществ, имеют разные массы, и обратно: тела, имеющие одинаковые массы, сделанные из разных веществ, имеют разные объёмы.

Плотность тела - зависимость массы и объема

Например, железный куб с ребром 10 см имеет массу 7,8 кг, алюминиевый куб тех же размеров имеет массу 2,7 кг, а масса такого же куба изо льда 0,9 кг. Величина, характеризующая массу, приходящуюся на единичный объём данного вещества, называется плотностью. Плотность равна частному от массы тела и его объёма, т.е.

ρ = m/V, где ρ (читается «ро») плотность тела, m - его масса, V объём.

В Международной системе единиц СИ плотность измеряется в килограммах на кубический метр (кг/м3); также часто используются внесистемные единицы, например, грамм на кубический сантиметр (г/см3). Очевидно, 1 кг/м3 = 0,001 г/см3. Заметим, что при нагревании веществ их плотность уменьшается или (реже) увеличивается, но это изменение так незначительно, что при расчётах им пренебрегают.

Сделаем оговорку, что плотность газов непостоянна; когда говорится о плотности какого-нибудь газа, обычно имеется ввиду его плотность при 0 градусов по Цельсию и нормальном атмосферном давлении (760 миллиметров ртутного столба).

Расчет массы и объема тела

В повседневной жизни мы часто сталкиваемся с необходимостью рассчитывать массы и объёмы разных тел. Это удобно делать, применяя плотность.

Плотности разных веществ определяются по таблицам, например, плотность воды 1000 кг/м3, плотность этилового спирта 800 кг/м3.

Из определения плотности следует, что масса тела равна произведению его плотности и объёма. Объём же тела равен частному от массы и плотности. Этим пользуются при расчётах:

m = ρ * V; или V = m / p;

гдн m масса данного тела, ρ его плотность, V объём тела.

Рассмотрим пример такого расчета

Пустой стакан имеет массу m1=200 г. Если налить в него воды, его масса будет m2= 400 г. Какую массу будет иметь этот стакан, если налить столько же (по объёму) ртути?

Решение. Найдём массу налитой воды. Она будет равна разности массы стакана с водой и массы пустого стакана:

mводы = m2- m1 = 400 г 200 г = 200 г.

Найдём объём этой воды:

V = m / ρв = 200 г / 1 г/см3 = 200 см3 (рв плотность воды).

Найдём массу ртути в этом объёме:

mрт = ρртV = 13,6 г/см3 * * 200 см3 = 2720 г.

Найдём искомую массу:

m = mрт + m1 = 2720 г + 200 г = 2920 г.

Ответ: масса стакана с ртутью равна 2920 граммам.

Рассмотрим более сложный пример расчета

Слиток из двух металлов с плотностями ρ1 и ρ2 , имеет массу m и объём V. Определить объём этих металлов в слитке.

Решение. Пусть V1 объём первого металла, V2 объём второго металла. Тогда V1 + V2 = V; V1 = V V2; ρ1V1 + p2V2 = ρ1V1 + ρ2 (V V1) = m

В промышленности и сельском хозяйстве есть необходимость знать плотность используемых веществ, например, массу и объем бетона по его плотности рассчитывают бетонщики при заливке фундамента, колонн, стен, мостовых опор, откосов, плотин и т. д. Плотность вещества - это физическая величина, характеризующая массу тела, отнесенную к его объему.

При этом предполагается, что тело является сплошным, без пустот и примеси другого вещества. Данная величина для различных веществ отражена в справочных таблицах. Но интересно знать, каким образом заполняются такого рода таблицы, как определяют плотность неизвестных веществ. Самые простые способы определения плотности веществ:

Для жидкостей с помощью ареометра;

Для жидкостей и твердых тел путем измерения объема и массы и вычисления по формуле.

Иногда по причине неправильной формы тел или их больших размеров бывает трудно или даже невозможно определить их объем с помощью линейки или мензурки. Тогда возникает вопрос, каким способом определить их плотность, не прибегая к измерению объема, или нет возможности определить массу вещества?

Цель работы: Решение экспериментальных задач по определению плотности различных веществ.

Задачи: 1) Изучить различные методы определения плотности вещества, описанные в литературе

2) Измерить плотность некоторых веществ методами, предложенными в литературе и оценить границы погрешностей каждого метода

3) Определить плотность неизвестного вещества на основе выявленных способов.

4)Представить в виде таблиц плотность растворов соли, сахара и

4 медного купороса различной концентрации.

