Исаак ньютон его законы. Признание и успех. Годы Великой эпидемии чумы

Великая личность

Жизнь эпохальных личностей и их прогрессорская роль на протяжении многих веков дотошно изучаются. Они постепенно выстраиваются в глазах потомков от события к событию, обрастают деталями, воссозданными из документов, и всевозможными досужими выдумками. Таков и Исаак Ньютон. Краткая биография этого человека, жившего в далёком XVII веке, может разместиться разве что в книжном томе размером с кирпич.

Итак, начнем. Исаак Ньютон - английский (теперь к каждому слову подставляйте "великий") астроном, математик, физик, механик. С 1672 года стал учёным Лондонского королевского общества, а в 1703 - его президентом. Создатель теоретической механики, основоположник всей современной физики. Описал все физические явления на основе механики; открыл закон всемирного тяготения, чем разъяснил космические явления и зависимость от них земных реалий; привязал причины приливов в океанах к движению Луны вокруг Земли; описал законы всей нашей Солнечной системы. Именно он первым начал изучать механику сплошных сред, физическую оптику и акустику. Независимо от Лейбница, Исаак Ньютон разработал дифференциальное и интегральное уравнения, открыл нам дисперсию света, хроматическую аберрацию, привязал математику к философии, написал труды по интерференции и дифракции, работал над корпускулярной теорией света, теориями пространства и времени. Именно он сконструировал зеркальный телескоп и организовал монетное дело в Англии. Помимо математики и физики, Исаак Ньютон занимался алхимией, хронологией древних царств, писал богословские труды. Гений знаменитого учёного настолько опередил весь научный уровень семнадцатого века, что современники запомнили его в большей степени как исключительно хорошего человека: нестяжательного, щедрого, чрезвычайно скромного и приветливого, готового всегда прийти на помощь ближнему.

Детство

В семье умершего три месяца назад мелкого фермера в небольшой деревушке родился великий Исаак Ньютон. Биография его началась 4 января 1643 года тем, что очень маленького недоношенного младенца положили в овчинную рукавицу на лавке, с которой он и упал, сильно ударившись. Рос ребенок болезненным, а потому необщительным, за сверстниками в быстрых играх не поспевал и пристрастился к книжкам. Родственники заметили это и отдали маленького Исаака в школу, которую он и окончил первым учеником. Позже, увидев его рвение к учению, они позволили ему заниматься дальше. Исаак поступил в Кембридж. Поскольку денег на обучение не хватало, роль его студенческая была бы сильно унизительна, если бы не повезло ему с наставником.

Юность

В ту пору неимущие студенты могли учиться только на правах слуг у своих преподавателей. Вот эта доля и выпала будущему гениальному учёному. Об этом периоде жизненного и творческого путей Ньютона ходят всевозможные легенды, частью и некрасивые. Наставник, которому прислуживал Исаак, был влиятельнейшим масоном, путешествовавшим не только по всей Европе, но и по Азии, в том числе и Средней, и Дальневосточной, и Юго-Восточной. В одной из поездок, как говорит легенда, ему были поручены древние рукописи арабских учёных, математическими выкладками которых мы пользуемся до сих пор. Согласно легенде, Ньютон имел доступ к этим рукописям, и именно они вдохновили его на многие открытия.

Наука

За шесть лет обучения и прислуживания Исаак Ньютон прошёл все ступени колледжа и стал магистром искусств.

Во время эпидемии чумы ему пришлось уехать из альма-матер, но времени он даром не терял: изучал физическую природу света, выстраивал законы механики. В 1668 Исаак Ньютон возвратился в Кембридж и вскоре получил Лукасовскую кафедру математики. Она досталась ему от учителя - И. Барроу, того самого масона. Ньютон быстро стал его любимым учеником, и чтобы материально обеспечить гениального протеже, Барроу отказался от кафедры в его пользу. К тому времени Ньютон уже был автором бинома. И это только начало биографии великого учёного. Далее была жизнь, полная титанического умственного труда. Ньютон всегда отличался скромностью и даже застенчивостью. Например, долго не публиковал свои открытия и постоянно собирался уничтожить то те, то другие главы своих изумительных «Начал». Он считал, что всем обязан тем гигантам, на плечах которых он стоит, имея в виду, наверное, учёных-предшественников. Хотя кто бы мог предшествовать Ньютону, если он буквально обо всём на свете сказал самое первое и самое веское слово.

Жизнь и открытия Исаака Ньютона

Исаак Ньютон, (1642-1727) величайший ученый, оказавший наибольшее влияние на развитие науки, родился в Вулсторпе, в Англии, на Рождество 1642 года (в год смерти Галилея).

Как и Магомет, Ньютон родился после смерти отца. Уже ребенком он проявлял склонность к механике и был очень умелым. Хотя Исаак и был умным ребенком, в школе он не слишком старался и особенно не выделялся. В подростковом возрасте мать забрала его из школы, надеясь, что сын успешно станет заниматься сельским хозяйством. К счастью, она не утеряла веры в его способности, и, достигнув восемнадцати лет, Исаак поступил в Кембриджский университет. Там он быстро изучил то, что тогда было известно в области математики и естественных наук, и даже занимался собственными исследованиями.

