F тяготения. Сила всемирного тяготения: характеристика и практическая значимость

Исаак Ньютон выдвинул предположение, что между любыми телами в природе существуют силы взаимного притяжения. Эти силы называют силами гравитации или силами всемирного тяготения . Сила несмирного тяготения проявляется в космосе, Солнечной системе и на Земле.

Закон всемирного тяготения

Ньютон обобщил законы движения небесных тел и выяснил, что сила \(F \) равна:

\[ F = G \dfrac{m_1 m_2}{R^2} \]

где \(m_1 \) и \(m_2 \) - массы взаимодействующих тел, \(R \) - расстояние между ними, \(G \) - коэффициент пропорциональности, который называется гравитационной постоянной . Численное значение гравитационной постоянной опытным путем определил Кавендиш, измеряя силу взаимодействия между свинцовыми шарами.

Физический смысл гравитационной постоянной вытекает из закона всемирного тяготения. Если \(m_1 = m_2 = 1 \text{кг} \) , \(R = 1 \text{м} \) , то \(G = F \) , т. е. гравитационная постоянная равна силе, с которой притягиваются два тела по 1 кг на расстоянии 1 м.

Численное значение:

\(G = 6,67 \cdot{} 10^{-11} Н \cdot{} м^2/ кг^2 \) .

Силы всемирного тяготения действуют между любыми телами в природе, но ощутимыми они становятся при больших массах (или если хотя бы масса одного из тел велика). Закон же всемирного тяготения выполняется только для материальных точек и шаров (в этом случае за расстояние принимается расстояние между центрами шаров).

Сила тяжести

Частным видом силы всемирного тяготения является сила притяжения тел к Земле (или к другой планете). Эту силу называют силой тяжести . Под действием этой силы все тела приобретают ускорение свбодного падения.

В соответствии со вторым законом Ньютона \(g = F_Т /m \) , следовательно, \(F_T = mg \) .

Если M – масса Земли, R – ее радиус, m – масса данного тела, то сила тяжести равна

\(F = G \dfrac{M}{R^2}m = mg \) .

Сила тяжести всегда направлена к центру Земли. В зависимости от высоты \(h \) над поверхностью Земли и географической широты положения тела ускорение свободного падения приобретает различные значения. На поверхности Земли и в средних широтах ускорение свободного падения равно 9,831 м/с 2 .

Вес тела

В технике и быту широко используется понятие веса тела.

Вес тела обозначается \(P \) . Единица веса - ньютон (Н ). Так как вес равен силе, с которой тело действует на опору, то в соответствии с третьим законом Ньютона по величине вес тела равен силе реакции опоры. Поэтому, чтобы найти вес тела, необходимо определить, чему равна сила реакции опоры.

При этом предполагается, что тело неподвижно относительно опоры или подвеса.

Вес тела и сила тяжести отличаются по своей природе: вес тела является проявлением действия межмолекулярных сил, а сила тяжести имеет гравитационную природу.

Состояние тела, в котором его вес равен нулю, называют невесомостью . Состояние невесомости наблюдается в самолете или космическом корабле при движении с ускорением свободного падения независимо от направления и значения скорости их движения. За пределами земной атмосферы при выключении реактивных двигателей на космический корабль действует только сила всемирного тяготения. Под действием этой силы космический корабль и все тела, находящиеся в нем, движутся с одинаковым ускорением, по¬этому в корабле наблюдается состояние невесомости.

В вашем браузере отключен Javascript.
Чтобы произвести расчеты, необходимо разрешить элементы ActiveX!

Закон всемирного тяготения

Гравита́ция (всеми́рное тяготе́ние, тяготе́ние) (от лат. gravitas - «тяжесть») - дальнодействующее фундаментальное взаимодействие в природе, которому подвержены все материальные тела. По современным данным, является универсальным взаимодействием в том смысле, что, в отличие от любых других сил, всем без исключения телам независимо от их массы придаёт одинаковое ускорение . Главным образом гравитация играет определяющую роль в космических масштабах. Термин гравитация используется также как название раздела физики , изучающего гравитационное взаимодействие. Наиболее успешной современной физической теорией в классической физике , описывающей гравитацию, является общая теория относительности , квантовая теория гравитационного взаимодействия пока не построена.

Гравитационное взаимодействие

Гравитационное взаимодействие - одно из четырёх фундаментальных взаимодействий в нашем мире. В рамках классической механики , гравитационное взаимодействие описывается законом всемирного тяготения Ньютона, который гласит, что сила гравитационного притяжения между двумя материальными точками массы m 1 и m 2 , разделёнными расстоянием R , пропорциональна обеим массам и обратно пропорциональна квадрату расстояния - то есть

.

Здесь G - гравитационная постоянная , равная примерно м³/(кг с²). Знак минус означает, что сила, действующая на тело, всегда равна по направлению радиус-вектору, направленному на тело, то есть гравитационное взаимодействие приводит всегда к притяжению любых тел.

