Хаоса теория

Теория хаоса

Диаграмма раздвоения логистической карты, где x → r x (1 - x). Каждый вертикальный сектор показывает аттрактор определённого значения r. Диаграмма отображает удвоение периода когда r увеличивается, что в конечном итоге производит хаос

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос . Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной .

Примерами подобных систем являются атмосфера , турбулентные потоки , биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием , эффект Коновала - распределение частот выпадения положительных результатов, или принятия правильных решений.

Теория хаоса - область исследований, связывающая математику и физику.

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание», как пример хаотической системы, соответствует смешиванию разноцветных красок или жидкости.

Тонкости определения

Пример топологического смешивания, где x → 4 x (1 - x) и y → x + y, если x + y <1 (иначе x + y - 1). Здесь синий регион в процессе развития был преобразован сначала в фиолетовый, потом в розовый и красный регионы и в конечном итоге выглядит как облако точек, разбросанных поперек пространства

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора. Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Аттрактор Лоренца как диаграмма хаотической системы. Эти два графика демонстрируют чувствительную зависимость от первоначальных условий в пределах занятого аттрактором региона

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Хронология

Фрактальный папоротник, созданный благодаря игре хаоса. Природные формы (папоротники, облака, горы и т. д.) могут быть воссозданы через систему повторяющихся функций

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, турбуленция и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбуленцией в жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы. Основным катализатором для развития теории хаоса стала электронно-вычислительная машина . Большая часть математики в теории хаоса выполняет повторную итерацию простых математических формул, которые делать вручную непрактично. Электронно-вычислительные машины делали такие повторные вычисления достаточно быстро, тогда как рисунки и изображения позволяли визуализировать эти системы.

Одним из пионеров в теории хаоса был Эдвард Лоренц , интерес которого к хаосу появился случайно, когда он работал над предсказанием погоды в 1961 году. Погодное Моделирование Лоренц выполнял на простом цифровом компьютере McBee LGP-30. Когда он захотел увидеть всю последовательность данных, тогда, чтобы сэкономить время, он запустил моделирование с середины процесса. Хотя это можно было сделать введя данные с распечатки, которые он вычислил в прошлый раз.

К его удивлению погода, которую машина начала предсказывать, полностью отличалась от погоды, рассчитанной прежде. Лоренц обратился к компьютерной распечатке. Компьютер работал с точностью до 6 цифр, но распечатка округлила переменные до 3 цифр, например значение 0.506127 было напечатано как 0.506. Это несущественное отличие не должно было иметь фактически никакого эффекта. Однако Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели. Годом ранее, Бенуа Мандельброт нашёл повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит ошибки неизбежны и должны быть запланированы. Мандельброт описал два явления: «эффект Ноя », который возникает, когда происходят внезапные прерывистые изменения, например, изменение цен после плохих новостей, и «эффект Иосифа » в котором значения постоянны некоторое время, но все же внезапно изменяются впоследствии. В 1967 он издал работу «Какой длины побережье Великобритании? Статистические данные подобностей и различий в измерениях» доказывая, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Он утверждал, что клубок бечевки кажется точкой, если его рассматривать издалека (0-мерное пространство), он же будет клубком или шаром, если его рассматривать достаточно близко (3-мерное пространство) или может выглядеть замкнутой кривой линией сверху (1-мерное пространство). Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения.

Объект, изображения которого являются постоянными в различных масштабах («самоподобие») является фракталом (например кривая Коха или «снежинка»). В 1975 году Мандельброт опубликовал работу «Фрактальная геометрия природы», которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.

Турбулентные потоки воздуха от крыла самолета, образующиеся во время его посадки. Изучение критической точки, после которой система создает турбулентность, были важны для развития теории Хаоса. Например, советский физик Лев Ландау разработал Ландау-Хопф теорию турбулентности. Позже, Дэвид Руелл и Флорис Тейкнс предсказали, вопреки Ландау, что турбулентность в жидкости могла развиться через странный аттрактор, то есть основную концепцию теории хаоса

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года. В декабре 1977 Нью-Йоркская академия наук организовала первый симпозиум о теории хаоса, который посетили Дэвид Руелл, Роберт Мей, Джеймс А. Иорк, Роберт Шоу , Й. Даян Фермер, Норман Пакард и метеоролог Эдвард Лоренц . В следующем году, Митчелл Феидженбом издал статью «Количественная универсальность для нелинейных преобразований», где он описал логистические отображения. М. Феидженбом применил рекурсивную геометрию к изучению естественных форм, таких как береговые линии. Особенность его работы в том, что он установил универсальность в хаосе и применял теорию хаоса ко многим явлениям. В 1979 Альберт Дж. Либчейбр на симпозиуме в Осине, представил свои экспериментальные наблюдения каскада раздвоения, который ведет к хаосу. Его наградили премией Вольфа в физике вместе с Митчеллом Дж. Фейгенбаумом в 1986 «за блестящую экспериментальную демонстрацию переходов к хаосу в динамических системах ». Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов . В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию . Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т.д.).

Применение

Теория хаоса применяется во многих научных дисциплинах: математика, биология, информатика, экономика, инженерия, финансы, философия, физика, политика, психология и робототехника. В лаборатории хаотическое поведение можно наблюдать в разных системах, например электрические схемы , лазеры, химические реакции, динамика жидкостей и магнитно-механических устройств. В природе хаотическое поведение наблюдается в движении спутников солнечной системы , эволюции магнитного поля астрономических тел, приросте населения в экологии, динамике потенциалов в нейронах и молекулярных колебаниях . Есть сомнения о существовании динамики хаоса в тектонике плит и в экономике.

