Формулы спиртов по химии. Предельные одноатомные спирты

Спиртами называют соединения, содержащие одну или несколько гидроксильных групп, непосредственно связанных с углеводородным радикалом.

Классификация спиртов

Спирты классифицируют по различным структурным признакам.

1. По числу гидроксильных групп спирты подразделяются на

o одноатомные (одна группа -ОН)

Например, С H 3 OH метанол, CH 3 CH 2 OH этанол

o многоатомные (две и более групп -ОН).

Современное название многоатомных спиртов - полиолы (диолы, триолы и т.д). Примеры:

двухатомный спирт – этиленгликоль (этандиол)

HO–СH 2 –CH 2 –OH

трехатомный спирт – глицерин (пропантриол-1,2,3)

HO–СH 2 –СН(ОН)–CH 2 –OH

Двухатомные спирты с двумя ОН-группами при одном и том же атоме углерода R–CH(OH) 2 неустойчивы и, отщепляя воду, сразу же превращаются в альдегиды R–CH=O. Спирты R–C(OH) 3 не существуют.

2. В зависимости от того, с каким атомом углерода (первичным, вторичным или третичным) связана гидроксигруппа, различают спирты

o первичные R–CH 2 –OH,

o вторичные R 2 CH–OH,

o третичные R 3 C–OH.

Например:

В многоатомных спиртах различают первично-, вторично- и третичноспиртовые группы. Например, молекула трехатомного спирта глицерина содержит две первичноспиртовые (HO–СH 2 –) и одну вторичноспиртовую (–СН(ОН)–) группы.

3. По строению радикалов, связанных с атомом кислорода, спирты подразделяются на

o предельные (например, СH 3 – CH 2 –OH)

o непредельные (CH 2 =CH–CH 2 –OH)

o ароматические (C 6 H 5 CH 2 –OH)

Непредельные спирты с ОН-группой при атоме углерода, соединенном с другим атомом двойной связью, очень неустойчивы и сразу же изомеризуются в альдегиды или кетоны.

Например, виниловый спирт CH 2 =CH–OH превращается в уксусный альдегид CH 3 –CH=O

Предельные одноатомные спирты

1. Определение

ПРЕДЕЛЬНЫЕ ОДНОАТОМНЫЕ СПИРТЫ – кислородсодержащие органические вещества, производные предельных углеводородов, в которых один атом водорода замещён на функциональную группу (- OH )

2. Гомологический ряд


3. Номенклатура спиртов

Систематические названия даются по названию углеводорода с добавлением суффикса -ол и цифры, указывающей положение гидроксигруппы (если это необходимо). Например:


Нумерация ведется от ближайшего к ОН-группе конца цепи.

Цифра, отражающая местоположение ОН-группы, в русском языке обычно ставится после суффикса "ол".

По другому способу (радикально-функциональная номенклатура) названия спиртов производят от названий радикалов с добавлением слова "спирт ". В соответствии с этим способом приведенные выше соединения называют: метиловый спирт, этиловый спирт, н -пропиловый спирт СН 3 -СН 2 -СН 2 -ОН, изопропиловый спирт СН 3 -СН(ОН)-СН 3 .

4. Изомерия спиртов

Для спиртов характерна структурная изомерия :

· изомерия положения ОН-группы (начиная с С 3);
Например:

·углеродного скелета (начиная с С 4);
Например, изомеры углеродного скелета для C 4 H 9 OH:

· межклассовая изомерия с простыми эфирами
Например,

этиловый спирт СН 3 CH 2 –OH и диметиловый эфир CH 3 –O–CH 3

Возможна также пространственная изомерия – оптическая.

Например, бутанол-2 СH 3 C H(OH)СH 2 CH 3 , в молекуле которого второй атом углерода (выделен цветом) связан с четырьмя различными заместителями, существует в форме двух оптических изомеров.

5. Строение спиртов

Строение самого простого спирта - метилового (метанола) - можно представить формулами:

Из электронной формулы видно, что кислород в молекуле спирта имеет две неподеленные электронные пары.

Свойства спиртов и фенолов определяются строением гидроксильной группы, характером ее химических связей, строением углеводородных радикалов и их взаимным влиянием.

Связи О–Н и С–О – полярные ковалентные. Это следует из различий в электроотрицательности кислорода (3,5), водорода (2,1) и углерода (2,4). Электронная плотность обеих связей смещена к более электроотрицательному атому кислорода:

Атому кислорода в спиртах свойственна sp 3 -гибридизация. В образовании его связей с атомами C и H участвуют две 2sp 3 -атомные орбитали, валентный угол C–О–H близок к тетраэдрическому (около 108°). Каждая из двух других 2 sp 3 -орбиталей кислорода занята неподеленной парой электронов.