Закон всемирного тяготения - одно из приложений закона обратных квадратов, встречающегося так же и при изучении излучений (см. например, Давление света), и являющимся прямым следствием квадратичного увеличения площади сферы при увеличении радиуса, что приводит к квадратичному же уменьшению вклада любой единичной площади в площадь всей сферы.

Наиболее простой задачей небесной механики является гравитационное взаимодействие двух тел в пустом пространстве. Эта задача решается аналитически до конца; результат её решения часто формулируют в виде трёх законов Кеплера .

При увеличении количества взаимодействующих тел задача резко усложняется. Так, уже знаменитая задача трёх тел (то есть движение трёх тел с ненулевыми массами) не может быть решена аналитически в общем виде. При численном же решении, достаточно быстро наступает неустойчивость решений относительно начальных условий. В применении к Солнечной системе , эта неустойчивость не позволяет предсказать движение планет на масштабах, превышающих сотню миллионов лет.

В некоторых частных случаях удаётся найти приближённое решение. Наиболее важным является случай, когда масса одного тела существенно больше массы других тел (примеры: солнечная система и динамика колец Сатурна). В этом случае в первом приближении можно считать, что лёгкие тела не взаимодействуют друг с другом и движутся по кеплеровым траекториям вокруг массивного тела. Взаимодействия же между ними можно учитывать в рамках теории возмущений , и усреднять по времени. При этом могут возникать нетривиальные явления, такие как резонансы , аттракторы , хаотичность и т. д. Наглядный пример таких явлений - нетривиальная структура колец Сатурна.

Несмотря на попытки описать поведение системы из большого числа притягивающихся тел примерно одинаковой массы, сделать этого не удаётся из-за явления динамического хаоса .

Сильные гравитационные поля

В сильных гравитационных полях, при движении с релятивистскими скоростями, начинают проявляться эффекты общей теории относительности :

  • отклонение закона тяготения от ньютоновского;
  • запаздывание потенциалов, связанное с конечной скоростью распространения гравитационных возмущений ; появление гравитационных волн;
  • эффекты нелинейности: гравитационные волны имеют свойство взаимодействовать друг с другом, поэтому принцип суперпозиции волн в сильных полях уже не выполняется;
  • изменение геометрии пространства-времени;
  • возникновение черных дыр ;

Гравитационное излучение

Одним из важных предсказаний ОТО является гравитационное излучение , наличие которого до сих пор не подтверждено прямыми наблюдениями. Однако, имеются косвенные наблюдательные свидетельства в пользу его существования, а именно: потери энергии в двойной системе с пульсаром PSR B1913+16 - пульсаром Халса-Тейлора - хорошо согласуются с моделью, в которой эта энергия уносится гравитационным излучением.

Гравитационное излучение могут генерировать только системы с переменным квадрупольным или более высокими мультипольными моментами , этот факт говорит о том, что гравитационное излучение большинства природных источников направленное, что существенно усложняет его обнаружение. Мощность гравитационного l -польного источника пропорциональна (v / c ) 2l + 2 , если мультиполь имеет электрический тип, и (v / c ) 2l + 4 - если мультиполь магнитного типа , где v - характерная скорость движения источников в излучающей системе, а c - скорость света. Таким образом, доминирующим моментом будет квадрупольный момент электрического типа, а мощность соответствующего излучения равна:

где Q i j - тензор квадрупольного момента распределения масс излучающей системы. Константа (1/Вт) позволяет оценить порядок величины мощности излучения.

Начиная с 1969 года (эксперименты Вебера (англ.)) и до настоящего времени (февраль 2007) предпринимаются попытки прямого обнаружения гравитационного излучения. В США, Европе и Японии в настоящий момент существует несколько действующих наземных детекторов (GEO 600), а также проект космического гравитационного детектора республики Татарстан .

Тонкие эффекты гравитации

Помимо классических эффектов гравитационного притяжения и замедления времени, общая теория относительности предсказывает существование других проявлений гравитации, которые в земных условиях весьма слабы и их обнаружение и экспериментальная проверка поэтому весьма затруднительны. До последнего времени преодоление этих трудностей представлялось за пределами возможностей экспериментаторов.

Среди них, в частности, можно назвать увлечение инерциальных систем отсчета (или эффект Лензе-Тирринга) и гравитомагнитное поле . В 2005 году автоматический аппарат НАСА Gravity Probe B провёл беспрецедентный по точности эксперимент по измерению этих эффектов вблизи Земли, но его полные результаты пока не опубликованы.

Квантовая теория гравитации

Несмотря на более чем полувековую историю попыток, гравитация - единственное из фундаментальных взаимодействий, для которого пока ещё не построена непротиворечивая перенормируемая квантовая теория . Впрочем, при низких энергиях, в духе квантовой теории поля , гравитационное взаимодействие можно представить как обмен гравитонами - калибровочными бозонами со спином 2.