Одно из самых успешных применений теории хаоса было в экологии, когда динамические системы похожие на модель Рикера использовались, чтобы показать зависимость прироста населения от его плотности. В настоящее время теория хаоса также применяется в медицине при изучении эпилепсии для предсказаний приступов, учитывая первоначальное состояние организма. Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей. Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. выбрать тестируемое состояние;
  2. найти несколько подобных или почти подобных состояний; и
  3. сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т.д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

Тео́рия ха́оса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем , подверженных при определённых условиях явлению, известному как хаос (динамический хаос , детерминированный хаос ). Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной . Для акцентирования особого характера изучаемого в рамках этой теории явления, обычно принято использовать название: теория динамического хаоса .

Примерами подобных систем являются атмосфера , турбулентные потоки , некоторые виды аритмий сердца, биологические популяции , общество как система коммуникаций и его подсистемы: экономические, политические, психологические (культурно-исторические и интер-культуральные) и другие социальные системы. Их изучение, наряду с аналитическим исследованием имеющихся рекуррентных соотношений, обычно сопровождается математическим моделированием .

Теория хаоса - область исследований, связывающая математику и физику.

Энциклопедичный YouTube

    1 / 5

    ✪ Тайна теории хаоса раскрыта!

    ✪ 15x4 - 15 минут о теории хаоса

    ✪ Илья Щуров. Бифуркации, катастрофы и хаос

    ✪ Veritasium #1 Что НЕ является Случайностью?

    ✪ Теория струн для чайников

    Субтитры

    всем привет меня зовут артур шарифов и вы смотрите мое новое видео на канале кверти как я сюда попал буквально откуда я пришел слева может быть справа может я вообще сидел на корточках и просто привстал вы затрудняетесь ответить ведь то что вы видите это лишь результат это конечная точка а конечная точка чего можно вообразить себе много разных вариантов развития событий при которых я оказался бы там где я оказался теория хаоса пытается дать ответы на подобного рода вопросы но она немного уходит в сторону хитрит куда проще и как оказалось куда полезней дать ответ на вопрос а что могло бы помешать мне здесь оказался все что угодно любое даже самое незначительное изменение в прошлом неминуемо привело бы к тому что я бы здесь не оказался это явление называется эффект бабочки это одно из ключевых свойств хаотичных систем теория хаоса на самом деле занимается изучением неистинного хауса неполного беспорядков хаотичная система в данном контексте тоже упорядочена причинно- следственная связь присутствует только вот управлять такой системой становится практически невозможно давайте рассмотрим вот такой пример расстояние от деревни горшки до парижа который в челябинской области 100 километров я выезжаю из горшков в париж и еду со скоростью 50 километров час через сколько часов я доеду до парижа решаем задачку если я за один час проезжаю 50 километров то за два часа я как раз проезду 100 километров да для того чтобы добраться от горшков до парижа мне нужно два часа действительно ли все так просто да на самом деле все потому что мы знаем что если я буду двигаться и чуть чуть быстрей то и приеду я чуть чуть раньше а если я буду двигаться немножко медленней то чутка позже и приеду в точку назначения это яркий пример устойчивой системы система описанная по математическим законам может считаться устойчивой если при малых изменениях начальных условий мы наблюдаем малые изменения результата двигался чуть чуть быстрее приехал чуть чуть раньше чем сложнее система тем она как правило неустойчивее но когда речь идет о сложных системах уже по самому названию можно понять что не все здесь так просто в английском языке есть слово complex и слово complicated b они оба переводятся на русский язык как сложный но при этом их значения немного разнятся и по иронии именно эти маленькие различия имеют очень большое значение комплекс это сложный в смысле навороченный продвинутый возможно состоящий из нескольких других объектов которые тоже можно считать навороченными например айфон достаточно сложная навороченная штука которая внутри состоит из большого количества компьютеров сложная но тем не менее устойчивая мы ведь очень легко управляемся с айфонами при этом при малых изменения параметров мы наблюдаем малое изменение результата такие сложные на самом деле ведь сложные системы являются устойчивыми к начальным условиям а вот те сложные системы которые по-английски называются complecated как раз и являются неустойчивыми они и есть объекты изучения теории хаоса в таких системах при малых изменениях начальных условий происходит просто колоссальное изменение результата самый лучший синоним который я смог подобрать в русском языке это слово запутанный создателем теории хаоса является эдвард лоренц нет это не тот лоренц который открыл силу лоренца и преобразование лоренца наш лоренц в первую очередь был метеоролог просто видимо у метеорологов очень скучная работа и лоенц видать от скуки начал просто по несколько раз перепроверять результаты он получал лист с распечаткой всей информации по исследованию а затем брал начальные условия и снова забивал их в компьютер парадокс в том что каждый раз после такого вот повторного прогона компьютер выдавал результаты которые значительно отличались от основного исследования причем чем долгосрочнее прогноз тем сильнее были различия лоренц конечно не хотел делать вывод о неправильности метеорологии как области знаний и естесственно начал искать причину таких глобальных несостыковок и этим самым он навсегда изменил математику дело в том что данные в компьютер вбивались с точностью до шести знаков после запятой а на распечатке данные округлялись до трех знаков после запятой то есть когда лоренц вбивал данные повторно с листочка он вбивал не изначальные данные а данные которые были уже округлены и хотя это очень маленькие различия то есть максимальная ошибка ведь составляет одну тысячную это очень незначительно и этого было достаточно для того чтобы вместо яркой и солнечной погоды начался ураган с градом лоренц стал все глубже опускаться в математику и таким образом открыл новую науку которая называется теория хаоса кстати термин эффект бабочки тоже был введен лоренцом график показывающий изменение множества состоянии нелинейной динамической системы с течением времени в трехмерном случае подозрительно напоминает крылья бабочки но как он сам признаётся такое название ему предложили организаторы его конференции лоренц для большей ироничности привел вот такой пример взмах крыльев бабочки в бразилии может породить целую цепочку событий которые проведут за собой смерч в техасе эффект бабочки является центральным понятием теории хаоса при этом очень важно не путать хаос и случайность многие явления в биологии химии, медицине и даже экономике которые раньше было сложно писать математические законами которые тогда условно считались случайными сейчас оказались хаотичными и работать с ними можно по законам теории хаоса к примеру стало намного проще предсказывать приступы эпилепсии у больных движение спутников по орбите оказались хаотичными транспортный поток по многополосной трассе также подвержен эффекту бабочки особенно сильное влияние теория хаоса оказала на демографические и экологические исследования ну и конечно у синоптиков теперь есть отговорка почему это не обещали нам теплую и ясную погоду а на улице холодно идет дождь бабочка где-нибудь в бразилии махнула крыльями мы ничего не могли поделать конечно же исследования лоренца были революционными и оказали огромное влияние на массовую культуру в трилогии фильмов назад в будущее можно заметить как изменяя что то в прошлом марти макфлай наблюдает колоссальные изменения в настоящем это и есть эффект бабочки лично у меня словосочетание эффект бабочки в первую очередь ассоциируется с эштоном катчером хотя бы потому что мое первое знакомство с этим явлением произошло именно благодаря одноименному фильму где в главной роли был эштон наш мир что уж там скрывать сложная конструкция сразу во всех смыслах очень навороченная и очень запутанная штука в своем прошлом видео я рассказал о таком абстрактном компьютере который вполне возможно мог бы предсказывать будущее на сотни или даже тысячи лет вперед так вот эффект бабочки который несомненно присутствует в нашем запутанном и хаотичном мире делает такое предсказание практически невозможным никаких округлений никаких приближений никаких допущений это запрещено а одна маленькая незначительная упущенная деталь будет стоить нам больших последствий в наших естественно неудачных попытках предсказать будущее причем чем дальше тем сильнее будут неточности чем дальше тем безнадежнее выглядит вся эта задумка если вам понравилось это видео обязательно поставьте ему большой палец вверх кстати говоря я пришел оттуда а теория хаоса все еще берет верх над нами так и не давая нам понять как же это вышло и что будет дальше на этом все если это видео соберет большое количество пальцев вверх то мы с вами увидимся уже на следующем видеоролике всем пока