Материалы и методика исследований: Исследования проводились с распространенными веществами: 10%-ый раствор соли, 10%-ый раствор медного купороса, вода, алюминий, сталь и т. д. Для измерений использовались приборы 4-го класса точности: весы с разновесами, ареометр, сообщающиеся сосуды от жидкостного манометра, а также набор калориметрических тел. Опыты проводились при комнатной температуре (20-250С), в помещении школы, в кабинете физики.

5 11. 3. Определение плотности жидкости а) Метод взвешивания тела в воздухе и неизвестной жидкости

Цель: Определить плотность жидкости (раствора медного купороса). Плотность ρ0 воды равна 1000 кг/м.

Приборы: Динамометр, нить, сосуд с водой, сосуд с неизвестной жидкостью, тело из набора калориметрических тел.

Ход работы: С помощью динамометра определяем вес тела в воздухе (P1), в воде (P2) и в неизвестной жидкости (P3).

FA=ρgV - сила

Архимеда Архимедова сила, действующая на тело в воде, равна

FA=P1-P2, а в неизвестной жидкости:

Согласно закону Архимеда запишем

P1-P2=ρ0Vg, (1)

Решая систему уравнений (1) и (2), находим плотность неизвестной жидкости:

ρ=(P1-P3)/Vg, V=(P1-P2)/ρ0g, ρ=(P1-P3/P1-P2)ρ0.

ρ= (1H-0,6H/1H-0,7H)1000 кг/м3 = 400H кг/м3/0,3H=1333,(3) кг/м3 б) Метод сравнения с плотностью воды

Оборудование: Сообщающиеся сосуды из стеклянных трубок (со шкалой), резиновая трубка, мензурка, пипетка, колбы (или стеклянные банки) с различными жидкостями.

Ход работы: 1. На один конец сообщающихся сосудов надевают резиновую

6 трубку (предварительно зажав последнюю, чтобы через нее в сообщающиеся сосуды не вошел воздух).

2. Пипеткой наливают в сообщающиеся сосуды исследуемую жидкость (до определенного уровня).

3. Наливают (до некоторого уровня) дистиллированную воду в мензурку.

4. Свободный конец резиновой трубки погружают (до дна) в мензурку (рис. 1). При этом уровень жидкости в коленах сообщающихся сосудов изменится (пусть h1 - разность уровней в коленах)

5. Исследуемую жидкость из сообщающегося сосуда выливают и вместо нее наливают дистиллированную воду до прежнего уровня.

6. Вылив из мензурки воду, наливают в нее исследуемую жидкость до прежнего уровня.

7. Снова погружают свободный конец резиновой трубки в мензурку и опять находят разность уровней.

Поскольку высота уровня жидкости обратно пропорциональна ее плотности, можно записать: h1/h2 = ρx/ρв, или ρВ=h2ρВ/h1, где ρВ и ρX - соответственно плотности дистиллированной воды и исследуемой жидкости.

h1= 3,5 см h2= 5 см

ρX= 5 см / 3,5 см 1000кг/м3 = 1428 кг/м3

Таким образом, зная плотность жидкости, можно узнать, какую жидкость мы исследовали. В данном случае это медный купорос.

7 2. Определение плотности твердого тела а) Метод взвешивания образца в воздухе и воде

Оборудование: Весы с разновесом, стакан на 0,5 л, нитки и куски проволоки, исследуемые образцы (куски алюминия, олова, гранита, дерева, пластинка из плексигласа, корковая пробка).

Метод выполнения работы: Предлагаемый метод позволяет определить плотность любого вещества (имеющего плотность больше или меньше, чем у воды) с помощью взвешивания образца в воздухе и воде.

Пусть m1 - масса исследуемого тела. Тогда его вес в воздухе можно найти так:

Р =m1g, (1) где g - ускорение свободного падения. Погруженное в воду это тело имеет вес

Здесь FA- архимедова сила:

(V - объем вытесненной телом воды, ρВ - ее плотность).

Уравновесив весы, получаем:

P2=m2g, (4) где та - масса гирь, которые необходимо поместить на левую чашку, чтобы уравновесить весы. Из (1) - (4) получаем: m2=m1-ρвV (5)

Поскольку объем V равен объему погруженного в воду тела, то можно записать:

V=m1/ρx (6) где ρx - плотность вещества, из которого состоит исследуемое тело. Из (5) и (6) находим:

ρx=m1/(m1-m2)ρв (7)

Порядок выполнения работы:

/. Плотность исследуемых тел больше плотности воды.

1. Определяют массу m1 исследуемого тела.

2. Привязывают исследуемое тело ниткой к левой чашке весов и опускают в стакан с водой (до полного погружения).