Стандартные теории гравитации

В связи с тем, что квантовые эффекты гравитации чрезвычайно малы даже в самых экстремальных экспериментальных и наблюдательных условиях, до сих пор не существует их надёжных наблюдений. Теоретические оценки показывают, что в подавляющем большинстве случаев можно ограничиться классическим описанием гравитационного взаимодействия.

Существует современная каноническая классическая теория гравитации - общая теория относительности , и множество уточняющих её гипотез и теорий различной степени разработанности, конкурирующих между собой (см. статью Альтернативные теории гравитации). Все эти теории дают очень похожие предсказания в рамках того приближения, в котором в настоящее время осуществляются экспериментальные тесты. Далее описаны несколько основных, наиболее хорошо разработанных или известных теорий гравитации.

  • Гравитация есть не геометрическое поле, а реальное физическое силовое поле, описываемое тензором.
  • Гравитационные явления следует рассматривать в рамках плоского пространства Минковского, в котором однозначно выполняются законы сохранения энергии-импульса и момента количества движения. Тогда движение тел в пространстве Минковского эквивалентно движению этих тел в эффективном римановом пространстве.
  • В тензорных уравнениях для определения метрики следует учитывать массу гравитона, а также использовать калибровочные условия, связанные с метрикой пространства Минковского. Это не позволяет уничтожить гравитационное поле даже локально выбором какой-то подходящей системы отсчёта.

Как и в ОТО, в РТГ под веществом понимаются все формы материи (включая и электромагнитное поле), за исключением самого гравитационного поля. Следствия из теории РТГ таковы: чёрных дыр как физических объектов, предсказываемых в ОТО, не существует; Вселенная плоская, однородная, изотропная, неподвижная и евклидовая.

C другой стороны, существуют не менее убедительные аргументы противников РТГ, сводящиеся к следующим положениям:

Подобное имеет место и в РТГ, где второе тензорное уравнение вводится для учёта связи между неевклидовым пространством и пространством Минковского . Благодаря наличию безразмерного подгоночного параметра в теории Йордана - Бранса - Дикке, появляется возможность выбрать его так, чтобы результаты теории совпадали с результатами гравитационных экспериментов.

Теории гравитации
Классическая теория тяготения Ньютона Общая теория относительности Квантовая гравитация Альтернативные
  • Математическая формулировка общей теории относительности
  • Гравитация с массивным гравитоном
  • Геометродинамика (англ.)
  • Полуклассическая гравитация (англ.)
  • Биметрические теории
    • Скаляр-тензор-векторная гравитация (англ.)
    • Теория гравитации Уайтхеда (англ.)
  • Модифицированная ньютоновская динамика (англ.)
  • Составная гравитация (англ.)

Источники и примечания

Литература

  • Визгин В. П. Релятивистская теория тяготения (истоки и формирование, 1900-1915). М.: Наука, 1981. - 352c.
  • Визгин В. П. Единые теории в 1-й трети ХХ в. М.: Наука, 1985. - 304c.
  • Иваненко Д. Д. , Сарданашвили Г. А. Гравитация, 3-е изд. М.:УРСС, 2008. - 200с.

См. также

  • Гравиметр

Ссылки

  • Закон всемирного тяготения или «Почему Луна не падает на Землю?» - Просто о сложном

И. Ньютон сумел вывести из законов Кеплера один из фундаментальных законов природы - закон всемирного тяготения. Ньютон знал, что для всех планет Солнечной системы ускорение обратно пропорционально квадрату расстояния от планеты до Солнца и коэффициент пропорциональности - один и тот же для всех планет.

Отсюда следует прежде всего, что сила притяжения, действующая со стороны Солнца на планету, должна быть пропорциональна массе этой планеты. В самом деле, если ускорение планеты дается формулой (123.5), то сила, вызывающая ускорение,

где - масса этой планеты. С другой стороны, Ньютону было известно ускорение, которое Земля сообщает Луне; оно было определено из наблюдений движения Луны, обращающейся вокруг Земли. Это ускорение примерно в раз меньше ускорения , сообщаемого Землей телам, находящимся вблизи земной поверхности. Расстояние же от Земли до Луны равно приблизительно земным радиусам. Иными словами, Луна отстоит от центра Земли в раз дальше, чем тела, находящиеся на поверхности Земли, а ускорение ее в раз меньше.

Если принять, что Луна движется под действием притяжения Земли, то отсюда следует, что сила земного притяжения, так же как и сила притяжения Солнца, убывает обратно пропорционально квадрату расстояния от центра Земли. Наконец, сила притяжения Земли прямо пропорциональна массе притягиваемого тела. Этот факт Ньютон установил на опытах с маятниками. Он обнаружил, что период качаний маятника не зависит от его массы. Значит, маятникам разной массы Земля сообщает одинаковое ускорение, и, следовательно, сила притяжения Земли пропорциональна массе тела, на которое она действует. То же, конечно, следует из одинаковости ускорения свободного падения для тел разных масс, но опыты с маятниками позволяют проверить этот факт с большей точностью.