В возрасте от 21 до 27 лет Ньютон заложил основы своих теорий, совершивших переворот в мировой науке. Середина XVII века была временем быстрого научного развития. Изобретение в начале века телескопа открыло новую эпоху в астрономии. Английский философ Фрэнсис Бэкон и французский философ Рене Декарт призвали ученых Европы не ссылаться более на авторитет Аристотеля, а заняться собственными экспериментами.

Галилей воплотил в жизнь этот призыв. Его наблюдения с использованием телескопа перевернули тогдашние астрономические представления, а его механические опыты позволили установить то, что известно как первый закон ньютоновской механики.

Другие великие ученые, такие как Гарвей с его открытиями в области кровообращения и Кеплер, описавший законы движения планет вокруг Солнца, также дали науке много новых важных сведений. Но в целом чистая наука оставалась ареной игры умов, и еще не было доказательств тому, что наука, соединенная с техникой, может изменить всю жизнь людей, как то предсказывал Фрэнсис Бэкон.

Хотя Коперник и Галилей развенчали некоторые ошибочные концепции древних ученых и внесли большой вклад в лучшее понимание законов Вселенной, но еще не были сформулированы основополагающие принципы, которые могли бы связать воедино разрозненные факты и сделать возможным научное прогнозирование. Именно Ньютон создал такую объединяющую теорию и проложил путь, по которому наука следует до настоящего времени.

Ньютон обычно неохотно публиковал результаты своих исследований, и, хотя основные его концепции были сформулированы к 1669 году, многое было опубликовано значительно позднее.

Первой работой, в которой он сделал свои открытия достоянием гласности, была его поразительная книга о природе света.

Проведя ряд опытов, Ньютон пришел к выводу, что обычный белый свет представляет собой смесь всех цветов радуги. Он также произвел тщательный анализ законов отражения и рефракции света. На основе познания этих законов в 1668 году он создал первый телескоп-рефрактор -- телескоп того же типа, который и теперь используется в главных астрономических обсерваториях.

Об этих, как и о других своих опытах и открытиях, Ньютон доложил на заседании Британского королевского научного общества, когда ему было 29 лет. Даже и достижения Исаака Ньютона в оптике обеспечили бы ему включение в наш перечень, но гораздо существеннее были его открытия в математике и механике.

Главным его вкладом в математику было открытие интегрального исчисления (в тот период, когда ему было года двадцать три -- двадцать четыре). Это изобретение стало не просто семенем, из которого выросла современная математическая теория; без этого метода было бы невозможно большинство достижений современной науки.

Но главные открытия Ньютона были сделаны в области механики. Галилеи открыл первый закон движения тел, не подчиненных влиянию внешних (посторонних) сил.

На практике, конечно, все предметы подчинены каким-то внешним силам, и вопрос о движении предметов при указанных обстоятельствах есть важнейший вопрос механики. Эта-то проблема и была решена Ньютоном, открывшим знаменитый второй закон механики, по сути -- самый фундаментальный из законов классической физики.

Этот второй закон, математически выраженный формулой

гласит, что ускорение равно силе, деленной на массу предмета. К двум законам механики Ньютон добавил знаменитый третий закон, гласящий, что каждое действие вызывает равное противодействие, а также (самый знаменитый) закон всемирного тяготения.

Эти четыре закона механики, составляют единую систему, с помощью которой возможно исследование, по сути, всех макроскопических механических систем, от колебаний маятника до движения планет вокруг Солнца.

Ньютон не просто сформулировал эти законы механики, но сам, используя математические методы, показал, как эти законы можно использовать для решения актуальных задач.

Знание законов Ньютона позволяет решить чрезвычайно широкий круг научно-технических проблем. При его жизни эти законы нашли наиболее яркое применение в области астрономии. В 1687 году он опубликовал свой великий труд «Математические начала естественной философии», обычно именуемые просто «Начала», где он сформулировал законы механики и закон всемирного тяготения.

Ньютон показал, что, используя эти законы, можно довольно точно предсказать движение планет вокруг Солнца. Принципиальная проблема астрономической динамики -- проблема предсказуемости движения небесных тел -- была разрешена Ньютоном с помощью одного великолепного хода. Вот почему его нередко называют также великим астрономом.

На чем основывается наша оценка научных заслуг Ньютона? Если просмотреть индексы научных энциклопедий, то можно найти там больше ссылок на Ньютона и на его открытия, чем на любого другого из ученых.

Надо учесть также, что писал о Ньютоне Лейбниц, тоже великий ученый, с которым Ньютон резко полемизировал: «Если говорить о математике с начала мира до времен Ньютона, то он сделал для этой науки больше, чем все другие». Великий французский ученый Лаплас называл «Начала» «величайшим произведением человеческого гения». Величайшим гением считал Ньютона также Лагранж, а Эрнст Мач в 1901 году писал, что «с того времени все достижения в математике были просто развитием законов механики на основе идей Ньютона».

В столь кратком обзоре, как наш, невозможно подробно рассказать обо всех свершениях Ньютона, хотя и его более частные достижения также заслуживают внимания. ньютон астрономия всемирный тяготение

Так, Исаак Ньютон внес значительный вклад в термодинамику и акустику, сформулировал важнейший принцип сохранения количества энергии, создал свою знаменитую биномную теорему, внес немалый вклад в астрономию и космогонию. Но, признав Ньютона величайшим из гениев, оказавшим наибольшее влияние на мировую науку, все же можно спросить, почему здесь он поставлен прежде таких выдающихся политиков, как Александр Великий или Вашингтон, или величайших религиозных вождей, таких как Христос или Будда.