Основные сведения

Теория хаоса гласит, что сложные системы чрезвычайно зависимы от первоначальных условий, и небольшие изменения в окружающей среде могут привести к непредсказуемым последствиям.

Математические системы с хаотическим поведением являются детерминированными, то есть подчиняются некоторому строгому закону, и, в некотором смысле, являются упорядоченными. Такое использование слова «хаос» отличается от его обычного значения (см. хаос в мифологии). Отдельная область физики - теория квантового хаоса - изучает недетерминированные системы, подчиняющиеся законам квантовой механики .

Пионерами теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд и немецкий математик Ю. К. Мозер , построившие теорию хаоса, называемую КАМ (теория Колмогорова - Арнольда - Мозера). Теория вводит понятие аттракторов (в том числе, странных аттракторов как притягивающих канторовых структур), устойчивых орбит системы (т. н. КАМ-торов).

Понятие хаоса

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории . Таким образом, произвольно небольшое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к первоначальным условиям (альтернативное, более слабое определение хаоса использует только первые два свойства из вышеупомянутого списка).

Чувствительность к начальным условиям более известна как «Эффект бабочки ». Термин возник в связи со статьёй «Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас», которую Эдвард Лоренц в 1972 году вручил американской «Ассоциации для продвижения науки» в Вашингтоне . Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой, что в принципе доказывает определённую линейность системы. Но мелкие изменения в первоначальном состоянии системы могут и не вызывать цепочку событий.

Топологическое смешивание

Топологическое смешивание в динамике хаоса означает такую схему расширения системы, что одна её область в какой-то стадии расширения накладывается на любую другую область. Математическое понятие «смешивание» как пример хаотической системы соответствует смешиванию разноцветных красок или жидкостей.

Тонкости определения

В популярных работах чувствительность к первоначальным условиям часто путается с самим хаосом. Грань очень тонкая, поскольку зависит от выбора показателей измерения и определения расстояний в конкретной стадии системы. Например, рассмотрим простую динамическую систему , которая неоднократно удваивает первоначальные значения. Такая система имеет чувствительную зависимость от первоначальных условий везде, так как любые две соседние точки в первоначальной стадии впоследствии случайным образом будут на значительном расстоянии друг от друга. Однако её поведение тривиально, поскольку все точки кроме нуля имеют тенденцию к бесконечности , и это не топологическое смешивание. В определении хаоса внимание обычно ограничивается только закрытыми системами, в которых расширение и чувствительность к первоначальным условиям объединяются со смешиванием.