Эти сходные черты сил притяжения Солнца и Земли и привели Ньютона к заключению о том, что природа этих сил едина и что существуют силы всемирного тяготения, действующие между всеми телами и убывающие обратно пропорционально квадрату расстояния между телами. При этом сила тяготения, действующая на данное тело массы , должна быть пропорциональна массе .

Исходя из этих фактов и соображений, Ньютон сформулировал закон всемирного тяготения таким образом: любые два тела притягиваются друг к другу с силой, которая направлена по линии, их соединяющей, прямо пропорциональна массам обоих тел и обратно пропорциональна квадрату расстояния между ними, т. е. сила взаимного тяготения

где и - массы тел, - расстояние между ними, а - коэффициент пропорциональности, называемый гравитационной постоянной (способ ее измерения будет описан ниже). Сращивая эту формулу с формулой (123.4), видим, что , где - масса Солнца. Силы всемирного тяготения удовлетворяют третьему закону Ньютона. Это подтвердилось всеми астрономическими наблюдениями над движением небесных тел.

В такой формулировке закон всемирного тяготения применим к телам, которые можно считать материальными точками, т. е. к телам, расстояние между которыми очень велико по сравнению с их размерами, иначе следовало бы учитывать, что разные точки тел отстоят друг от друга на разные расстояния. Для однородных шарообразных тел формула верна при любом расстоянии между телами, если в качестве взять расстояние между их центрами. В частности, в случае притяжения тела Землей расстояние нужно отсчитывать от центра Земли. Это объясняет тот факт, что сила тяжести почти не убывает по мере увеличения высоты над Землей (§ 54): так как радиус Земли равен примерно 6400, то при изменении положения тела над поверхностью Земли в пределах даже десятков километров сила притяжения Земли остается практически неизменной.

Гравитационную постоянную можно определить, измерив все остальные величины, входящие в закон всемирного тяготения, для какого-либо конкретного случая.

Определить значение гравитационной постоянной впервые удалось при помощи крутильных весов, устройство которых схематически изображено на рис. 202. Легкое коромысло, на концах которого закреплены два одинаковых шара массы , повешено на длинной и тонкой нити. Коромысло снабжено зеркальцем, которое позволяет оптическим способом измерять малые повороты коромысла вокруг вертикальной оси. К шарам с разных сторон могут быть приближены два шара значительно большей массы .

Рис. 202. Схема крутильных весов для измерения гравитационной постоянной

Силы притяжения малых шаров к большим создают пару сил, вращающую коромысло по часовой стрелке (если смотреть сверху). Измерив угол, на который поворачивается коромысло при приближении к шарам шаров , и, зная упругие свойства нити, на которой подвешено коромысло, можно определить момент пары сил, с которыми притягиваются массы к массам . Так как массы шаров и и расстояние между их центрами (при данном положении коромысла) известны, то из формулы (124.1) может быть найдено значение . Оно оказалось равным

После того как было определено значение , оказалось возможным из закона всемирного тяготения определить массу Земли. Действительно, в соответствии с этим законом, тело массы , находящееся у поверхности Земли, притягивается к Земле с силой

где - масса Земли, а - ее радиус. С другой стороны, мы знаем, что . Приравняв эти величины, найдем

.

Таким образом, хотя силы всемирного тяготения, действующие между телами различной массы, равны, значительное ускорение получает тело малой массы, а тело большой массы испытывает малое ускорение.

Так как суммарная масса всех планет Солнечной системы составляет немногим больше массы Солнца, ускорение, которое испытывает Солнце в результате действия на него сил тяготения со стороны планет, ничтожно мало по сравнению с теми ускорениями, которые сила тяготения Солнца сообщает планетам. Относительно малы и силы тяготения, действующие между планетами. Поэтому при рассмотрении законов движения планет (законов Кеплера) мы не учитывали движения самого Солнца и приближенно считали, что траектории планет - эллиптические орбиты, в одном из фокусов которых находится Солнце. Однако в точных расчетах приходится принимать во внимание те «возмущения», которые вносят в движение самого Солнца или какой-либо планеты силы тяготения со стороны других планет.

124.1. Насколько уменьшится сила земного притяжения, действующая на ракетный снаряд, когда он поднимется на 600 км над поверхностью Земли? Радиус Земли принять равным 6400 км.

124.2. Масса Луны в 81 раз меньше массы Земли, а радиус Луны приблизительно в 3,7 раза меньше радиуса Земли. Найдите вес человека на Луне, если его вес на Земле равен 600Н.

124.3. Масса Луны в 81 раз меньше массы Земли. Найдите на линии, соединяющей центры Земли и Луны, точку, в которой равны друг другу силы притяжения Земли и Луны, действующие на помещенное в этой точке тело.