3. На эту же чашку помещают гири массой m2 необходимые для уравновешивания весов.

4. По формуле (7) определяют плотность ρx исследуемого тела. Результаты измерений заносят в таблицу 1.

Таблица 1

Вещество m1, 10-3 m2, 10-3 ρx, 103 ρy, 103 ε, %

кг кг кг м-3 кг м-3

Алюминий 21,85 13,65 2,664 2,698 1,2

Олово 62,4 53,85 7,2982 7,298 0,003

Гранит 17,35 10,75 2,628 2. 5-3 5

Плексиглас 3,75 0,75 1,23 1,18 4,2

ΙΙ. Плотность исследуемых тел меньше плотности воды.

1. Измерить массу m1 исследуемого тела.

2. Тело жестко крепят к левой чашке весов с помощью трех кусков медной проволоки (диаметром 0,5 - 0,7 мм; два куска длиной 10 - 15 см, один -30 - 35 см). Для этого их концы скручивают в жгут, в котором укрепляют стальную иглу (или кусочек жесткой заостренной проволоки), а верхние концы коротких проволок крепят к выступам чашки весов (рис. 2).

Уравновешивают весы. Затем накалывают исследуемое тело на иглу.

3. Тело полностью погружают в воду, а на левую чашку весов добавляют гири массой m2 и добиваются равновесия весов. По формуле

ρx=m1/(m1+m2)ρx находят плотность исследуемого тела. Результаты измерений заносят в таблицу 2.

Таблица 2

вещество m3,10-3 m2,10-3кг pх,103 кгм-3 ρy, табл. ε,%

Пробка Дерево 3,7 22,5 0,14 0,2 30

20 25 0,44 0,45 2,2 б) Метод, основанный на условиях плавания тел.

Оборудование: кусок пластилина, сосуд цилиндрической формы с водой

(ρ = 1 г/см3), линейка.

Ход работы: 1. Погружаем в сосуд с водой кусок пластилина и измеряем линейкой изменения уровня h1 жидкости в сосуде.

2. изготавливаем из пластилина «кораблик» и пускаем его плавать в сосуде с водой. Вновь измеряем изменение уровня h2 жидкости.

3. Находим плотность пластилина по формуле:

ρпласт =mпласт/Vпласт = ρSh2 / Sh1 = ρВh2/h1

ρпласт = ρВh2/h1 h1 = 2мм h2 = 4мм

ρпласт =1000 кг/м3 4мм / 2мм = 2000 кг/м3

Определение плотности неизвестного вещества

Цель: Определить плотность неизвестного вещества Х в твердом состоянии. Вещество Х не растворяется в воде и не вступает с ней в химические реакции.

Оборудование: Стеклянный стакан с водой, пробирка, линейка измерительная, неизвестное вещество Х в виде небольших кусков.

Ход работы: Сначала в пробирку поместим только неизвестное вещество Х и отметим глубину Н погружения пробирки. Затем удалим из пробирки вещество Х и нальем столько воды, чтобы глубина погружения Н во втором опыте была точно такой же, как в первом опыте. В этом случае масса воды mв в пробирке во втором опыте равна массе mх неизвестного вещества в первом опыте: mв= mX

Плотность ρX вещества Х можно вычислить, используя равенство ρX=mX/VX = mВ/VX для уменьшения возможных ошибок измерений при определении глубины Н погружения пробирки воспользуемся, следующим приемом.

Нальем в стакан столько воды, чтобы уровень ее был примерно на 1 см ниже края. Нагружая пробирку неизвестным веществом Х малыми порциями, добьемся такой глубины ее погружения, при котором верхний край пробирки находился на уровне верхнего края сосуда. Это положение пробирки можно определить с большой точностью с помощью линейки, положенной сверху стакана.

Заменив затем неизвестное вещество водой, добьемся точно такой же глубины погружения пробирки, постепенно доливая в нее воду.

Измерим высоту h1 уровня воды в пробирке. Объем воды в пробирке равен

VВ= Sh1, где S - площадь внутреннего поперечного сечения пробирки. Опустим использованное ранее в опыте неизвестное вещество в пробирку с водой и измерим высоту уровня h2 воды в ней. Объем вещества Vх выразим через площадь S внутреннего поперечного сечения пробирки и изменение высоты уровня воды h2 - h1 в пробирке при опускании вещества в воду:

Плотность вещества ρX равна

ρX = mX/VX = mВ/VX = ρВVВ/VX=ρВSh1/(S(h2-h1)),

ρX = ρВh1/(h2-h1).

h1 =3. 3 см h2= 3,8 см

ρX = 1000кг/м3

ρX =1000кг/м3 3,3 см/(3,8 см-3,3 см) = 3,3 см

1000 кг/м3 / 0,5 см = 6,6 см 1000 кг /м3 = 6600 кг/м3

Сравнивая с табличными данными наш результат, можно предположить, что неизвестное вещество - цинк.