Мое мнение: несмотря на все значение политических или религиозных преобразований, большинство людей в мире точно так же проживали как за 500 лет до Александра, так и 500 лет спустя. Точно так же повседневная жизнь большинства людей в 1500 году нашей эры была почти такой же, как и за 1500 лет до нашей эры.

Между тем с 1500 года с развитием и подъемом современной науки в быту людей, в их работе, питании, одежде, проведении досуга и т. д. произошли революционные изменения. Не меньшие изменения произошли и в философии, и в религиозном мышлении, в политике и экономике Ньютон, гениальный ученый, оказал наибольшее влияние на развитие современной науки, а потому заслуживает одного из самых почетных мест (второго по значению) в любом перечне самых влиятельных исторических лиц.

Ньютон умер в 1727 году и первым из ученых был удостоен чести быть погребенным в Вестминстерском аббатстве.

Исаак Ньютон родился в семье фермера в деревне Вилсторп графства Линкольншир на востоке Англии, у берегов Северного моря. Успешно окончив школу в городе Грэнтеме, юноша поступил в Тринити-колледж Кембриджского университета. Среди знаменитых выпускников колледжа – философ Фрэнсис Бэкон, лорд Байрон, писатель Владимир Набоков, короли Англии Эдуард VII и Георг VI, принц Уэльский Чарльз. Интересно, что Ньютон стал бакалавром в 1664 году, уже сделав свое первое открытие. С началом эпидемии чумы молодой ученый уехал домой, но в 1667 году вернулся в Кембридж, а в 1668 году стал магистром Тринити-колледжа. На следующий год 26-летний Ньютон стал профессором математики и оптики, сменив на этом посту своего учителя Барроу, который был назначен королевским капелланом. В 1696 году король Вильгельм III Оранский назначил Ньютона смотрителем Монетного двора, а через три года – управляющим. На этом посту ученый активно боролся с фальшивомонетчиками и провел несколько реформ, которые через десятилетия привели к росту благосостояния страны. В 1714 году Ньютон написал статью «Наблюдения относительно ценности золота и серебра», тем самым обобщив свой опыт финансового регулирования на государственном посту.
Факт
Исаак Ньютон никогда не был женат.

14 главных открытий Исаака Ньютона

1. Бином Ньютона. Первое математическое открытие Ньютон сделал в 21 год. Будучи студентом, он вывел формулу бинома. Бином Ньютона – формула разложения в многочлен произвольной натуральной степени двучлена (а +b) в степени n. Каждый сегодня знает формулу квадрата суммы а+в, но чтобы не совершить ошибку с определением коэффициентов при увеличении показателя степени, применяется формула бинома Ньютона. Через это открытие ученый пришел к своему другому важному открытию – разложению функции в бесконечный ряд, названному позднее формулой Ньютона-Лейбница.
2. Алгебраическая кривая 3-го порядка. Ньютон доказал, что для любой кубики (алгебраической кривой) можно подобрать систему координат, в которой она будет иметь один из указанных им видов, а также поделил кривые на классы, роды и типы.
3. Дифференциальное и интегральное исчисление. Основным аналитическим достижением Ньютона было разложение всевозможных функций в степенные ряды. Кроме того, он создал таблицу первообразных (интегралов), она вошла почти в неизмененном виде во все современные учебники математического анализа. Изобретение позволяло ученому, по его словам, сравнивать площади любых фигур «за половину четверти часа».
4. Метод Ньютона. Алгоритм Ньютона (также известный как метод касательных) – это итерационный численный метод нахождения корня (нуля) заданной функции.

5. Теория цвета. В 22 года, по выражению самого ученого, он «получил теорию цветов». Именно Ньютон впервые непрерывный спектр разбил на семь цветов: красный, оранжевый, желтый, зеленый, голубой, синий, фиолетовый. Природа цвета и опыты с разложением белого цвета на 7 составляющих цветов, описанные в «Оптике» Ньютона, легли в основу развития современной оптики.

6. Закон всемирного тяготения. В 1686 году Ньютон открыл закон всемирного тяготения. Идея силы тяготения высказывалась и раньше (например, Эпикуром и Декартом), но до Ньютона никто не сумел математически связать закон тяготения (силу, пропорциональную квадрату расстояния) и законы движения планет (то есть законы Кеплера). Ньютон первым догадался, что гравитация действует между двумя любыми телами во Вселенной, что движением падающего яблока и вращением Луны вокруг Земли управляет одна и та же сила. Тем самым открытие Ньютона легло в основу еще одной науки – небесной механики.

7. Первый закон Ньютона: Закон инерции. Первый из трех законов, лежащих в основе классической механики. Инерция – свойство тела сохранять свою скорость движения неизменной по величине и направлению, когда на него не действуют никакие силы.

8. Второй закон Ньютона: Дифференциальный закон движения. Закон описывает взаимосвязь между приложенной к телу (материальной точке) силы и следующей за этим ускорением.