Самым главным явлением, постоянно изучаемым физиками, является движение. Электромагнитные явления, законы механики, термодинамические и квантовые процессы – все это широкий спектр изучаемых физикой фрагментов мироздания. И все эти процессы сводятся, так или иначе, к одному – к .

Вконтакте

Все во Вселенной движется. Гравитация – привычное явление для всех людей с самого детства, мы родились в гравитационном поле нашей планеты, это физическое явление воспринимается нами на самом глубоком интуитивном уровне и, казалось бы, даже не требует изучения.

Но, увы, вопрос, почему и каким образом все тела притягиваются друг к другу , остается и на сегодняшний день не до конца раскрытым, хотя и изучен вдоль и поперек.

В этой статье мы рассмотрим, что такое всемирное притяжение по Ньютону – классическую теорию гравитации. Однако прежде чем перейти к формулам и примерам, расскажем о сути проблемы притяжения и дадим ему определение.

Быть может, изучение гравитации стало началом натуральной философии (науки о понимании сути вещей), быть может, натуральная философия породила вопрос о сущности гравитации, но, так или иначе, вопросом тяготения тел заинтересовались еще в Древней Греции .

Движение понималось как суть чувственной характеристики тела, а точнее, тело двигалось, пока наблюдатель это видит. Если мы не можем явление измерить, взвесить, ощутить, значит ли это, что этого явления не существует? Естественно, не значит. И с тех пор, как Аристотель понял это, начались размышления о сути гравитации.

Как оказалось в наши дни, спустя многие десятки веков, гравитация является основой не только земного притяжения и притяжения нашей планеты к , но и основой зарождения Вселенной и почти всех имеющихся элементарных частиц.

Задача движения

Проведем мысленный эксперимент. Возьмем в левую руку небольшой шарик. В правую возьмем такой же. Отпустим правый шарик, и он начнет падать вниз. Левый при этом остается в руке, он по-прежнему недвижим.

Остановим мысленно ход времени. Падающий правый шарик «зависает» в воздухе, левый все также остается в руке. Правый шарик наделен «энергией» движения, левый – нет. Но в чем глубокая, осмысленная разница между ними?

Где, в какой части падающего шарика прописано, что он должен двигаться? У него такая же масса, такой же объем. Он обладает такими же атомами, и они ничем не отличаются от атомов покоящегося шарика. Шарик обладает ? Да, это правильный ответ, но откуда шарику известно, что обладает потенциальной энергией, где это зафиксировано в нем?

Именно эту задачу ставили перед собой Аристотель, Ньютон и Альберт Эйнштейн. И все три гениальных мыслителя отчасти решили для себя эту проблему, но на сегодняшний день существует ряд вопросов, требующих разрешения.

Гравитация Ньютона

В 1666 году величайшим английским физиком и механиком И. Ньютоном открыт закон, способный количественно посчитать силу, благодаря которой вся материя во Вселенной стремится друг к другу. Это явление получило название всемирное тяготение. Когда вас просят: «Сформулируйте закон всемирного тяготения», ваш ответ должен звучать так:

Сила гравитационного взаимодействия, способствующая притяжению двух тел, находится в прямой пропорциональной связи с массами этих тел и в обратной пропорциональной связи с расстоянием между ними.

Важно! В законе притяжения Ньютона используется термин «расстояние». Под этим термином следует понимать не дистанцию между поверхностями тел, а расстояние между их центрами тяжести. К примеру, если два шара радиусами r1 и r2 лежат друг на друге, то дистанция между их поверхностями равна нулю, однако сила притяжения есть. Все дело в том, что расстояние между их центрами r1+r2 отлично от нуля. В космических масштабах это уточнение не суть важно, но для спутника на орбите данная дистанция равна высоте над поверхностью плюс радиус нашей планеты. Расстояние между Землей и Луной также измеряется как расстояние между их центрами, а не поверхностями.

Для закона тяготения формула выглядит следующим образом:

,

  • F – сила притяжения,
  • – массы,
  • r – расстояние,
  • G – гравитационная постоянная, равная 6,67·10−11 м³/(кг·с²).

Что же представляет собой вес, если только что мы рассмотрели силу притяжения?

Сила является векторной величиной, однако в законе всемирного тяготения она традиционно записана как скаляр. В векторной картине закон будет выглядеть таким образом:

.

Но это не означает, что сила обратно пропорциональна кубу дистанции между центрами. Отношение следует воспринимать как единичный вектор, направленный от одного центра к другому:

.

Закон гравитационного взаимодействия

Вес и гравитация

Рассмотрев закон гравитации, можно понять, что нет ничего удивительного в том, что лично мы ощущаем притяжение Солнца намного слабее, чем земное . Массивное Солнце хоть и имеет большую массу, однако оно очень далеко от нас. тоже далеко от Солнца, однако она притягивается к нему, так как обладает большой массой. Каким образом найти силу притяжения двух тел, а именно как вычислить силу тяготения Солнца, Земли и нас с вами – с этим вопросом мы разберемся чуть позже.