Подвижность атома водорода в гидроксильной группе спирта несколько меньше, чем в воде. Более "кислым" в ряду одноатомных предельных спиртов будет метиловый (метанол).
Радикалы в молекуле спирта также играют определенную роль в проявлении кислотных свойств. Обычно углеводородные радикалы понижают кислотное свойства. Но если в них содержатся, электроноакцепторные группы, то кислотность спиртов заметно увеличивается. Например, спирт (СF 3) 3 С-ОН за счет атомов фтора становится настолько кислым, что способен вытеснять угольную кислоту из ее солей.

Этиловый спирт или винный является широко распространённым представителем спиртов. Известно много веществ, в состав которых наряду с углеродом и водородом входит кислород. Из числа кислородсодержащих соединений мне интересен прежде всего класс спиртов.

Этиловый спирт

Физические свойства спирта . Этиловый спирт С 2 Н 6 О - бес­цветная жидкость со своеобразным запахом, легче воды (удель­ный вес 0,8), кипит при температуре 78°,3, хорошо растворяет многие неорганические и органические вещества. Спирт «ректи­фикат» содержит 96% этилового спирта и 4% воды.

Строение молекулы спирта .Согласно валентности элементов, формуле С 2 Н 6 О соответствуют две структуры:


Чтобы решить вопрос о том, какая из формул соответствует спирту в действительности, обратимся к опыту.

Поместим в пробирку со спиртом кусочек натрия. Тотчас начнётся реакция, сопровождающаяся выделением газа. Нетрудно установить, что этот газ - водород.

Теперь поставим опыт так, чтобы можно было определить, сколько атомов водорода выделяется при реакции из каждой мо­лекулы спирта. Для этого в колбу с мелкими кусочками натрия (рис. 1) прибавим по каплям из воронки определённое количе­ство спирта, например 0,1 грамм-молекулы (4,6 грамма). Выделяю­щийся из спирта водород вытесняет воду из двугорлой склянки в измерительный цилиндр. Объём вытесненной воды в цилиндре соответствует объёму выделившегося водорода.

Рис.1. Количественный опыт получения водорода из этилового спирта.

Так как для опыта была взята 0,1 грамм-молекулы спирта, то водорода удаётся получить (в пересчёте на нормальные условия) около 1,12 литра. Это означает, что из грамм-молекулы спирта нат­рий вытесняет 11,2 литра , т.е. половину грамм-молекулы, иначе го­воря 1 грамм-атом водорода. Следовательно, из каждой молекулы спирта натрием вытесняется только один атом водорода.

Очевидно, в молекуле спирта этот атом водорода находится в особом положе­нии по сравнению с осталь­ными пятью атомами водо­рода. Формула (1) не даёт объяснения такому факту. Согласно ей, все атомы водо­рода одинаково связаны с атомами углерода и, как нам известно, не вытесняются ме­таллическим натрием (нат­рий хранят в смеси углеводородов - в керосине). Наоборот, формула (2) отражает наличие одного атома, находя­щегося в особом положении: он соединён с углеродом через атом кислорода. Можно заключить, что именно этот атом водорода связан с атомом кислорода менее прочно; он оказывается более подвижным и вытесняется натрием. Следовательно, структурная формула этилового спирта:


Несмотря на большую подвижность атома водорода гидроксильной группы по сравнению с другими атомами водорода, этиловый спирт не является электролитом и в водном растворе не диссоциирует на ионы.


Чтобы подчеркнуть, что в молекуле спирта содержится гидроксильная группа - ОН, соединённая с углеводородным радика­лом, молекулярную формулу этилового спирта пишут так:

Химические свойства спирта . Выше мы видели, что этиловый спирт реагирует с натрием. Зная строение спирта, мы можем эту реакцию выразить уравнением:

Продукт замещения водорода в спирте натрием носит назва­ние этилата натрия. Он может быть выделен после реакции (пу­тём испарения избытка спирта) в виде твёрдого вещества.

При поджигании на воздухе спирт горит синеватым, еле за­метным пламенем, выделяя много тепла:

Если в колбе с холодильником нагревать этиловый спирт с галогеноводородной кислотой, например с НВг (или смесью NаВг и Н 2 SО 4 , дающей при реакции бромистый водород), то будет от­гоняться маслянистая жидкость - бромистый этил С 2 Н 5 Вг:

Эта реакция подтверждает наличие гидроксильной группы в молекуле спирта.