Даже для закрытых систем, чувствительность к первоначальным условиям не идентична с хаосом в смысле изложенном выше. Например, рассмотрим тор (геометрическая фигура, поверхность вращения окружности вокруг оси лежащей в плоскости этой окружности - имеет форму бублика), заданный парой углов (x, y) со значениями от нуля до 2π . Отображение любой точки (x, y) определяется как (2x, y+a), где значение a/2π является иррациональным . Удвоение первой координаты в отображении указывает на чувствительность к первоначальным условиям. Однако, из-за иррационального изменения во второй координате, нет никаких периодических орбит - следовательно отображение не является хаотическим согласно вышеупомянутому определению.

Аттракторы

Наиболее интересны случаи хаотического поведения, когда большой набор первоначальных условий приводит к изменению на орбитах аттрактора. Простой способ продемонстрировать хаотический аттрактор - это начать с точки в районе притяжения аттрактора и затем составить график его последующей орбиты. Из-за состояния топологической транзитивности , это похоже на отображения картины полного конечного аттрактора.

Например, в системе описывающей маятник - пространство двумерное и состоит из данных о положении и скорости. Можно составить график положений маятника и его скорости. Положение маятника в покое будет точкой, а один период колебаний будет выглядеть на графике как простая замкнутая кривая . График в форме замкнутой кривой называют орбитой. Маятник имеет бесконечное количество таких орбит, формируя по виду совокупность вложенных эллипсов .

Странные аттракторы

Странные аттракторы появляются в обеих системах , и в непрерывных динамических (типа системы Лоренца) и в некоторых дискретных (например, отображение Эно (Hénon)). Некоторые дискретные динамические системы названы системами Жулиа по происхождению. И странные аттракторы, и системы Жулиа имеют типичную рекурсивную, фрактальную структуру.

Теорема Пуанкаре-Бендиксона доказывает, что странный аттрактор может возникнуть в непрерывной динамической системе, только если она имеет три или больше измерений . Однако это ограничение не работает для дискретных динамических систем. Дискретные двух- и даже одномерные системы могут иметь странные аттракторы. Движение трёх или большего количества тел , испытывающих гравитационное притяжение при некоторых начальных условиях может оказаться хаотическим движением .

Простые хаотические системы

Хаотическими могут быть и простые системы без дифференциальных уравнений . Примером может быть логистическое отображение, которое описывает изменение количества населения с течением времени. Логистическое отображение является полиномиальным отображением второй степени и часто приводится в качестве типичного примера того, как хаотическое поведение может возникать из очень простых нелинейных динамических уравнений . Ещё один пример - это модель Рикера, которая также описывает динамику населения.

Простую модель консервативного (обратимого) хаотического поведения демонстрирует так называемое отображение «кот Арнольда». В математике отображение «кот Арнольда» является моделью тора , которую он продемонстрировал в 1960 году с использованием образа кошки.

Показать хаос для соответствующих значений параметра может даже одномерное отображение, но для дифференциального уравнения требуется три или больше измерений . Теорема Пуанкаре - Бендиксона утверждает, что двумерное дифференциальное уравнение имеет очень стабильное поведение. Zhang и Heidel доказали, что трехмерные квадратичные системы только с тремя или четырьмя переменными не могут демонстрировать хаотическое поведение. Причина в том, что решения таких систем являются асимптотическими по отношению к двумерным плоскостям, и поэтому представляют собой стабильные решения.

Хронология

Первым исследователем хаоса был Анри Пуанкаре . В 1880-х, при изучении поведения системы с тремя телами, взаимодействующими гравитационно, он заметил, что могут быть непериодические орбиты , которые постоянно и не удаляются и не приближаются к конкретной точке. В 1898 Жак Адамар издал влиятельную работу о хаотическом движении свободной частицы, скользящей без трения по поверхности постоянной отрицательной кривизны. В своей работе «бильярд Адамара» он доказал, что все траектории непостоянны и частицы в них отклоняются друг от друга с положительной экспонентой Ляпунова .

Почти вся более ранняя теория, под названием эргодическая теория, была разработана только математиками. Позже нелинейные дифференциальные уравнения изучали Г. Биргхоф , A. Колмогоров , M. Каретник, Й. Литлвуд и Стивен Смэйл. Кроме С. Смэйла, на изучение хаоса всех их вдохновила физика: поведение трёх тел в случае с Г. Биргхофом, Турбулентность и астрономические исследования в случае с А. Колмогоровым, радиотехника в случае с М. Каретником и Й. Литлвудом. Хотя хаотическое планетарное движение не изучалось, экспериментаторы столкнулись с турбулентностью течения жидкости и непериодическими колебаниями в радиосхемах, не имея достаточной теории чтобы это объяснить.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда для некоторых учёных стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты подобно логистическому отображению. Чтобы заранее исключить неточности при изучении - простые «помехи» в теории хаоса считали полноценной составляющей изучаемой системы.

Явления хаоса наблюдали многие экспериментаторы ещё до того, как его начали исследовать. Например, в 1927 году Ван дер Поль, а в 1958 году П. Ивес. 27 ноября 1961 Й. Уэда, будучи аспирантом в лаборатории Киотского университета, заметил некую закономерность и назвал её «случайные явления превращений», когда экспериментировал с аналоговыми вычислительными машинами. Тем не менее его руководитель не согласился тогда с его выводами и не позволил ему представить свои выводы общественности до 1970 года.

Тогда же в 1986 Нью-Йоркская Академия Наук вместе с национальным Институтом Мозга и центром Военно-морских исследований организовали первую важную конференцию по хаосу в биологии и медицине. Там Бернардо Уберман продемонстрировал математическую модель глаза и нарушений его подвижности среди шизофреников . Это привело к широкому применению теории хаоса в физиологии в 1980-х, например в изучении патологии сердечных циклов .