Насколько нам известно, сила тяжести равна:

где m – наша масса, а g – ускорение свободного падения Земли (9,81 м/с 2).

Важно! Не бывает двух, трех, десяти видов сил притяжения. Гравитация – единственная сила, дающая количественную характеристику притяжения. Вес (P = mg) и сила гравитации – одно и то же.

Если m – наша масса, M – масса земного шара, R – его радиус, то гравитационная сила, действующая на нас, равна:

Таким образом, поскольку F = mg:

.

Массы m сокращаются, и остается выражение для ускорения свободного падения:

Как видим, ускорение свободного падения – действительно постоянная величина, поскольку в ее формулу входят величины постоянные — радиус, масса Земли и гравитационная постоянная. Подставив значения этих констант, мы убедимся, что ускорение свободного падения равно 9,81 м/с 2 .

На разных широтах радиус планеты несколько отличается, поскольку Земля все-таки не идеальный шар. Из-за этого ускорение свободного падения в отдельных точках земного шара разное.

Вернемся к притяжению Земли и Солнца. Постараемся на примере доказать, что земной шар притягивает нас с вами сильнее, чем Солнце.

Примем для удобства массу человека: m = 100 кг. Тогда:

  • Расстояние между человеком и земным шаром равно радиусу планеты: R = 6,4∙10 6 м.
  • Масса Земли равна: M ≈ 6∙10 24 кг.
  • Масса Солнца равна: Mc ≈ 2∙10 30 кг.
  • Дистанция между нашей планетой и Солнцем (между Солнцем и человеком): r=15∙10 10 м.

Гравитационное притяжение между человеком и Землей:

Данный результат довольно очевиден из более простого выражения для веса (P = mg).

Сила гравитационного притяжения между человеком и Солнцем:

Как видим, наша планета притягивает нас почти в 2000 раз сильнее.

Как найти силу притяжения между Землей и Солнцем? Следующим образом:

Теперь мы видим, что Солнце притягивает нашу планету более чем в миллиард миллиардов раз сильнее, чем планета притягивает нас с вами.

Первая космическая скорость

После того как Исаак Ньютон открыл закон всемирного тяготения, ему стало интересно, с какой скоростью нужно бросить тело, чтобы оно, преодолев гравитационное поле, навсегда покинуло земной шар.

Правда, он представлял себе это несколько иначе, в его понимании была не вертикально стоящая ракета, устремленная в небо, а тело, которое горизонтально совершает прыжок с вершины горы. Это была логичная иллюстрация, поскольку на вершине горы сила притяжения немного меньше .

Так, на вершине Эвереста ускорение свободного падения будет равно не привычные 9,8 м/с 2 , а почти м/с 2 . Именно по этой причине там настолько разряженный , частицы воздуха уже не так привязаны к гравитации, как те, которые «упали» к поверхности.

Постараемся узнать, что такое космическая скорость.

Первая космическая скорость v1 – это такая скорость, при которой тело покинет поверхность Земли (или другой планеты) и перейдет на круговую орбиту.

Постараемся узнать численной значение этой величины для нашей планеты.

Запишем второй закон Ньютона для тела, которое вращается вокруг планеты по круговой орбите:

,

где h — высота тела над поверхностью, R — радиус Земли.

На орбите на тело действует центробежное ускорение , таким образом:

.

Массы сокращаются, получаем:

,

Данная скорость называется первой космической скоростью:

Как можно заметить, космическая скорость абсолютно не зависит от массы тела. Таким образом, любой предмет, разогнанный до скорости 7,9 км/с, покинет нашу планету и перейдет на ее орбиту.

Первая космическая скорость

Вторая космическая скорость

Однако, даже разогнав тело до первой космической скорости, нам не удастся полностью разорвать его гравитационную связь с Землей. Для этого и нужна вторая космическая скорость. При достижении этой скорости тело покидает гравитационное поле планеты и все возможные замкнутые орбиты.

Важно! По ошибке часто считается, что для того чтобы попасть на Луну, космонавтам приходилось достигать второй космической скорости, ведь нужно было сперва «разъединиться» с гравитационным полем планеты. Это не так: пара «Земля — Луна» находятся в гравитационном поле Земли. Их общий центр тяжести находится внутри земного шара.

Для того чтобы найти эту скорость, поставим задачу немного иначе. Допустим, тело летит из бесконечности на планету. Вопрос: какая скорость будет достигнута на поверхности при приземлении (без учета атмосферы, разумеется)? Именно такая скорость и потребуется телу, чтобы покинуть планету .

Вторая космическая скорость

Запишем закон сохранения энергии:

,

где в правой части равенства стоит работа силы тяжести: A = Fs.