Определение плотности жидкостей разной концентрации

Цель: Определить плотности растворов соли, сахара и медного купороса разной концентрации. На основе полученных данных составить таблицы. Оборудование: Весы с разновесами, пробирка (250 мл), алюминиевый стаканчик.

Вещества: Сахар, соль, медный купорос. Ход работы: а) Соляной раствор

Для того чтобы получить раствор с разной концентрацией, нужно добавлять по одной чайной ложке (5,6г) соли в воду. После каждой ложки нужно измерить вес и объем получившегося раствора, учитывая, что m стакана= 44,75г.

Приведена таблица плотности жидкостей при различных температурах и атмосферном давлении для наиболее распространенных жидкостей. Значения плотности в таблице соответствует указанным температурам, допускается интерполяция данных.

Множество веществ способны находится в жидком состоянии. Жидкости – вещества различного происхождения и состава, которые обладают текучестью, — они способны изменять свою форму под действием некоторых сил. Плотность жидкости – это отношение массы жидкости к объёму, который она занимает.

Рассмотрим примеры плотности некоторых жидкостей. Первое вещество, которое приходит в голову при слове «жидкость» — это вода. И это вовсе не случайно, ведь вода является самой распространённой субстанцией на планете, и поэтому её можно принять за идеал.

Равна 1000 кг/м 3 для дистиллированной и 1030 кг/м 3 для морской воды. Поскольку данная величина тесно взаимосвязана с температурой, стоит отметить, что данное «идеальное» значение получено при +3,7°С. Плотность кипящей воды будет несколько меньше – она равна 958,4 кг/м 3 при 100°С. При нагревании жидкостей их плотность, как правило, уменьшается.

Плотность воды близка по значению различным продуктам питания. Это такие продукты, как: раствор уксуса, вино, 20%-ные сливки и 30%-ная сметана. Отдельные продукты оказываются плотнее, к примеру, яичный желток — его плотность равна 1042 кг/м 3 . Плотнее воды оказывается, например, : ананасовый сок – 1084 кг/м 3 , виноградный сок – до 1361 кг/м 3 , апельсиновый сок — 1043 кг/м 3 , кока-кола и пиво – 1030 кг/м 3 .

Многие вещества по плотности уступают воде. К примеру, спирты оказываются гораздо легче воды. Так плотность равняется 789 кг/м 3 , бутилового – 810 кг/м 3 , метилового — 793 кг/м 3 (при 20°С). Отдельные виды топлива и масла обладают ещё более низкими значениями плотности: нефть — 730-940 кг/м 3 , бензин — 680-800 кг/м 3 . Плотность керосина составляет около 800 кг/м 3 , — 879 кг/м 3 , мазута – до 990 кг/м 3 .