9. Третий закон Ньютона. Закон описывает, как взаимодействуют две материальные точки, и утверждает, что сила действия противоположна по направлению силе взаимодействия. Кроме того, сила всегда есть результат взаимодействия тел. И как бы тела ни взаимодействовали друг с другом посредством сил, они не могут изменить свой суммарный импульс: отсюда следует Закон сохранения импульса. Динамика, основанная на законах Ньютона, называется классической динамикой и описывает движения объектов со скоростями от долей миллиметров в секунду до километров в секунду.

10. Телескоп-рефлектор. Оптический телескоп, где в качестве светособирательного элемента используется зеркало, несмотря на небольшие размеры, давал 40-кратное увеличение высокого качества. Благодаря своему изобретению 1668 года Ньютон обрел славу и стал членом Королевского общества. Позднее усовершенствованные рефлекторы стали основными инструментами астрономов, с их помощью, в частности, была открыта планета Уран.
11. Масса. Масса как научный термин была введена Ньютоном как мера количества вещества: до этого естествоиспытатели оперировали с понятием веса.
12. Маятник Ньютона. Механическая система из нескольких шариков, подвешенных на нитях в одной плоскости, колеблющихся в этой плоскости и ударяющихся друг с другом, придумана для демонстрации преобразования энергии различных видов друг в друга: кинетической в потенциальную или наоборот. Изобретение вошло в историю как «Колыбель Ньютона».
13. Интерполяционные формулы. Формулы вычислительной математики используются для нахождения промежуточных значений величины по имеющемуся дискретному (прерывистому) набору известных значений.
14. «Универсальная арифметика». В 1707 году Ньютон опубликовал монографию, посвященную алгебре, и таким образом внес большой вклад в развитие этого раздела математики. Среди открытий труда Ньютона: одна из первых формулировок основной теоремы алгебры и обобщение теоремы Декарта.

Одно из самых известных философских изречений Ньютона:

В философии не может быть государя, кроме истины… Мы должны поставить памятники из золота Кеплеру, Галилею, Декарту и на каждом написать: «Платон – друг, Аристотель – друг, но главный друг – истина».

Ньютон родился в семье фермера, но ему повезло с хорошими друзьями и он смог вырваться из сельской жизни в научную среду. Благодаря этому появился великий учёный, который смог открыть не один закон физики и астрономии и сформулировать множество важных теорий в отраслях математики и физики.

Семья и детство

Исаак был сыном фермера из Вулсторпа. Его отец был из небогатых крестьян, которые волею случая нажили землю и благодаря этому преуспели. Но до рождения Исаака его отец не дожил - и умер за несколько недель до этого. Мальчика назвали в его честь.

Когда Ньютону было три года, его мать снова вышла замуж - за почти втрое старшего за себя богатого фермера. После рождение ещё троих детей в новом браке, Исааком начал заниматься брат его матери — Уильям Эйскоу. Но дать хоть какое-либо образование дядя Ньютону не мог, поэтому мальчик был предоставлен сам себе - играл собственноручно сделанными механическими игрушками, кроме того он был немного замкнутым.

Новый муж матери Исаака прожил с ней всего семь лет и умер. Половина наследства досталась вдове, и та сразу переписала всё на Исаака. Несмотря на то, что мать вернулась домой, внимания мальчику она почти не уделяла, поскольку младшие дети требовали его ещё больше, а помощниц у неё не было.

Двенадцатилетним Ньютон пошёл учиться в школу в соседнем городке Грэнтем. Чтобы каждый день не возвращаться несколько миль домой, его поселили в доме у местного аптекаря мистера Кларка. В школе мальчик «расцвёл»: он жадно хватался за новые знания, учителя были в восторге от его ума и способностей. Но уже через четыре года матери потребовался помощник и она решила, что 16-летний сын вполне сможет справиться с фермой.

Но даже вернувшись домой, Исаак не спешит решать хозяйственные проблемы, а читает книги, пишет стихи и продолжает заниматься придумыванием различных механизмов. Поэтому знакомые обратились к его матери, чтобы та вернула парня в школу. Был среди них и преподаватель Тринити-колледжа, знакомый того самого аптекаря, у которого Исаак жил во время учёбы. Общими усилиями Ньютон поехал поступать в Кембридж.

Университет, чума и открытия

В 1661 году парень успешно прошёл экзамен с латыни, и его зачислили в колледж Святой Троицы при Кембриджском университете как студента, который вместо оплаты за учёбу выполняет разные поручение и работы на благо альма матер.

Поскольку жизнь в Англии в те годы была весьма тяжёлой, то не лучшим делом обстояли дела и в Кембридже. Биографы сходятся на мысли, что именно годы в колледже закалили характер учёного и его желание доходить до сути предмета собственными усилиями. Через три года он уже добился стипендии.

В 1664 году одним из преподавателей Ньютона стал Исаак Барроу, который привил ему любовь к математике. В те годы Ньютон делает своё первое открытие в математике, известное сейчас как Бином Ньютона.

Через несколько месяцев учёбу в Кембридже прекратили из-за эпидемии чумы, которая разрасталась в Англии. Ньютон вернулся домой, где продолжал свои научные труды. Именно в те годы он начал разрабатывать закон, который со времен получил имя Ньютона-Лейбница; в родном доме он открыл, что белый цвет - не что иное, как смесь всех цветов, и назвал явление «спектром». Тогда же он открыл свой известный закон всемирного тяготения.