Отсюда получаем, что вторая космическая скорость равна:

Таким образом, вторая космическая скорость в раз больше первой:

Закон всемирного тяготения. Физика 9 класс

Закон Всемирного тяготения.

Вывод

Мы с вами узнали, что хотя гравитация является основной силой во Вселенной, многие причины этого явления до сих пор остались загадкой. Мы узнали, что такое сила всемирного тяготения Ньютона, научились считать ее для различных тел, а также изучили некоторые полезные следствия, которые вытекают из такого явления, как всемирный закон тяготения.

«Физика - 10 класс»

Почему Луна движется вокруг Земли?
Что будет, если Луна остановится?
Почему планеты обращаются вокруг Солнца?

В главе 1 подробно говорилось о том, что земной шар сообщает всем телам у поверхности Земли одно и то же ускорение - ускорение свободного падения. Но если земной шар сообщает телу ускорение, то согласно второму закону Ньютона он действует на тело с некоторой силой. Силу, с которой Земля действует на тело, называют силой тяжести . Сначала найдём эту силу, а затем и рассмотрим силу всемирного тяготения.

Ускорение по модулю определяется из второго закона Ньютона:

В общем случае оно зависит от силы, действующей на тело, и его массы. Так как ускорение свободного падения не зависит от массы, то ясно, что сила тяжести должна быть пропорциональна массе:

Физическая величина - ускорение свободного падения, оно постоянно для всех тел.

На основе формулы F = mg можно указать простой и практически удобный метод измерения масс тел путём сравнения массы данного тела с эталоном единицы массы. Отношение масс двух тел равно отношению сил тяжести, действующих на тела:

Это значит, что массы тел одинаковы, если одинаковы действующие на них силы тяжести.

На этом основано определение масс путём взвешивания на пружинных или рычажных весах. Добиваясь того, чтобы сила давления тела на чашку весов, равная силе тяжести, приложенной к телу, была уравновешена силой давления гирь на другую чашку весов, равной силе тяжести, приложенной к гирям, мы тем самым определяем массу тела.

Сила тяжести, действующая на данное тело вблизи Земли, может считаться постоянной лишь на определенной широте у поверхности Земли. Если тело поднять или перенести в место с другой широтой, то ускорение свободного падения, а следовательно, и сила тяжести изменятся.


Сила всемирного тяготения.

Ньютон был первым, кто строго доказал, что причина, вызывающая падение камня на Землю, движение Луны вокруг Земли и планет вокруг Солнца, одна и та же. Это сила всемирного тяготения , действующая между любыми телами Вселенной.

Ньютон пришёл к выводу, что если бы не сопротивление воздуха, то траектория камня, брошенного с высокой горы (рис. 3.1) с определённой скоростью, могла бы стать такой, что он вообще никогда не достиг бы поверхности Земли, а двигался бы вокруг неё подобно тому, как планеты описывают в небесном пространстве свои орбиты.

Ньютон нашёл эту причину и смог точно выразить её в виде одной формулы - закона всемирного тяготения.

Так как сила всемирного тяготения сообщает всем телам одно и то же ускорение независимо от их массы, то она должна быть пропорциональна массе того тела, на которое действует:

«Тяготение существует ко всем телам вообще и пропорционально массе каждого из них... все планеты тяготеют друг к другу...» И. Ньютон

Но поскольку, например, Земля действует на Луну с силой, пропорциональной массе Луны, то и Луна по третьему закону Ньютона должна действовать на Землю с той же силой. Причём эта сила должна быть пропорциональна массе Земли. Если сила тяготения является действительно универсальной, то со стороны данного тела на любое другое тело должна действовать сила, пропорциональная массе этого другого тела. Следовательно, сила всемирного тяготения должна быть пропорциональна произведению масс взаимодействующих тел. Отсюда вытекает формулировка закона всемирного тяготения.

Закон всемирного тяготения:

Сила взаимного притяжения двух тел прямо пропорциональна произведению масс этих тел и обратно пропорциональна квадрату расстояния между ними:

Коэффициент пропорциональности G называется гравитационной постоянной .

Гравитационная постоянная численно равна силе притяжения между двумя материальными точками массой 1 кг каждая, если расстояние между ними равно 1 м. Ведь при массах m 1 = m 2 = 1 кг и расстоянии r = 1 м получаем G = F (численно).

Нужно иметь в виду, что закон всемирного тяготения (3.4) как всеобщий закон справедлив для материальных точек. При этом силы гравитационного взаимодействия направлены вдоль линии, соединяющей эти точки (рис. 3.2, а).

Можно показать, что однородные тела, имеющие форму шара (даже если их нельзя считать материальными точками, рис. 3.2, б), также взаимодействуют с силой, определяемой формулой (3.4). В этом случае r - расстояние между центрами шаров. Силы взаимного притяжения лежат на прямой, проходящей через центры шаров. Такие силы называются центральными . Тела, падение которых на Землю мы обычно рассматриваем, имеют размеры, много меньшие, чем земной радиус (R ≈ 6400 км).