При нагревании с концентрированной серной кислотой в каче­стве катализатора спирт легко дегидратируется, т. е. отщепляет воду (приставка «де» указывает на отделение чего-либо):

Эта реакция используется для получения этилена в лаборатории. При более слабом нагревании спирта с серной кислотой (не выше 140°) каждая молекула воды отщепляется от двух молекул спирта, вследствие чего образуется диэтиловый эфир - летучая легко воспламеняющаяся жидкость:

Диэтиловый эфир (иногда называемый серным эфиром) при­меняется в качестве растворителя (чистка тканей) и в медицине для наркоза. Он относится к классу простых эфиров - органи­ческих веществ, молекулы которых состоят из двух углеводород­ных радикалов, соединённых посредством атома кислорода: R - О - R1

Применение этилового спирта . Этиловый спирт имеет большое практическое значение. Много этилового спирта расходуется на получение синтетического каучука по способу академика С. В. Лебедева. Пропуская пары этилового спирта через специальный катализатор, получают дивинил:

который затем может полимеризоваться в каучук.

Спирт идёт на выработку красителей, диэтилового эфира, раз­личных «фруктовых эссенций» и ряда других органических ве­ществ. Спирт как растворитель применяется для изготовления парфюмерных продуктов, многих лекарств. Растворяя в спирте смолы, готовят различные лаки. Высокая теплотворная способность спирта обусловливает применение его в качестве горючего (автомобильного топлива = этанола).

Получение этилового спирта . Мировое производство спирта измеряется миллионами тонн в год.

Распространённым способом получения спирта является бро­жение сахаристых веществ в присутствии дрожжей. В этих низ­ших растительных организмах (грибках) вырабатываются особые вещества - ферменты, которые служат биологическими катали­заторами реакции брожения.

В качестве исходных материалов в производстве спирта берут семена злаков или клубни картофеля, богатые крахмалом. Крах­мал с помощью солода, содержащего фермент диастаз, сперва превращают в сахар, который затем сбраживают в спирт.

Учёные много работали над тем, чтобы заменить пищевое сырьё для получения спирта более дешёвым непищевым сырьём. Эти по­иски увенчались успехом.

В последнее время в связи с тем, что при крекинге нефти образуется много этилена, стали

Реакция гидратации этилена (в присутствии серной кислоты) была изучена ещё А. М. Бутлеровым и В. Горяиновым (1873), который предсказал и её промышленное значение. Разработан и внедрен в промышленность также метод прямой гидратации этилена пропусканием его в смеси с парами воды над твердыми катализаторами. Получение спирта из этилена очень экономично, так как этилен входит в состав газов крекинга нефти и других промышленных газов и, следовательно, является широкодоступным сырьем.

Другой способ основан на использовании в качестве исходного продукта ацетилена. Ацетилен подвергается гидратации по реакции Кучерова, а образующийся уксусный альдегид каталитически восстанавливают водородом в присутствии никеля в этиловый спирт. Весь процесс гидратации ацетилена с последующим восстановлением водородом на никелевом катализаторе в этиловый спирт может быть представлен схемой.

Гомологический ряд спиртов

Кроме этилового спирта, известны и другие спирты, сходные с ним по строению и свойствам. Все они могут рассматриваться как производные соответствующих предельных углеводородов, в молекулах которых один атом водорода заменён гидроксильной группой:

Таблица

Углеводороды

Спирты

Температура кипения спиртов в º С

Метан СН 4 Метиловый СН 3 ОН 64,7
Этан С 2 Н 6 Этиловый С 2 Н 5 ОН илиСН 3 - СН 2 - ОН 78,3
Пропан С 3 Н 8 Пропиловый С 4 Н 7 ОН или СН 3 - СН 2 - СН 2 - ОН 97,8
Бутан С 4 Н 10 Бутиловый С 4 Н 9 ОН илиСН 3 - СН 2 - СН 2 - ОН 117

Будучи сходны по химическим свойствам и отличаясь друг от друга по составу молекул на группу атомов СН 2 , эти спирты со­ставляют гомологический ряд. Сравнивая физические свойства спиртов, мы в этом ряду, так же как и в ряду углеводородов, на­блюдаем переход количественных изменений в изменения качест­венные. Общая формула спиртов данного ряда R - ОН (где R - углеводородный радикал).

Известны спирты, в молекулы которых входит несколько гидроксильных групп, например:

Группы атомов, обусловливающие характерные химические свойства соединений, т. е. их химическую функцию, называются функциональными группами.

Спиртами называются органические вещества, моле­кулы которых содержат одну или несколько функциональных гидроксильных групп, соединённых с углеводородным радикалом .

По своему составу спирты отличаются от углеводородов, соот­ветствующих им по числу углеродных атомов, наличием кисло­рода (например, С 2 Н 6 и С 2 Н 6 О или С 2 Н 5 ОН). Поэтому спирты можно рассматривать как продукты частичного окисления угле­водородов.