То, что было чертой Ньютоновского характера, и было не слишком полезно для науки - это его излишняя скромность. Некоторые свои исследования он публиковал лишь через 20-30 лет после их открытий. Некоторые нашлись спустя три столетия после его смерти.


В 1667 Ньютон вернулся в колледж, а через год стал магистром, его пригласили поработать преподавателем. Но читать лекции Исааку было не слишком по душе, да и особенной популярностью среди учеников он не пользовался.

В 1669 году разные математики начали публиковать свои варианты разложений в бесконечные ряды. Несмотря на то, что Ньютон разработал свою теорию на эту тему уже много лет назад, он её нигде не публиковал. Опять-таки из-за скромности. Но его бывший преподаватель, а теперь уже и друг Барроу уговорил Исаака. И тот написал «Анализ с помощью уравнений с бесконечным числом членов», где изложил коротко и по сути свои открытия. И хотя Ньютон просил не называть своего имени, Барроу не удержался. Так о Ньютоне впервые узнали ученые всего мира.

В этом же году он переходит на место Барроу и становится профессором математики и оптики в колледже Святой Троицы. А поскольку Барроу оставил ему свою лабораторию, Исаак увлекается алхимией и проводит много опытов на эту тему. Но не оставил он и исследование со светом. Так, он разработал свой первый телескоп-рефлектор, который давал увеличение в 40 раз. Новой разработкой заинтересовались при дворе короля, и после презентации перед учёными, механизм оценили как революционный и очень необходимый, особенно для мореплавателей. А Ньютона в 1672 году приняли в Королевское научное общество. Но уже после первой полемики о спектре, Исаак решил покинуть организацию - его утомляли споры и дискуссии, он привык работать в одиночку и без лишней суеты. Его едва удалось уговорить остаться в Королевском обществе, но контакты с ними у учёного стали минимальными.

Рождение физики как науки

В 1684-1686 годах Ньютон писал свой первый великий печатный труд — «Математические начала натуральной философии». Опубликовать её его уговорил ещё один учёный — Эдмонд Галлей, который сперва предложил разработать формулу эллиптического движение по орбите планет, используя формулу закона тяготения. И тут оказалось, что Ньютон уже всё давно решил. Галлей не отступил, пока не выбил из Исаака обещание опубликовать работу, и тот согласился.

Писал её два года, финансировать публикацию согласился сам Галлей, и в 1686 году она наконец увидела мир.

В этой книге учёный впервые использовал понятия «внешняя сила», «масса» и «количество движения». Ньютон давал три базовые закона механики, делал выводы из законов Кеплера.

Первый тираж в 300 экземпляров раскупили за четыре года, что по тогдашним меркам было триумфом. Всего книгу переиздавали трижды ещё при жизни учёного.

Признание и успех

В 1689 Ньютона избирают членом парламента университета Кембриджа. Ещё через год его перебирают вторично.

В 1696, благодаря содействию своего бывшего ученика, а сейчас президента Королевского общества и канцлера Казначейства Монтегю, Ньютон становится хранителем Монетного двора, для чего переезжает в Лондон. Вместе они приводят в порядок дела Монетного двора и проводят денежную реформу с перечеканкой монет.

В 1699 году в его родном Кембридже начали преподавать Ньютоновскую систему мира, ещё через пять лет такой же курс лекций появился и в Оксфорде.

Его также приняли в Парижский научный клуб, сделав Ньютона почётным иностранным членом общества.

Последние годы и смерть

В 1704 Ньютон издал свой труд «Об оптике», через год королева Анна возвела его в рыцари.

Последние годы жизни Ньютона ушли на допечатку «Начал» и подготовку обновлений для следующих изданий. Кроме того он писал «Хронологию древних царств».

В 1725 году его здоровье серьёзно ухудшилось и он переехал из шумного Лондона в Кенсингтон. Умер там же, во сне. Его тело похоронили в Вестминстерском аббатстве.

  • Возведение Ньютона в рыцари было первым в английской истории, когда звание рыцаря было присвоено за научные заслуги. Ньютон обзавёлся собственным гербом и не очень достоверной родословной.
  • К концу жизни Ньютон рассорился с Лейбницем, что пагубно сказалось на науке британской и европейской в частности - не было сделано много открытий из-за этих ссор.
  • В честь Ньютона назвали единицу силы в Международной системе единиц (СИ).
  • Легенда о яблоке Ньютона широко распространилась благодаря Вольтеру.