В 1987 Пер Бак, Чао Тан и Курт Висенфелд напечатали статью в газете, где впервые описали систему самодостаточности (СС), которая является одним из природных механизмов. Многие исследования тогда были сконцентрированы вокруг крупномасштабных естественных или социальных систем. CC стала сильным претендентом на объяснение множества естественных явлений, включая землетрясения, солнечные всплески, колебания в экономических системах, формирование ландшафта, лесные пожары, оползни, эпидемии и биологическую эволюцию .

Учитывая нестабильное и безмасштабное распределение случаев возникновения, странно, что некоторые исследователи предложили рассмотреть как пример CC возникновение войн. Эти «прикладные» исследования включали в себя две попытки моделирования: разработка новых моделей и приспособление существующих к данной естественной системе.

В тот же самый год Джеймс Глеик издал работу «Хаос: создание новой науки», которая стала бестселлером и представила широкой публике общие принципы теории хаоса и её хронологию. Теория хаоса прогрессивно развивалась как межпредметная и университетская дисциплина, главным образом под названием «анализ нелинейных систем». Опираясь на концепцию Томаса Куна о парадигме сдвига, много «учёных-хаотиков» (так они сами назвали себя) утверждали, что эта новая теория и есть пример сдвига.

Доступность более дешевых, более мощных компьютеров расширяет возможности применения теории хаоса. В настоящее время, теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология , физика, биология, метеорология, астрофизика, теория информации, и т. д.).

Эволюции для предсказаний приступов, учитывая первоначальное состояние организма.

Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой . Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Различия между случайными и хаотическими данными

Только по исходным данным трудно сказать, каким является наблюдаемый процесс - случайным или хаотическим, потому что практически не существует явного чистого "сигнала" отличия. Всегда будут некоторые помехи, даже если их округлять или не учитывать. Это значит, что любая система, даже если она детерминированная, будет содержать немного случайностей.

Чтобы отличить детерминированный процесс от стохастического, нужно знать, что детерминированная система всегда развивается по одному и тому же пути от данной отправной точки. Таким образом, чтобы проверить процесс на детерминизм необходимо:

  1. Выбрать тестируемое состояние.
  2. Найти несколько подобных или почти подобных состояний.
  3. Сравнить их развитие во времени.

Погрешность определяется как различие между изменениями в тестируемом и подобном состояниях. Детерминированная система будет иметь очень маленькую погрешность (устойчивый, постоянный результат) или она будет увеличиваться по экспоненте со временем (хаос). Стохастическая система будет иметь беспорядочно распределенную погрешность.

По существу все методы определения детерминизма основываются на обнаружении состояний, самых близких к данному тестируемому (то есть, измерению корреляции , экспоненты Ляпунова, и т. д.). Чтобы определить состояние системы обычно полагаются на пространственные методы определения стадии развития. Исследователь выбирает диапазон измерения и исследует развитие погрешности между двумя близлежащими состояниями. Если она выглядит случайной, тогда нужно увеличить диапазон, чтобы получить детерминированную погрешность. Кажется, что это сделать просто, но на деле это не так. Во-первых, сложность состоит в том, что, при увеличении диапазона измерения, поиск близлежащего состояния требует намного большего количества времени для вычислений чтобы найти подходящего претендента. Если диапазон измерения выбран слишком маленьким, то детерминированные данные могут выглядеть случайными, но если диапазон слишком большой, то этого не случится - метод будет работать.

Когда в нелинейную детерминированную систему вмешиваются внешние помехи, её траектория постоянно искажается. Более того, действия помех усиливаются из-за нелинейности и система показывает полностью новые динамические свойства. Статистические испытания, пытающиеся отделить помехи от детерминированной основы или изолировать их, потерпели неудачу. При наличии взаимодействия между нелинейными детерминированными компонентами и помехами, в результате появляется динамика, которую традиционные испытания на нелинейность иногда не способны фиксировать.

Чем больше читаю, тем больше удивляюсь! Кажется, что О"Коннор и Макдермотт собрали в своей книге все что только можно про самые разные области знаний, постичь которые мне казалось уже практически делом невозможным. О каждой области они не много и не мало, а ровно столько, сколько необходимо для понимания сути концепции без углубления в лишние детали. Вот теперь добрался до теории хаоса, о которой они пишут внятно и популярно, и вместе с тем глубоко...

Правда, некоторые вещи приходится на ходу додумывать, но ведь это нормально, правда? Вот и здесь, говоря о хаосе, я бы для начала привел цитату из Википедии, где есть статья о теории хаоса:

Теория хаоса - математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных, при определённых условиях, явлению, известному как хаос, которое характеризуется сильной чувствительностью поведения системы к начальным условиям. Результатом такой чувствительности является то, что поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной. Примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество как система коммуникаций и его подсистемы: экономические, политические и другие социальные системы.