Генетическая связь между углеводородами и спиртами

Произвести непосредственное окисление углеводорода в спирт довольно трудно. Практически проще это сделать через галогенопроизводное углеводорода. Например, чтобы получить этиловый спирт, исходя из этана С 2 Н 6 , можно сначала получить бромистый этил по реакции:


а затем бромистый этил превратить в спирт нагреванием с водой в присутствии щёлочи:


Щёлочь при этом нужна, чтобы нейтрализовать образующийся бромистый водород и устранить возможность реакции его со спиртом, т.е. сдвинуть эту обратимую реакцию вправо.

Подобным же образом метиловый спирт может быть получен по схеме:


Таким образом, углеводороды, их галогенопроизводные и спирты находятся между собой в генетической связи (связи по происхождению).

Спирты – разнообразный и обширный класс химических соединений.

Спирты – это химические соединения, молекулы которых содержатся гидроксильные группы ОН, соединённые с углеводородным радикалом.

Углеводородный радикал состоит из атомов углерода и водорода. Примеры углеводородных радикалов - СН 3 - метил, С 2 Н 5 – этил. Часто углеводородный радикал обозначают просто буквой R. Но если в формуле присутствуют разные радикалы, их обозначают R", R ", R """ и т.д.

Названия спиртов образуются путём добавления суффикса –ол к названию соответствующего углеводорода.

Классификация спиртов


Спирты бывают одноатомные и многоатомные. Если в молекуле спирта только одна гидроксильная группа, то такой спирт называется одноатомным. Если же количество гидроксильных групп 2, 3, 4 и т.д., то это многоатомный спирт.

Примеры одноатомных спиртов: СН 3 -ОН – метанол или метиловый спирт, СН 3 СН 2 -ОН – этанол или этиловый спирт.

Соответственно, в молекуле двухатомного спирта присутствуют две гидроксильные группы, в молекуле трёхатомного – три и т.д.

Одноатомные спирты

Общую формулу одноатомных спиртов можно представить как R-OH.

По типу свободного радикала, входящего в молекулу, одноатомные спирты делятся на предельные (насыщенные), непредельные (ненасыщенные) и ароматические спирты.

В насыщенных углеводородных радикалах атомы углерода соединены простыми связями С – С. В ненасыщенных радикалах присутствуют одна или несколько пар атомов углерода, соединённых двойными С = С или тройными С ≡ С связями.

В состав предельных спиртов входят предельные радикалы.

CH 3 CH 2 CH 2 -OH – предельный спирт пропанол-1 или пропиленовый спирт.

Соответственно, непредельные спирты содержат непредельные радикалы.

CH 2 = CH - CH 2 - OH – непредельный спирт пропенол 2-1 (аллиловый спирт)

А в молекулу ароматических спиртов входит бензольное кольцо C 6 H 5.

C 6 H 5 -CH 2 -OH – ароматический спирт фенилметанол (бензиловый спирт).

В зависимости от типа атома углерода, связанного с гидроксильной группой, спирты делятся на первичные ((R-CH 2 -OH), вторичные (R-CHOH-R") и третичные (RR"R""C-OH) спирты.

Химические свойства одноатомных спиртов

1. Спирты горят, образуя углекислый газ и воду. При горении выделяется тепло.

C 2 H 5 OH + 3O 2 → 2CO 2 + 3H 2 O

2. При реакции спиртов со щелочными металлами образуется алкоголят натрия и выделяется водород.

C 2 H 5 -OH + 2Na → 2C 2 H 5 ONa + H 2

3. Реакция с галогеноводородом. В результате реакции образуется галогеноалкан (бромэтан и вода).

C 2 H 5 OH + HBr → C 2 H 5 Br + H 2 O

4. Внутримолекулярная дегидратация происходит при нагревании и под воздействием концентрированной серной кислоты. В результате получается непредельный углеводород и вода.

Н 3 – СН 2 – ОН → СН 2 = СН 2 + Н 2 О

5. Окисление спиртов. При обычной температуре спирты не окисляются. Но при помощи катализаторов и при нагревании окисление происходит.

Многоатомные спирты

Как вещества, содержащие гидроксильные группы, многоатомные спирты имеют химические свойства, схожие со свойствами одноатомных спиртов, но реакция у них идёт сразу по нескольким гидроксильным группам.

Многоатомные спирты вступают в реакцию с активными металлами, с галогеноводородными кислотами, с азотной кислотой.

Получение спиртов


Рассмотрим способы получения спиртов на примере этанола, формула которого С 2 Н 5 ОН.

Наиболее старый из них – отгонка спирта из вина, где он образуется в результате брожения сахаристых веществ. Сырьём для получения этилового спирта служат также крахмалосодержащие продукты, которые с помощью процесса брожения превращают в сахар, который затем сбраживают в спирт. Но производство этилового спирта таким способом требует большого расхода пищевого сырья.

Гораздо совершеннее синтетический способ получения этилового спирта. В этом случае проводят гидратацию этилена водяным паром.