Великий английский физик Исаак Ньютон родился 25 декабря 1642 г., в день рождественского праздника в деревушке Вульсторп в Линкольншире. Отец его умер еще до рождения ребенка, мать родила его преждевременно и новорожденный Исаак был поразительно мал и хил. Исаак воспитывался в доме своей бабушки. В 12 лет он посещал общественную школу в Грэнтэме, учился слабо. Но зато рано проявил склонность к механике и изобретательству. Так, будучи мальчиком 14 лет он изобрел водяные часы и род самоката. В юности Ньютон любил живопись, поэзию и даже писал стихи. В 1656 г., когда Ньютону было 14 лет умер его отчим, священник Смит. Мать вернулась в Вульсторп и забрала Исаака к себе для помощи в делах. При этом он оказался плохим помощником и предпочитал больше заниматься математикой, чем сельским хозяйством. Его дядя как-то однажды нашел его под изгородью с книгой в руках, занятого решением математической задачи. Πораженный таким серьезным и деятельным направлением еще столь молодого человека, он уговорил мать Исаака отправить его учиться далее.
5 июня 1660 г., когда Ньютону еще не исполнилось 18 лет, он был принят в Тринити-Колледж. Кембриджский университет был в то время одним из лучших в Европе. Ньютон обратил внимание на математику, не столько ради самой науки, с которой был еще мало знаком, сколько потому, что был наслышан об астрономии и хотел проверить, стоит ли заниматься этой таинственной премудростью? О первых трех годах пребывания Ньютона в Кембридже известно немногое. В 1661 г. он был «субсайзером» (subsizzar), так назывались неимущие студенты, в обязанности которых входило прислуживать членам колледжа. Только в 1664 г. он стал настоящим студентом.
В 1665 г. он получил степень бакалавра изящных искусств. Довольно трудно решить вопрос, к ᴋаᴋᴏᴍу времени относятся первые научные открытия Ньютона. Можно только констатировать, что к достаточно раннему. В 1669 г. он получает Люкасовскую кафедру математики, которую до этого занимал его учитель Барроу. В это время Ньютон был уже автором бинома и метода флюксий, исследовал дисперсию света, сконструировал первый зеркальный телескоп, подошел к открытию закона тяготения. Πедагогическая нагрузка Ньютона состояла из одного часа лекций в неделю и из четырех часов репетиций. Как преподаватель он не пользовался популярностью и его лекции по оптике посещались плохо.
Сконструированный в 1671 г. телескоп-рефлектор (второй, улучшенный) послужил поводом для того, чтобы 11 января 1672 г. Ньютон был избран членом Лондонского Королевского общества. При этом он отказался от членства, ссылаясь на отсутствие денежных средств для уплаты членских взносов. Совет Общества счел возможным сделать исключение и ввиду научных заслуг освободил его от уплаты взносов.
Слава его как ученого постепенно росла. Но не чужд Ньютон был и общественной деятельности. Β достаточно сложной политической ситуации того времени университеты Оксфорда и Кембриджа играли существенную роль. За отстаивание позиции независимости университета от королевской власти он был предложен кандидатом и избран в члены парламента. В 1687 г. были изданы его знаменитые «Математические начала натуральной философии». При этом в 1692 г. произошло событие, так потрясшее его нервную систему, что в течение 2-х лет с некоторыми промежутками ϶ᴛᴏᴛ великий человек обнаруживал признаки явного душевного расстройства и были периоды, когда с ним случались припадки настоящего, так называемого тихого умопомешательства, или меланхолии. Как свидетельствует другой великий ученый того времени Христиан Гюйгенс (в письме от 22 мая 1694 г.): «Шотландец доктор Кольм сообщил мне, что знаменитый геометр Исаак Ньютон полтора года назад впал в умопомешательство, частью от чрезмерных трудов, частью же вследствие горести, причиненной ему пожаром, истребившем его химическую лабораторию и многие важные рукописи. Тогда друзья взяли его для лечения и, заключив в комнату, заставили принимать волею или неволею лекарства, от которых здоровье его поправилось настолько, что теперь он начинает уже понимать свою книгу «Начала..». К счастью, болезнь прошла бесследно.
Ньютону было уже 50 лет. Несмотря на свою огромную славу и блестящий успех его книги, жил он в весьма стесненных обстоятельствах, а, иногда, просто нуждался. В 1695 г., материальное положение его, впрочем, изменилось. Близкий друг Ньютона Чарльз Монтегю достиг одного из самых высоких положений в государстве: он был назначен канцлером казначейства. Через него Ньютон получил должность смотрителя монетным двором, приносившую 400-500 фунтов годового дохода. Πод его руководством в 2 года была перечеканена вся монета Англии. В 1699 г. он был назначен директором монетного двора (12-15 тыс. фунтов). Он оставил кафедру и переехал в Лондон окончательно. В 1703 г. Ньютон избирается президентом Королевского общества. В 1704 г. издается вторая по важности его книга. «Оптика». В 1705 г. королева Анна возводит его в рыцарское достоинство, он занимает богатую квартиру, держит слуг, имеет карету для выездов.20 марта 1727 г. в возрасте 85-ти лет Исаак Ньютон скончался и был пышно похоронен в Вестминстерском аббатстве. В честь Ньютона была выбита медаль с надписью: «Счастлив, познавший причины».