Что означает вышесказанное? То что любая мелочь может кардинально изменить очень сложную систему и вызвать даже настоящую катастрофу. Помните "Ледниковый период"? Там белочка пытается запрятать еще один орешек, начинает на нем прыгать и тем самым вызывает глобальное потепление (или похолодание - я уже не помню). Вот что-то вроде этого. И в нашей жизни бывает что-то похожее. Про это О"Коннор и Макдермотт пишут так:

Аналогичные силы проявляются в мелких, вроде бы случайных событиях, направляющих нашу жизнь. Существует немало научнофантастических
книг и фильмов (например, «Назад в будущее») о том, как жизнь могла бы развиваться иначе, если бы не произошло определенных незначительных событий. Малозаметные случаи могут иметь крайне серьезные последствия. В случайном телефонном разговоре мы вдруг получаем приглашение на встречу, которая совершенно изменит направление нашей карьеры. Несколько шутливых слов могут перевернуть чью-то жизнь. И нет, как в магнитофоне, кнопки, которая позволила бы вернуться назад, чтобы проверить, как все могло бы быть. Мы творим собственное будущее мелкими, незначительными ежедневными поступками, и только позднее узнаем, что какие-то решения определили всю последующую жизнь.

То же самое справедливо и в отношении таких систем, как предприятие или группа предприятий. Какая-то мелочь может привести к тому, что бизнес начинает вести себя по-другому, не так как раньше. И эта хаотичность, изменчивость бизнеса иногда служит реальным препятствием на пути к автоматизации бизнес-процессов.

Но с другой стороны, не все так плохо. Сложным динамическим системам кроме чистого хаоса присущи еще и черты самоорганизации. Авторы книги пишут об этом так:

У теории хаоса есть и обратная, «светлая» сторона. Нужно знать, на что обращать внимание, и тогда за внешне случайными событиями можно увидеть некий скрытый порядок. Если взять простую систему и раз за разом подвергать ее одному и тому же простому воздействию, она может стать очень сложной. Хаос не случаен. Сколь бы глубоко мы ни заглянули в него, там можно найти сходную структуру связи событий, элементов, т.е. один и тот же паттерн. Например, очертания побережья, различаемые с высоты, очень похожи на береговую линию, видимую с земли, и тот же рисунок вы обнаружите при более близком рассмотрении. Структура береговой линии никогда не становится гладкой, - ее характер остается неизменным, один и тот же паттерн возникает на всех этих азномасштабных изображениях. Структуры - паттерны, воспроизводящиеся на всех уровнях, называют фракталами.
...
Можно различать два типа сложности: подлинная, неустранимая, и внешняя, видимая. Подлинная сложность есть свойство реальности - это проявление «темной» стороны хаоса. Небольшие различия на начальном этапе становятся со временем огромными, а петли обратной связи создают такую путаницу, что система превращается в гордиев узел, и даже самый мощный компьютер не в состоянии сыграть роль дамоклова меча, чтобы разрубить его. Внешняя, видимая сложность - есть «светлая» сторона хаоса. Он выглядит сложным, но в нем есть порядок, иногда очень простой. Для тех, кто интересуется системным мышлением, важно находить структуры, паттерны в видимом проявлении сложности. Собственная, неустранимая сложность - область исследования теоретиков хаоса и применения суперкомпьютеров. Это поразительно интересная область пространства, но в этой книге мы не будем ее рассматривать.
Там, где сложность систем невысока и к тому же относится к внешнему типу, серьезных проблем не возникает. Нас же интересуют системы промежуточного уровня, в которых присутствует значительная сложность внешнего типа, но подлинная, неустранимая сложность невысока.

Кстати, в мне пришлось высказать мнение о наличии некоего "фундамента" ИТ-системы , которая и является основой автоматизации бизнес-процессов. dreary_life тогда попросила меня немного пояснить понятие "фундамент". Я как-то попытался это сделать, но мне кажется получилось очень приблизительно и потому не очень удачно. Сейчас это можно уточнить.

В бизнесе действительно существуют т.н. паттерны , то есть некие устойчивые связи между элементами, которые выражаются часто в привычных стереотипах поведения каких-то определенных людей, сотрудников компании. Хотя это и не очень приятно, но если посмотреть на этих сотрудников как на элементы системы, а на их поведение как на структуру системы, которая связывает людей в единое целое, то можно обнаружить некие скрытые закономерности и привнести порядок даже туда, где его, казалось бы, нет и быть не может.

Вот один пример. На счете "Материалы" в бухгалтерии компании содержится огромное количество наименований материалов, классифицировать которые кажется нет никакой возможности. Однако такая классификация может быть существенно облегчена, если обнаружить, что значитеьная доля наименований материалов привязана только к одному конкретному поставщику. Дело в том, что бухгалтер обычно привыкает вносить материалы от определенного поставщика в одни и те же позиции. Просто в силу привычки, потому что в накладных регулярно проскакивает повторяющиеся наименования. С другой строны, аналогичные материалы прочих поставзиков он привыкает вносить в другие позиции. Эта психологическая особенность позволяет (после некоторой обработки данных) сгруппировать материалы по поставщикам.

С другой стороны, в бухгалтерии списание материалов и запчастей производится с привязкой к определенным единицам техники, на которую они были потрачены. Опять-таки, после некоторой обработки, это позволяет сгруппировать материалы по тому, на какие группы техники они используются, и тем самым упростить классификацию.

То и другое (группировка по поставщикам и по группам техники) можно назвать паттерном, повторяющимся событием. Обнаружение таких паттернов значительно ускоряет работу и даже позволяет анализировать ситуацию на складе в динамике. Например, интересно выявить, на какие группы техники уходят запчасти от того или иного поставщика. Или почему растет остаток запчастей, получаемых от определенного поставщика или списываемых на определенную технику и т.д.

Такие паттерны можно выявить и на других участках бизнес-процессов. Обнаружие скрытых закономерностей делает хаос не таким уж хаотичным, как это могло показаться поначалу...

​Введение в теорию хаоса

Что такое теория хаоса?