С 2 Н 4 + Н 2 О → С 2 Н 5 ОН

Среди многоатомных спиртов наиболее известен глицерин, который получают расщеплением жиров или синтетическим способом из пропилена, который образуется при высокотемпературной переработке нефти.

(алкоголи) – класс органических соединений, содержащих одну или несколько группировок С–ОН, при этом гидроксильная группа ОН связана с алифатическим атомом углерода (соединения, у которых атом углерода в группировке С–ОН входит в состав ароматического ядра, называются фенолами )

Классификация спиртов разнообразна и зависит от того, какой признак строения взят за основу.

1. В зависимости от количества гидроксильных групп в молекуле спирты делят на:

а) одноатомные (содержат одну гидроксильную ОН-группу), например, метанол СН 3 ОН, этанол С 2 Н 5 ОН, пропанол С 3 Н 7 ОН

б) многоатомные (две и более гидроксильных групп), например, этиленгликоль

HO –С H 2 – CH 2 – OH , глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 .

Соединения, в которых у одного атома углерода

есть две гидроксильных группы, в большинстве случаев нестабильны и легко превращаются в альдегиды, отщепляя при этом воду: RCH (OH ) 2 ® RCH = O + H 2 O , не существуют.

2. По типу атома углерода, с которым связана группа ОН, спирты делят на:

а) первичные, у которых ОН-группа связана с первичным атомом углерода. Первичным называют атом углерода (выделен красным цветом), связанный всего с одним углеродным атомом. Примеры первичных спиртов – этанол С

H 3 – CH 2 – OH , пропанол С H 3 – CH 2 – CH 2 – OH. б) вторичные, у которых ОН-группа связана с вторичным атомом углерода. Вторичный атом углерода (выделен синим цветом) связан одновременно с двумя атомами углерода, например, вторичный пропанол, вторичный бутанол (рис. 1).

Рис. 1. СТРОЕНИЕ ВТОРИЧНЫХ СПИРТОВ

в) третичные, у которых ОН-группа связана с третичным атомом углерода. Третичный углеродный атом (выделен зеленым цветом) связан одновременно с тремя соседними атомами углерода, например, третичный бутанол и пентанол (рис. 2).

Рис. 2. СТРОЕНИЕ ТРЕТИЧНЫХ СПИРТОВ

В соответствии с типом углеродного атома присоединенную к нему спиртовую группу также называют первичной, вторичной или третичной.

У многоатомных спиртов, содержащих две или более ОН-групп, могут присутствовать одновременно как первичные, так и вторичные НО-группы, например, в глицерине или ксилите (рис. 3).

Рис. 3. СОЧЕТАНИЕ В СТРУКТУРЕ МНОГОАТОМНЫХ СПИРТОВ ПЕРВИЧНЫХ И ВТОРИЧНЫХ ОН-ГРУПП .

3. По строению органических групп, связанных ОН-группой, спирты подразделяют на предельные (метанол, этанол, пропанол), непредельные, например, аллиловый спирт СН 2 =СН–СН 2 –ОН, ароматические (например, бензиловый спирт С 6 Н 5 СН 2 ОН), содержащие в составе группы

R ароматическую группу.

Непредельные спирты, у которых ОН-группа «примыкает» к двойной связи, т.е. связана с атомом углерода, участвующим одновременно в образовании двойной связи (например, виниловый спирт СН 2 =СН–ОН), крайне нестабильны и сразу же изомеризуются (см .ИЗОМЕРИЗАЦИЯ) в альдегиды или кетоны:

CH 2 =CH–OH ® CH 3 –CH=O Номенклатура спиртов. Для распространенных спиртов, имеющих простое строение, используют упрощенную номенклатуру: название органической группы преобразуют в прилагательное (с помощью суффикса и окончания «овый ») и добавляют слово «спирт»: В том случае, когда строение органической группы более сложное, используют общие для всей органической химии правила. Названия, составленные по таким правилам, называют систематическими. В соответствии с этими правилами, углеводородную цепь нумеруют с того конца, к которому ближе расположена ОН-группа. Далее используют эту нумерацию, чтобы указать положение различных заместителей вдоль основной цепи, в конце названия добавляют суффикс «ол» и цифру, указывающую положение ОН-группы (рис. 4): 4. СИСТЕМАТИЧЕСКИЕ НАЗВАНИЯ СПИРТОВ . Функциональные (ОН) и замещающие (СН 3) группы, а также соответствующие им цифровые индексы выделены различающимися цветами. Систематические названия простейших спиртов составляют по тем же правилам: метанол, этанол, бутанол. Для некоторых спиртов сохранились тривиальные (упрощенные) названия, сложившиеся исторически: пропаргиловый спирт НС є С–СН 2 –ОН, глицерин HO–СH 2 –СН(ОН)–CH 2 –OH, пентаэритрит С(СН 2 ОН) 4 , фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH. Физические свойства спиртов. Спирты растворимы в большинстве органических растворителей, первые три простейших представителя – метанол, этанол и пропанол, а также третичный бутанол (Н 3 С) 3 СОН – смешиваются с водой в любых соотношениях. При увеличении количества атомов С в органической группе начинает сказываться гидрофобный (водоотталкивающий) эффект, растворимость в воде становится ограниченной, а при R , содержащем свыше 9 атомов углерода, практически исчезает.