Плотность жидкостей — таблица при различных температурах
Жидкость Температура,
°С
Плотность жидкости,
кг/м 3
Анилин 0…20…40…60…80…100…140…180 1037…1023…1007…990…972…952…914…878
(ГОСТ 159-52) -60…-40…0…20…40…80…120 1143…1129…1102…1089…1076…1048…1011
Ацетон C 3 H 6 O 0…20 813…791
Белок куриного яйца 20 1042
20 680-800
7…20…40…60 910…879…858…836
Бром 20 3120
Вода 0…4…20…60…100…150…200…250…370 999,9…1000…998,2…983,2…958,4…917…863…799…450,5
Вода морская 20 1010-1050
Вода тяжелая 10…20…50…100…150…200…250 1106…1105…1096…1063…1017…957…881
Водка 0…20…40…60…80 949…935…920…903…888
Вино крепленое 20 1025
Вино сухое 20 993
Газойль 20…60…100…160…200…260…300 848…826…801…761…733…688…656
20…60…100…160…200…240 1260…1239…1207…1143…1090…1025
ГТФ (теплоноситель) 27…127…227…327 980…880…800…750
Даутерм 20…50…100…150…200 1060…1036…995…953…912
Желток яйца куры 20 1029
Карборан 27 1000
20 802-840
Кислота азотная HNO 3 (100%-ная) -10…0…10…20…30…40…50 1567…1549…1531…1513…1495…1477…1459
Кислота пальмитиновая C 16 H 32 O 2 (конц.) 62 853
Кислота серная H 2 SO 4 (конц.) 20 1830
Кислота соляная HCl (20%-ная) 20 1100
Кислота уксусная CH 3 COOH (конц.) 20 1049
Коньяк 20 952
Креозот 15 1040-1100
37 1050-1062
Ксилол C 8 H 10 20 880
Купорос медный (10%) 20 1107
Купорос медный (20%) 20 1230
Ликер вишневый 20 1105
Мазут 20 890-990
Масло арахисовое 15 911-926
Масло машинное 20 890-920
Масло моторное Т 20 917
Масло оливковое 15 914-919
(рафинир.) -20…20…60…100…150 947…926…898…871…836
Мед (обезвоженный) 20 1621
Метилацетат CH 3 COOCH 3 25 927
20 1030
Молоко сгущенное с сахаром 20 1290-1310
Нафталин 230…250…270…300…320 865…850…835…812…794
Нефть 20 730-940
Олифа 20 930-950
Паста томатная 20 1110
Патока вареная 20 1460
Патока крахмальная 20 1433
ПАБ 20…80…120…200…260…340…400 990…961…939…883…837…769…710
Пиво 20 1008-1030
ПМС-100 20…60…80…100…120…160…180…200 967…934…917…901…884…850…834…817
ПЭС-5 20…60…80…100…120…160…180…200 998…971…957…943…929…902…888…874
Пюре яблочное 0 1056
(10%-ный) 20 1071
Раствор поваренной соли в воде (20%-ный) 20 1148
Раствор сахара в воде (насыщенный) 0…20…40…60…80…100 1314…1333…1353…1378…1405…1436
Ртуть 0…20…100…200…300…400 13596…13546…13350…13310…12880…12700
Сероуглерод 0 1293
Силикон (диэтилполисилоксан) 0…20…60…100…160…200…260…300 971…956…928…900…856…825…779…744
Сироп яблочный 20 1613
Скипидар 20 870
(жирность 30-83%) 20 939-1000
Смола 80 1200
Смола каменноугольная 20 1050-1250
Сок апельсиновый 15 1043
Сок виноградный 20 1056-1361
Сок грейпфрутовый 15 1062
Сок томатный 20 1030-1141
Сок яблочный 20 1030-1312
Спирт амиловый 20 814
Спирт бутиловый 20 810
Спирт изобутиловый 20 801
Спирт изопропиловый 20 785
Спирт метиловый 20 793
Спирт пропиловый 20 804
Спирт этиловый C 2 H 5 OH 0…20…40…80…100…150…200 806…789…772…735…716…649…557
Сплав натрий-калий (25%Na) 20…100…200…300…500…700 872…852…828…803…753…704
Сплав свинец-висмут (45%Pb) 130…200…300…400…500..600…700 10570…10490…10360…10240…10120..10000…9880
жидкое 20 1350-1530
Сыворотка молочная 20 1027
Тетракрезилоксисилан (CH 3 C 6 H 4 O) 4 Si 10…20…60…100…160…200…260…300…350 1135…1128…1097…1064…1019…987…936…902…858
Тетрахлордифенил C 12 H 6 Cl 4 (арохлор) 30…60…150…250…300 1440…1410…1320…1220…1170
0…20…50…80…100…140 886…867…839…810…790…744
Топливо дизельное 20…40…60…80…100 879…865…852…838…825
Топливо карбюраторное 20 768
Топливо моторное 20 911
Топливо РТ 836…821…792…778…764…749…720…692…677…648
Топливо Т-1 -60…-40…0…20…40…60…100…140…160…200 867…853…824…819…808…795…766…736…720…685
Топливо Т-2 -60…-40…0…20…40…60…100…140…160…200 824…810…781…766…752…745…709…680…665…637
Топливо Т-6 -60…-40…0…20…40…60…100…140…160…200 898…883…855…841…827…813…784…756…742…713
Топливо Т-8 -60…-40…0…20…40…60…100…140…160…200 847…833…804…789…775…761…732…703…689…660
Топливо ТС-1 -60…-40…0…20…40…60…100…140…160…200 837…823…794…780…765…751…722…693…879…650
Углерод четыреххлористый (ЧХУ) 20 1595
Уроторопин C 6 H 12 N 2 27 1330
Фторбензол 20 1024
Хлорбензол 20 1066
Этилацетат 20 901
Этилбромид 20 1430
Этилиодид 20 1933
Этилхлорид 0 921
Эфир 0…20 736…720
Эфир Гарпиуса 27 1100

Низкими показателями плотности отличаются такие жидкости, как: скипидар 870 кг/м 3 ,