Теория хаоса это учение о постоянно изменяющихся сложных системах, основанное на математических концепциях, в форме ли рекурсивного процесса или набора дифференциальных уравнений, моделирующих физическую систему (реку́рсия - процесс повторения элементов самоподобным образом).

Неправильные представления о теории хаоса

Широкая общественность обратила внимание на теорию хаоса благодаря таким фильмам, как "Парк юрского периода", и благодаря им же, постоянно увеличивается опасение теории хаоса со стороны общества. Однако, как и в отношении любой вещи, освещаемой средствами массовой информации, в отношении теории хаоса возникло много неправильных представлений.

Наиболее часто встречающееся несоответствие состоит в том, что люди полагают, что теория хаоса - это теория о беспорядке. Ничто не могло бы быть так далеко от истины! Это не опровержение детерминизма и не утверждение о том, что упорядоченные системы невозможны; это не отрицание экспериментальных подтверждений и не заявление о бесполезности сложных систем. Хаос в теории хаоса и есть порядок - и даже не просто порядок, а сущность порядка.

Это правда, что теория хаоса утверждает, что небольшие изменения могут породить огромные последствия. Но одной из центральных концепций в теории является невозможность точного предсказания состояния системы. В общем, задача моделирования общего поведения системы вполне выполнима, даже проста. Таким образом, теория хаоса сосредотачивает усилия не на беспорядке системы - наследственной непредсказуемости системы - а на унаследованном ей порядке - общем в поведении похожих систем.

Таким образом, было бы неправильным сказать, что теория хаоса о беспорядке. Чтобы пояснить это на примере, возьмем аттрактор Лоренца. Он основан на трех дифференциальных уравнениях, трех константах и трех начальных условиях.

Теория хаоса о беспорядке

Аттрактор представляет поведение газа в любое заданное время, и его состояние в определенный момент зависит от его состояния в моменты времени, предшествовавшие данному. Если исходные данные изменить даже на очень маленькие величины, скажем, эти величины малы настолько, что соизмеримы с вкладом отдельных атомов в число Авогадро (что является очень маленьким числом по сравнению со значениями порядка 1024), проверка состояния аттрактора покажет абсолютно другие числа. Это происходит потому, что маленькие различия увеличиваются в результате рекурсии.

Однако, несмотря на это, график аттрактора будет выглядеть достаточно похоже. Обе системы будут иметь абсолютно разные значения в любой заданный момент времени, но график аттрактора останется тем же самым, т.к. он выражает общее поведение системы.

Теория хаоса говорит, что сложные нелинейные системы являются наследственно непредсказуемыми, но, в то же время, теория хаоса утверждает, что способ выражения таких непредсказуемых систем оказывается верным не в точных равенствах, а в представлениях поведения системы - в графиках странных аттракторов или во фракталах. Таким образом, теория хаоса, о которой многие думают как о непредсказуемости, оказывается, в то же время, наукой о предсказуемости даже в наиболее нестабильных системах.

Применение теории хаоса в реальном мире

При появлении новых теорий, все хотят узнать что же в них хорошего. Итак что хорошего в теории хаоса? Первое и самое важное - теория хаоса - это теория. А значит, что большая ее часть используется больше как научная основа, нежели как непосредственно применимое знание. Теория хаоса является очень хорошим средством взглянуть на события, происходящие в мире отлично от более традиционного четко детерминистического взгляда, который доминировал в науке со времен Ньютона. Зрители, которые посмотрели Парк Юрского периода, без сомнения боятся, что теория хаоса может очень сильно повлиять на человеческое восприятие мира, и, в действительности, теория хаоса полезна как средство интерпретации научных данных по-новому. Вместо традиционных X-Y графиков, ученые теперь могут интерпретировать фазово-пространственные диаграммы которые - вместо того, чтобы описывать точное положение какой-либо переменной в определенный момент времени - представляют общее поведение системы. Вместо того, чтобы смотреть на точные равенства, основанные на статистических данных, теперь мы можем взглянуть на динамические системы с поведением похожим по своей природе на статические данные - т.е. системы с похожими аттракторами. Теория хаоса обеспечивает прочный каркас для развития научных знаний.

Однако, согласно вышесказанному не следует, что теория хаоса не имеет приложений в реальной жизни.

Техники теории хаоса использовались для моделирования биологических систем, которые, бесспорно, являются одними из наиболее хаотических систем из всех что можно себе представить. Системы динамических равенств использовались для моделирования всего - от роста популяций и эпидемий до аритмических сердцебиений.

В действительности, почти любая хаотическая система может быть смоделирована - рынок ценных бумаг порождает кривые, которые можно легко анализировать при помощи странных аттракторов в отличие от точных соотношений; процесс падения капель из протекающего водопроводного крана кажется случайным при анализе невооруженным ухом, но если его изобразить как странный аттрактор, открывается сверхъестественный порядок, которого нельзя было бы ожидать от традиционных средств.

Фракталы находятся везде, наиболее заметны в графических программах как например очень успешная серия продуктов Fractal Design Painter. Техники фрактального сжатия данных все еще разрабатываются, но обещают удивительные результаты как например коэффициента сжатия 600:1. Индустрия специальных эффектов в кино, имела бы горазда менее реалистичные элементы ландшафта (облака, скалы и тени) без технологии фрактальной графики.

В физике фракталы естественным образом возникают при моделировании нелинейных процессов, таких, как турбулентное течение жидкости, сложные процессы диффузии-адсорбции, пламя, облака и т. п. Фракталы используются при моделировании пористых материалов, например, в нефтехимии. В биологии они применяются для моделирования популяций и для описания систем внутренних органов (система кровеносных сосудов).