Благодаря наличию ОН-групп между молекулами спиртов возникают водородные связи.

Рис. 5. ВОДОРОДНЫЕ СВЯЗИ В СПИРТАХ (показаны пунктиром)

В результате у всех спиртов более высокая температура кипения, чем у соответствующих углеводородов, например, Т. кип. этанола +78° С, а Т. кип. этана –88,63° С; Т. кип. бутанола и бутана соответственно +117,4° С и –0,5° С.

Химические свойства спиртов. Спирты отличаются разнообразными превращениями. Реакции спиртов имеют некоторые общие закономерности: реакционная способность первичных одноатомных спиртов выше, чем вторичных, в свою очередь, вторичные спирты химически более активны, чем третичные. Для двухатомных спиртов, в том случае, когда ОН-группы находятся у соседних атомов углерода, наблюдается повышенная (в сравнении с одноатомными спиртами) реакционная способность из-за взаимного влияния этих групп. Для спиртов возможны реакции, проходящие с разрывом как С–О, так и О–Н – связей.

1. Реакции, протекающие по связи О–Н.

При взаимодействии с активными металлами (Na, K, Mg, Al) спирты проявляют свойства слабых кислот и образуют соли, называемые алкоголятами или алкоксидами:

CH 3 OH + 2 Na ® 2 CH 3 OK + H 2

Алкоголяты химически не стабильны и при действии воды гидролизуются с образованием спирта и гидроксида металла:

C 2 H 5 OК + H 2 O

® C 2 H 5 OH + КOH

Эта реакция показывает, что спирты в сравнении с водой представляют собой более слабые кислоты (сильная кислота вытесняет слабую), кроме того, при взаимодействии с растворами щелочей спирты не образуют алкоголяты. Тем не менее, в многоатомных спиртах (в том случае, когда ОН-группы присоединены к соседним атомам С) кислотность спиртовых групп намного выше, и они могут образовывать алкоголяты не только при взаимодействии с металлами, но и со щелочами:

HO–CH 2 –CH 2 –OH + 2NaOH ® NaO–CH 2 –CH 2 –ONa + 2H 2 O Когда в многоатомных спиртах НО-группы присоединены к не соседствующим атомам С, свойства спиртов близки к одноатомным, поскольку взаимовлияние НО-групп не проявляется.

При взаимодействии с минеральными или органическими кислотами спирты образуют сложные эфиры – соединения, содержащие фрагмент

R – O – A (А – остаток кислоты). Образование сложных эфиров происходит и при взаимодействии спиртов с ангидридами и хлорангидридами карбоновых кислот (рис. 6).

При действии окислителей (К 2 Cr 2 O 7 , KMnO 4) первичные спирты образуют альдегиды, а вторичные – кетоны (рис.7)

Рис. 7. ОБРАЗОВАНИЕ АЛЬДЕГИДОВ И КЕТОНОВ ПРИ ОКИСЛЕНИИ СПИРТОВ

Восстановление спиртов приводит к образованию углеводородов, содержащих то же количество атомов С, что молекула исходного спирта (рис.8).

8. ВОССТАНОВЛЕНИЕ БУТАНОЛА

2. Реакции, протекающие по связи С–О.

В присутствии катализаторов или сильных минеральных кислот происходит дегидратация спиртов (отщепление воды), при этом реакция может идти в двух направлениях:

а) межмолекулярная дегидратация с участием двух молекул спирта, при этом связи С–О у одной из молекул разраваются, в результате образуются простые эфиры – соединения, содержащие фрагмент

R –О– R (рис. 9А).

б) при внутримолекулярной дегидратации образуются алкены - углеводороды с двойной связью. Часто оба процесса – образование простого эфира и алкена – протекают параллельно (рис. 9Б).

В случае вторичных спиртов при образовании алкена возможны два направления реакции (рис. 9В), преимущественное направление то, при котором в процессе конденсации отщепляется водород от наименее гидрогенизированного атома углерода (отмечен цифрой 3), т.е. окруженного меньшим количеством атомов водорода (в сравнении с атомом 1). Показанные на рис. 10 реакции используют для получения алкенов и простых эфиров.