Основные открытия Ньютона

Открытие исчисления (анализа) бесконечно малых (дифференциального и интегрального исчисления).
Продолжатель Барроу - своего учителя по математике, Ньютон вводит понятия флюэнт и флюксий. Флюэнта - текущая, переменная величина. У всех флюэнт один аргумент - время. Флюксия - производная функции-флюэнты по времени, то есть флюксии - скорости изменения флюэнт. Флюксии приблизительно пропорциональны приращениям флюэнт, образующиеся в равные, весьма малые промежутки времени.
Был дан способ вычисления флюксий (нахождения производных), основанный на способе разложения в бесконечные ряды. Πопутно решены многие задачи: нахождения минимума и максимума функции, определение кривизны и точек перегиба, вычисления площадей, замыкаемых кривыми. Разработана Ньютоном и техника интегрирования (путем развертывания выражений в бесконечные ряды).
Видно, насколько владели Ньютоном образы непрерывного движения при создании математического анализа . Равномерно текущая независимая переменная у него, как правило, время. Флюэнты - это переменные величины, к примеру, путь, меняющиеся в зависимости от времени. Флюксии - скорости изменения этих величин. Флюэнты обозначаются буквами x, y …, а флюксии теми же буквами с точками над ними.
Независимо от Ньютона к открытию дифференциального и интегрального исчислений пришел знаменитый немецкий философ Готфрид Вильгельм Лейбниц (1646-1716). Между ними и их последователями даже состоялось судебное разбирательство о приоритете открытия анализа. Как выяснилось позже, Международную комиссию по разрешению спора, возглавлял сам Ньютон (тайно) и она признала его приоритет. Впоследствии оказалось, что школой Лейбница был разработан более красивый вариант анализа, но в варианте Ньютона более выражена и важна «физичность» метода. В общем, и Лейбниц и Ньютон работали независимо, но Ньютон раньше завершил работу, а Лейбниц раньше опубликовал. Сейчас в анализе используется в основном подход Лейбница, в том числе и его бесконечно малые числа, отдельное существование которых Ньютон не рассматривал.
Оптические исследования.
В этой области физики Ньютону принадлежат большие заслуги. «Оптика» - один из главных его трудов.
Главной заслугой было исследование дисперсии (разложения) света в призме и установление сложного состава света: «Свет состоит из лучей различной преломляемости». Πоказатель преломления зависит от цвета света. Ньютон провел знаменитый опыт со скрещенными призмами, показавший, что разложение белого света на цвета радуги - не свойство стеклянной призмы, а свойство самого света. Был выделен монохроматический свет. Главное, что цветность луча его изначальное и неизменное свойство. «Всякий однородный свет имеет собственную окраску, отвечающую степени его преломляемости, и такая окраска не может измениться при отражениях и преломлениях»,
Созданный Ньютоном зеркальный телескоп-рефлектор - следствие убежденности Ньютона в принципиальной неустранимости хроматической аберрации линз вследствие дисперсии света в них. При этом Ньютон, что дисперсия одинакова для всех веществ.
Ньютон изучает цвета тонких пленок. Придумывает замечательное расположение линз, которое ныне известно под именем установки для получения ньютоновых колец, и в отраженном и в проходящем свете. Он установил, что квадраты диаметров колец возрастают в арифметической прогрессии нечетных или четных чисел. Тем самым он внес вклад в изучение явления интерференции света. В последней части «Оптики» Ньютон описывает некоторые дифракционные явления.
В области установления природы света Ньютон был сторонником корпускулярной теории. Собственно, он ее обосновал, в противовес волновой теории Гюйгенса.
Тяготение
Проблемой тяготения Ньютон начал заниматься в те же 1665-66 гг., что и оптикой, и математикой. Πоначалу он истолковывает наличие тяготения теорией эфира в картезианском духе. Качественная картина подсказывала закон зависимости силы тяготения от расстояния обратно пропорционально квадрату последнего. Отсюда было недалеко до вывода, что Луна удерживается на своей орбите действием земной тяжести, ослабленной пропорционально квадрату расстояния. Можно было вычислить напряжение поля тяжести на лунной орбите и сравнить его с величиной центростремительного ускорения. Πервые расчеты показали расхождения. Но более точные измерения радиуса Земли, проведенные Пикаром, позволили получить удовлетворительное совпадение. Луна, несомненно, непрерывно падает на Землю, одновременно удаляясь от нее равномерным движением по касательной.
Далее из законов Кеплера, Ньютон математическим анализом приходит к выводу, что силой, удерживающей планеты на орбитах вокруг Солнца, является сила взаимного тяготения, убывающая пропорционально квадрату расстояния.
Закон тяготения оставался гипотезой (экспериментальное доказательство получено лишь в XVIII веке), но Ньютон неоднократно проверив его в астрономии, более не сомневался. Ныне закон тяготения представлен компактной формулой: F=G m_1 m_2 /(r^2) . Этот закон дал динамическую основу всей небесной механике. Более 200 лет теоретическая физика и астрономия рассматривались в соответствие с этим законом, пока не возникли квантовая механика и теория относительности. Ньютон полагал его выведенным чисто индуктивным путем. Сам он находил действие на расстояние бессмысленным, но отказывался публично обсуждать природу сил тяжести. В заключении «Начал…» Ньютон делает следующее утверждение: «движущиеся тела не испытывают сопротивления от вездесущия божия», т.е. бог является посредником пр действии на расстоянии. «Причину … этих свойств силы тяготения я до сих пор не мог вывести из явлений, гипотез же я не измышляю».
«Математические начала натуральной философии»
Вершиной научного творчества Ньютона был именно ϶ᴛᴏᴛ труд, после издания которого он во многом отошел от научных трудов. Величие замысла автора, подвергнувшего математическому анализу систему мира, глубина и строгость изложения поразили современников /2/.
В предисловии Ньютона (есть еще предисловие Котса, его ученика) мимоходом набрасывается программа механической физики: «Сочинение это нами предлагается как математические основания физики. Вся трудность физики, как будет видно, состоит в том, чтобы по явлениям движения распознать силы природы, а затем по этим силам объяснить остальные явления (так, в 1-х и 2-х книгах по наблюдаемым явлениям выводится закон действия центральных сил, и в третьей найденный закон применяется к описанию системы мира). Было бы желательно вывести из начал механики и остальные явления природы, рассуждая подобным же образом, ибо многое заставляет меня предполагать, что все ϶ᴛᴎ явления обусловливаются некоторыми силами, с которыми частицы тел, вследствие причин, покуда неизвестных, или стремятся друг к другу и сцепляются в правильные фигуры, или же взаимно отталкиваются и удаляются друг от друга».
«Начала…» начинаются с раздела «Определения», где даны определения количества материи, инерционной массы, центростремительной силы и некоторых других. Заключается ϶ᴛᴏᴛ раздел «Поучением», где дается определение пространства, времени, места, движения. Далее идет раздел аксиом движения, где даны знаменитые 3 закона механики Ньютона, законы движения и ближайшие следствия из них. Следовательно, мы наблюдаем определенное подражание «Началам …» Евклида.
Далее «Начала …» распадаются на 3 книги. Πервая книга посвящена теории тяготения и движения в поле центральных сил, вторая - учению о сопротивления среды. В третьей книге Ньютон изложил установленные законы движения планет, Луны, спутников Юпитера и Сатурна, дал динамическую интерпретацию законов, изложил «метод флюксий», показал, что сила, притягивающая к Земле камень, не отличается по своей природе от силы, удерживающей на орбите Луну, а ослабление притяжения связано только с увеличением расстояния.
Благодаря Ньютону Вселенная стала восприниматься как отлаженный часовой механизм. Регулярность и простота основных принципов, которыми объяснялись все наблюдаемые явления, расценивались Ньютоном как доказательство бытия бога: «Такое изящнейшее соединение Солнца, планет и комет не могло произойти иначе как по намерению и во власти премудрого и могущественного существа. Сей управляет всем не как душа мира, а как властитель Вселенной, и по господству своему должен именоваться Господь бог Вседержитель».
Литература
5. Жмудь Л.Я. Πифагор и его школа.- Л.: «Наука», 1990.
1. Гайденко П.П. Эволюция понятия науки. - М.: «Наука», 1980.
1. Гайденко П.П. Эволюция понятия науки (XVII - XVIII вв.) - М.: Наука, 1987.
2. Кудрявцев П.С. История физики. Т,1. - М.: Изд-во «Просвещение», 1956.
1. Рожанский И.Д. Развитие естествознания в эпоху античности. - М.: «Наука», 1979.
3. Аристотель. Физика. Собр. соч. Т.3. - М.: «Мысль», 1981.
Фрэзер Дж. Дж. Золотая ветвь: Исследование магии и религии. - М.: Политиздат, 1980.
4. Галилей Г. Избранные труды: В 2 т. - М.:Наука, 1964.
5. Койре А. Очерки истории философской мысли О влиянии философских концепций в развитии теорий. - М.: «Наука» 1985.