И, конечно, теория хаоса дает людям удивительно интересный способ того, как приобрести интерес к математике, одной из наиболее мало-популярной области познания на сегодняшний день.

Одной из наиболее интересных и до конца не исследованных теорий классической механики является теория хаоса.

Теория хаоса представляет собой математический аппарат, описывающий поведение некоторых нелинейных динамических систем, подверженных при определённых условиях явлению, известному как хаос. Поведение такой системы кажется случайным, даже если модель, описывающая систему, является детерминированной.

Примерами подобных систем являются атмосфера, турбулентные потоки, биологические популяции, общество и другие социальные системы.

Теория хаоса - это область исследований, связывающая математику, физику и философию.

Она гласит, что сложные системы чрезвычайно зависимы от первоначальных условий и небольшие изменения в окружающей среде ведут к непредсказуемым последствиям.

Первооткрывателями теории считаются французский физик и философ Анри Пуанкаре (доказал теорему о возвращении), советские математики А. Н. Колмогоров и В. И. Арнольд, Мозер, построившие теорию хаоса. Теория вводит понятие аттракторов, устойчивых орбит системы.

Линейные системы никогда не бывают хаотическими. Для того, чтобы динамическая система была хаотической, она должна быть нелинейной. По теореме Пуанкаре–Бендиксона, непрерывная динамическая система на плоскости не может быть хаотической. Среди непрерывных систем хаотическое поведение имеют только неплоские пространственные системы (обязательно наличие не менее трех измерений или неевклидова геометрия). Однако дискретная динамическая система на какой-то стадии может проявить хаотическое поведение даже в одномерном или двумерном пространстве.

Чувствительность к начальным условиям в такой системе означает, что все точки, первоначально близко приближенные между собой, в будущем имеют значительно отличающиеся траектории. Таким образом, произвольно маленькое изменение текущей траектории может привести к значительному изменению в её будущем поведении. Доказано, что последние два свойства фактически подразумевают чувствительность к начальным условиям.

Чувствительность к начальным условиям более известна как “Эффект бабочки”. Термин возник в связи со статьёй “Предсказание: Взмах крыльев бабочки в Бразилии вызовет торнадо в штате Техас”, которую Эдвард Лоренц в 1972 году вручил американской “Ассоциации для продвижения науки” в Вашингтоне. Взмах крыльев бабочки символизирует мелкие изменения в первоначальном состоянии системы, которые вызывают цепочку событий, ведущих к крупномасштабным изменениям. Если бы бабочка не хлопала крыльями, то траектория системы была бы совсем другой.

Несмотря на попытки понять хаос в первой половине двадцатого столетия, теория хаоса как таковая начала формироваться только с середины столетия. Тогда некоторым ученым стало очевидно, что преобладающая в то время линейная теория просто не может объяснить некоторые наблюдаемые эксперименты. Чтобы заранее исключить неточности при изучении - простые “помехи” в теории хаоса считали полноценной составляющей изучаемой системы. Основным катализатором для развития теории хаоса стала электронно-вычислительная машина.


Одним из первых исследователей теории хаоса был также Эдвард Лоренц, интерес которого к хаосу появился случайно, когда он работал над предсказанием погоды в 1961 году. Лоренц обнаружил, что малейшие изменения в первоначальных условиях вызывают большие изменения в результате. Открытию дали имя Лоренца и оно доказало, что Метеорология не может точно предсказать погоду на период более недели. Годом ранее, Бенуа Мандельброт нашел повторяющиеся образцы в каждой группе данных о ценах на хлопок. Он изучал теорию информации и заключил, что Структура помех подобна набору Регента: в любом масштабе пропорция периодов с помехами к периодам без них была константа - значит, ошибки неизбежны и должны быть запланированы. В 1967 он издал работу, где доказывал, что данные о длине береговой линии изменяются в зависимости от масштаба измерительного прибора. Он доказал, что данные измерения объекта всегда относительны и зависят от точки наблюдения. В 1975 году Мандельброт опубликовал работу “Природа фрактальной геометрии”, которая стала классической теорией хаоса. Некоторые биологические системы, такие как система кровообращения и бронхиальная система, подходят под описание фрактальной модели.

В настоящее время теория хаоса продолжает быть очень активной областью исследований, вовлекая много разных дисциплин (математика, топология, физика, биология, метеорология, астрофизика, теория информации, и т.д.).

Теория хаоса применяется во многих научных дисциплинах: математика, биология, информатика, экономика, инженерия, финансы, философия, физика, политика, психология и робототехника.

Одно из самых успешных применений теории хаоса было в экологии, когда динамические системы использовались, чтобы показать зависимость прироста населения от его плотности. В настоящее время теория хаоса также применяется в медицине при изучении эпилепсии для предсказаний приступов. Похожая область физики, названная квантовой теорией хаоса, исследует связь между хаосом и квантовой механикой. Недавно появилась новая область, названная хаосом относительности, чтобы описать системы, которые развиваются по законам общей теории относительности .

Vocabulary notes:

детерминированная модель - deterministic model;

турбулентные потоки - turbulent flows;

Анри Пуанкаре - Henri Poincare;

теоремa Пуанкаре–Бендиксона - Poincaré-Bendixson theorem;

аттрактор – attractor;

неевклидова геометрия - non-Euclidean geometry;

Эдвард Лоренц – Edward Lorentz;

Бенуа Мандельброт - Benoit Mandelbrot.