Разрыв связи С–О в спиртах происходит также при замещении ОН-группы галогеном, или аминогруппой (рис. 10).


Рис. 10. ЗАМЕНА ОН-ГРУППЫ В СПИРТАХ ГАЛОГЕНОМ ИЛИ АМИНОГРУППОЙ

Реакции, показанные на рис. 10, используют для получения галогенуглеводородов и аминов.

Получение спиртов. Некоторые из показанных выше реакций (рис. 6,9,10) обратимы и при изменении условий могут протекать в противоположном направлении, приводя к получению спиртов, например при гидролизе сложных эфиров и галогенуглеводородов (рис.11А и Б, соответственно), а также гидратацией алкенов – присоединением воды (рис.11В).

Рис. 11. ПОЛУЧЕНИЕ СПИРТОВ ГИДРОЛИЗОМ И ГИДРАТАЦИЕЙ ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

Реакция гидролиза алкенов (рис. 11, схема В) лежит в основе промышленного производства низших спиртов, содержащих до 4 атомов С.

Этанол образуется и при так называемом спиртовом брожении сахаров, например, глюкозы С 6 Н 12 О 6 . Процесс протекает в присутствии дрожжевых грибков и приводит к образованию этанола и СО 2:

® 2С 2 Н 5 ОН + 2СО 2

Брожением можно получить не более чем 15%-ный водный раствор спирта, поскольку при более высокой концентрации спирта дрожжевые грибки погибают. Растворы спирта более высокой концентрации получают перегонкой.

Метанол получают в промышленности восстановлением монооксида углерода при 400

° С под давлением 20–30 МПа в присутствии катализатора, состоящего из оксидов меди, хрома, и алюминия: ® Н 3 СОН Если вместо гидролиза алкенов (рис. 11) проводить окисление, то образуются двухатомные спирты (рис. 12) 12. ПОЛУЧЕНИЕ ДВУХАТОМНЫХ СПИРТОВ Применение спиртов. Способность спиртов участвовать в разнообразных химических реакциях позволяет их использовать для получения всевозможных органических соединений: альдегидов, кетонов, карбоновых кислот простых и сложных эфиров, применяемых в качестве органических растворителей, при производстве полимеров, красителей и лекарственных препаратов.

Метанол СН 3 ОН используют как растворитель, а также в производстве формальдегида, применяемого для получения фенолформальдегидных смол, в последнее время метанол рассматривают как перспективное моторное топливо. Большие объемы метанола используют при добыче и транспорте природного газа. Метанол – наиболее токсичное соединение среди всех спиртов, смертельная доза при приеме внутрь – 100 мл.

Этанол С 2 Н 5 ОН – исходное соединение для получения ацетальдегида, уксусной кислоты, а также для производства сложных эфиров карбоновых кислот, используемых в качестве растворителей. Кроме того, этанол – основной компонент всех спиртных напитков, его широко применяют и в медицине как дезинфицирующее средство.

Бутанол используют как растворитель жиров и смол, кроме того, он служит сырьем для получения душистых веществ (бутилацетата, бутилсалицилата и др.). В шампунях он используется как компонент, повышающий прозрачность растворов.

Бензиловый спирт С 6 Н 5 –CH 2 –OH в свободном состоянии (и в виде сложных эфиров) содержится в эфирных маслах жасмина и гиацинта. Он обладает антисептическими (обеззараживающими) свойствами, в косметике он используется как консервант кремов, лосьонов, зубных эликсиров, а в парфюмерии - как душистое вещество.

Фенетиловый спирт С 6 Н 5 –CH 2 –CH 2 –OH обладает запахом розы, содержится в розовом масле, его используют в парфюмерии.

Этиленгликоль HOCH 2 –CH 2 OH используют в производстве пластмасс и как антифриз (добавка, снижающая температуру замерзания водных растворов), кроме того, при изготовлении текстильных и типографских красок.

Диэтиленгликоль HOCH 2 –CH 2 OCH 2 –CH 2 OH используют для заполнения тормозных гидравлических приспособлений, а также в текстильной промышленности при отделке и крашении тканей.

Глицерин

HOCH 2 – CH (OH )– CH 2 OH применяют для получения полиэфирных глифталевых смол, кроме того, он является компонентом многих косметических препаратов. Нитроглицерин (рис. 6) – основной компонент динамита, применяемого в горном деле и железнодорожном строительстве в качестве взрывчатого вещества.

Пентаэритрит (

HOCH 2) 4 С применяют для получения полиэфиров (пентафталевые смолы), в качестве отвердителя синтетических смол, как пластификатор поливинилхлорида, а также в производстве взрывчатого вещества тетранитропентаэритрита.