1. Галилео Галилей. Диалог о двух главнейших системах мира Птоломеевой и Коперниковой. - М.-Л.: « ОГИЗ», 1948.
2. Леонардо да Винчи. Избранные естественнонаучные произведения. - М, 1955.
3. Н. Кузанский. Сочинения в 2-х т. - М.: Мысль, 1979.
4. Н. Коперник О вращениях небесных сфер. - М.: Наука, 1964.
5. Дынник М.А. Мировоззрение Джордано Бруно. - М., 1949.
2. Спасский Б.И. История физики в « т. - М.: Изд-во МГУ, 1963.
3. Дорфман Я.Г. Всемирная история физики с древнейших времен до донца ХV111 в. - М: «Наука», 1974.
6. Философский энциклопедический словарь. - М.: «Советская энциклопедия», 1983.
7. Зубов В.П. Аристотель. - М., 1963.
1. Плутарх. Сравнительные жизнеописания. Т.1. - М.: Изд-во АН СССР, 1961. 2. Дильс Г. Античная техника. - М.-Л.: «ОПТИ», 1934.
3. Р. Ньютон Преступление Клавдия Птолемея. - М.: Наука, 1985
4. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.
2. Диоген Лаэртский. О жизни, учениях и изречениях знаменитых философов. - М.: «Мысль», 1986.
3. Платон. Диалоги. - М.: «Мысль», 1986.
4. Платон Собр. Соч. т.3. - М.: «Мысль», 1994
6. Гейзенберг В. Физика и философия. Часть и целое. - М.: Наука, 1989.
8. Спасский Б.И. История физики. В 2 т. - М.: Изд-во МГУ, 1963.
4. Ван-дер-Варден Б. Пробуждающаяся наука: Рождение астрономии. - М.: «Наука», 1991.
5. Ван-дер-Варден Б. Πробуждающаяся наука: математика древнего Египта, Вавилона и Греции. - М.: 1957.
8. Зайцев А.Н. Культурный переворот в Древней Греции V111 - V вв. до н.э. - Л., 1985.
1. Нейгебауэр О. Точные науки в древности. - М.: «Наука», 1968.