Такие тела можно, независимо от их формы, рассматривать как материальные точки и определять силу их притяжения к Земле с помощью закона (3.4), имея в виду, что r есть расстояние от данного тела до центра Земли.

Брошенный на Землю камень отклонится под действием тяжести от прямолинейного пути и, описав кривую траекторию, упадёт наконец на Землю. Если его бросить с большей скоростью, то он упадёт дальше». И. Ньютон

Определение гравитационной постоянной.


Теперь выясним, как можно найти гравитационную постоянную. Прежде всего заметим, что G имеет определённое наименование. Это обусловлено тем, что единицы (и соответственно наименования) всех величин, входящих в закон всемирного тяготения, уже были установлены ранее. Закон же тяготения даёт новую связь между известными величинами с определёнными наименованиями единиц. Именно поэтому коэффициент оказывается именованной величиной. Пользуясь формулой закона всемирного тяготения, легко найти наименование единицы гравитационной постоянной в СИ: Н м 2 /кг 2 = м 3 /(кг с 2).

Для количественного определения G нужно независимо определить все величины, входящие в закон всемирного тяготения: обе массы, силу и расстояние между телами.

Трудность состоит в том, что гравитационные силы между телами небольших масс крайне малы. Именно по этой причине мы не замечаем притяжение нашего тела к окружающим предметам и взаимное притяжение предметов друг к другу, хотя гравитационные силы - самые универсальные из всех сил в природе. Два человека массами по 60 кг на расстоянии 1 м друг от друга притягиваются с силой всего лишь порядка 10 -9 Н. Поэтому для измерения гравитационной постоянной нужны достаточно тонкие опыты.

Впервые гравитационная постоянная была измерена английским физиком Г. Кавендишем в 1798 г. с помощью прибора, называемого крутильными весами. Схема крутильных весов показана на рисунке 3.3. На тонкой упругой нити подвешено лёгкое коромысло с двумя одинаковыми грузиками на концах. Рядом неподвижно закреплены два тяжёлых шара. Между грузиками и неподвижными шарами действуют силы тяготения. Под влиянием этих сил коромысло поворачивается и закручивает нить до тех пор, пока возникающая сила упругости не станет равна гравитационной силе. По углу закручивания можно определить силу притяжения. Для этого нужно только знать упругие свойства нити. Массы тел известны, а расстояние между центрами взаимодействующих тел можно непосредственно измерить.

Из этих опытов было получено следующее значение для гравитационной постоянной:

G = 6,67 10 -11 Н м 2 /кг 2 .

Лишь в том случае, когда взаимодействуют тела огромных масс (или по крайней мере масса одного из тел очень велика), сила тяготения достигает большого значения. Например, Земля и Луна притягиваются друг к другу с силой F ≈ 2 10 20 Н.


Зависимость ускорения свободного падения тел от географической широты.


Одна из причин увеличения ускорения свободного падения при перемещении точки, где находится тело, от экватора к полюсам, состоит в том, что земной шар несколько сплюснут у полюсов и расстояние от центра Земли до её поверхности у полюсов меньше, чем на экваторе. Другой причиной является вращение Земли.


Равенство инертной и гравитационной масс.


Самым поразительным свойством гравитационных сил является то, что они сообщают всем телам, независимо от их масс, одно и то же ускорение. Что бы вы сказали о футболисте, удар которого одинаково ускорял бы обыкновенный кожаный мяч и двухпудовую гирю? Каждый скажет, что это невозможно. А вот Земля является именно таким «необыкновенным футболистом» с той только разницей, что действие её на тела не носит характера кратковременного удара, а продолжается непрерывно миллиарды лет.

В теории Ньютона масса является источником поля тяготения. Мы находимся в поле тяготения Земли. В то же время мы также являемся источниками поля тяготения, но в силу того, что наша масса существенно меньше массы Земли, наше поле намного слабее и окружающие предметы на него не реагируют.

Необыкновенное свойство гравитационных сил, как мы уже говорили, объясняется тем, что эти силы пропорциональны массам обоих взаимодействующих тел. Масса тела, которая входит во второй закон Ньютона, определяет инертные свойства тела, т. е. его способность приобретать определённое ускорение под действием данной силы. Это инертная масса m и.

Казалось бы, какое отношение она может иметь к способности тел притягивать друг друга? Масса, определяющая способность тел притягиваться друг к другу, - гравитационная масса m r .

Из механики Ньютона совсем не следует, что инертная и гравитационная массы одинаковы, т. е. что

m и = m r . (3.5)

Равенство (3.5) является непосредственным следствием из опыта. Оно означает, что можно говорить просто о массе тела как о количественной мере как инертных, так и гравитационных его свойств.