Многоатомные спирты ксилит НОСН 2 –(СНОH) 3 –CН 2 ОН и сорбит neНОСН 2 – (СНОН) 4 –СН 2 OН имеют сладкий вкус, их используют вместо сахара в производстве кондитерских изделий для больных диабетом и людей страдающих от ожирения. Сорбит содержится в ягодах рябины и вишни.

Михаил Левицкий

ЛИТЕРАТУРА Шабаров Ю.С. Органическая химия . Москва, «Химия», 1994

Вещества, образованные от предельных углеводородов и содержащие гидроксильную группу (-ОН), называются насыщенными или предельными одноатомными спиртами. Названия спиртов совпадают с названиями алканов в гомологическом ряду с суффиксом «-ол».

Строение

Общая формула предельных одноатомных спиртов - C n H 2n+1 -OH. Гидроксил является функциональной группой и определяет физические и химические свойства спиртов.

Основные одноатомные спирты (гомологический ряд метанола):

  • метанол или метиловый спирт - CH 3 OH;
  • этанол или этиловый спирт - C 2 H 5 OH;
  • пропанол - C 3 H 7 OH;
  • бутанол - C 4 H 9 OH;
  • пентанол - C 5 H 11 OH.

Рис. 1. Гомологический ряд одноатомных спиртов.

Насыщенным спиртам свойственна структурная и межклассовая изомерия. В зависимости от расположения гидроксильной группы в молекуле вещества различают:

  • первичные спирты - гидроксил прикреплён к первому атому углерода;
  • вторичные спирты - гидроксил находится у второго атома углерода;
  • третичные спирты - гидроксил соединён с третьим атом углерода.

Начиная с бутанола, наблюдается изомерия углеродного скелета. В этом случае название спирта записывается с двумя цифрами: первая указывает на положение метильной группы, вторая - гидроксила.

Рис. 2. Изомерия углеродного скелета насыщенных спиртов.

Одноатомные спирты образуют межклассовые изомеры с простыми эфирами - этиловый спирт (CH 3 CH 2 -OH), диметиловый эфир (CH 3 -O-CH 3).

Несмотря на то, что пропанол содержит три атома углерода, он может образовывать только два изомера по гидроксильной группе - пропанол-1 и пропанол-2.

Свойства

В зависимости от количества атомов углерода меняется агрегатное состояние одноатомных спиртов. Если в молекуле до 15 атомов углерода, то это жидкость, больше 15 - твёрдое вещество. Хорошо смешиваются с водой первые два спирта из гомологического ряда - метанол и этанол, а также структурный изомер пропанол-2. Все спирты плавятся и кипят при высоких температурах.

Активность спиртов объясняется наличием О-Н и С-О связей, которые легко разрываются. Основные химические свойства одноатомных спиртов приведены в таблице.

Реакция

Описание

Уравнение

С металлами

Реагируют только со щелочными и щелочноземельными металлами с разрывом связи О-Н

2C 2 H 5 OH + 2К → 2С 2 Н 5 ОК + Н 2

С кислородом

Горят в присутствии перманганата или дихромата калия (KMnO 4 , K 2 Cr 2 O 7)

C 2 H 5 OH + 3O 2 → 2CO 2 + H 2 O

C галогеноводородами

Гидроксильная группа вытесняется галогеном

C 2 H 5 OH + HBr → C 2 H 5 Br + H 2 O

С кислотами

Реагируют с минеральными и органическими кислотами с образованием сложных эфиров

C 2 H 5 OH + CH 3 COOH → CH 3 COOC 2 H 5

С оксидами металлов

Качественная реакция с образование альдегида

C 2 H 5 OH + CuO → CH 3 COH + H 2 O + Cu

Дегидратация

Протекает в присутствии сильной кислоты при высокой температуре

C 2 H 5 OH → C 2 H 4 + H 2 O

С карбоновыми кислотами

Реакция этерификации - образование сложных эфиров

C 2 H 5 OH + CH 3 COOH → CH 3 COOC 2 H 5 + H 2 O

Рис. 3. Качественная реакция одноатомных спиртов.

Одноатомные спирты имеют широкое применение в промышленности. Наиболее активно применяется этанол. Его используют для изготовления парфюмерии, уксусной кислоты, лекарств, лаков, красителей, растворителей и других веществ.

Что мы узнали?

Из урока химии узнали, что предельные или насыщенные одноатомные спирты являются производными предельных углеводородов с одной гидроксильной группой (гидроксилом). Это жидкости или твёрдые вещества в зависимости от количества атомов углерода. Одноатомные спирты образуют изомеры по гидроксильной, метильной группе и с простыми эфирами. Предельные одноатомные спирты реагируют со щелочными металлами, кислотами, оксидами. Используются для изготовления лекарств, растворителей, кислот.

Тест по теме

Оценка доклада

Средняя оценка: 4.6 . Всего получено оценок: 173.