Древнегреческие атомисты

Атомизм основали два человека – Левкипп и Демокрит. Их трудно разделить, потому что они обыкновенно упоминаются совместно, и, вероятно, некоторые из работ Левкиппа были впоследствии приписаны Демокриту.

Левкипп, расцвет деятельности которого, по-видимому, приходился примерно на 440 год до н.э. , происходил из Милета и был продолжателем научной рационалистической философии, связанной с этим городом. Он находился под большим влиянием Парменида и Зенона. О нем так мало известно, что Эпикур (более поздний последователь Демокрита) додумался до того, что вообще отрицал существование Левкиппа, а некоторые современные ученые возродили эту теорию. Имеется, однако, некоторое количество ссылок на него у Аристотеля, и кажется неправдоподобным, что эти ссылки (которые включают текстуальные цитаты) имели бы место, если бы Левкипп был просто мифической личностью.

Демокрит гораздо более определенная фигура. Он был уроженцем Абдер во Фракии; что касается времени его жизни, то он сообщает, что в годы его молодости Анаксагор был уже стариком, а это относится приблизительно к 432 году до н.э. Расцвет деятельности Демокрита датируют ориентировочно 420 годом до н.э. В поисках знания Демокрит совершал далекие поездки в южные и восточные страны; возможно, что он провел значительное время в Египте и, несомненно, посетил Персию. Затем он возвратился в Абдеры, где и остался. Целлер считает, что Демокрит «превосходил всех философов – своих предшественников и современников – богатством знаний, а большинство из них – остротой и логической правильностью мышления».

Демокрит был современником Сократа и софистов, и, если исходить из чисто хронологических соображений, его следовало бы рассматривать несколько позже в нашей истории философии. Но дело осложняется тем, что довольно трудно провести различие между Демокритом и Левкиппом. На этом основании я рассматриваю его раньше Сократа и софистов, несмотря на то, что его философия частично была предназначена служить ответом его земляку Протагору, наиболее знаменитому софисту. Протагора, когда он посещал Афины, принимали с энтузиазмом, о себе же Демокрит говорит: «Ведь я… пришел в Афины, и никто меня не узнал». В течение долгого времени его философию игнорировали в Афинах. «Не ясно, – говорит Барнет, – знал ли Платон что-либо о Демокрите… Аристотель, с другой стороны, знает Демокрита хорошо, ибо он также был ионийцем с Севера» . Платон никогда не упоминает в своих диалогах Демокрита, но, как говорит Диоген Лаэртский, Платон ненавидел Демокрита настолько, что хотел, чтобы были сожжены все его книги. Хис дает высокую оценку Демокриту как математику .

Основные идеи общей Левкиппу и Демокриту философии обязаны своим происхождением первому из них, что же касается их разработки, то едва ли возможно провести различие между Левкиппом и Демокритом. Кроме того, для наших целей вряд ли есть смысл пытаться сделать это. Левкиппа, если не Демокрита, привела к атомизму попытка занять промежуточную позицию между монизмом Парменида и плюрализмом Эмпедокла. Точка зрения Левкиппа и Демокрита была удивительно похожа на точку зрения современной науки и лишена большинства тех недостатков, к которым была склонна греческая спекулятивная мысль. Они полагали, что все состоит из атомов, неделимых физически, но не геометрически; что между атомами имеется пустое пространство; что атомы неразрушимы; что они всегда находились и будут находиться в движении; что существует бесконечное количество как самих атомов, так даже и их разновидностей, отличающихся друг от друга формой и размером. Аристотель утверждает , что, согласно атомистам, атомы отличаются друг от друга также теплотой. Сферические атомы, из которых состоит огонь, самые горячие. Что касается веса, то Аристотель цитирует Демокрита, который говорит, что «каждое из неделимых [телец] бывает более тяжелым вследствие большего размера». Но вопрос о том, были ли атомы в теориях атомистов с самого начала наделены весом, остается спорным.

Атомы всегда находятся в движении, но среди комментаторов имеют место разногласия относительно характера первоначального движения атомов. Некоторые, особенно Целлер, утверждают, что атомы мыслились вечно падающими, причем более тяжелые атомы падали быстрее легких; они, таким образом, догоняли более легкие атомы и сталкивались с ними, в результате атомы отклонялись от своего пути, как бильярдные шары. Этого взгляда, несомненно, придерживался Эпикур, который во многих отношениях основывался в своих теориях на взгляды Демокрита, пытаясь в то же время, довольно неумно, учитывать критику Аристотеля. Но имеются значительные основания полагать, что Левкипп и Демокрит не рассматривали вес как первоначальное свойство атомов. Кажется более вероятным, что, согласно их взгляду, атомы первоначально двигались беспорядочно, как в современной кинетической теории газов. Демокрит говорил, что в бесконечной пустоте нет ни верха, ни низа, и сравнивал движение атомов в душе с движением пылинок в солнечном луче, когда нет ветра. Это значительно более разумный взгляд, чем взгляд Эпикура, и я думаю, что мы можем его принять как несомненно свойственный Левкиппу и Демокриту .

В результате столкновения скопления атомов образуют вихри. Остальное происходит в основном так, как у Анаксагора. Шаг вперед состоял в том, что вихри объяснялись скорее механическими причинами, чем действием ума.

Общепринятым в античности был упрек атомистам в приписывании всему случайности. Наоборот, они были строгими детерминистами. Они полагали, что все происходит в соответствии с естественными законами. Демокрит прямо отрицал, будто что-либо может происходить случайно . Левкипп, хотя его существование и ставят под вопрос, известен одним своим высказыванием, а именно: «Ни одна вещь не возникает беспричинно, но все возникает на каком-нибудь основании и в силу необходимости». Верно, что он не объяснил, почему мир должен был первоначально быть таким, как он есть, возможно, это следовало бы приписать случайности. Но раз мир существует, то его дальнейшее развитие неизменно определяется механическими принципами. Аристотель и другие упрекали Левкиппа и Демокрита за то, что они не дают объяснения причины первоначального движения атомов, но в этом отношении атомисты были более научны, чем их критики. Причинность должна с чего-то начинаться, и, где бы она ни начиналась, нельзя указать причины первоначального данного. Причину существования мира можно приписать Творцу, но тогда Творец сам окажется необусловленным. Теория атомистов фактически ближе к современной науке, чем любая другая теория, выдвинутая в древности.

В отличие от Сократа, Платона и Аристотеля атомисты пытались объяснить мир, не прибегая к понятию цели или конечной причины . «Конечная причина» того или иного процесса – это событие в будущем, ради которого протекает процесс. В делах человеческих это понятие вполне применимо. Почему булочник печет хлеб? Потому, что в противном случае народ будет голоден. Почему строятся железные дороги? Потому, что люди пожелают путешествовать. В таких случаях вещи объясняются целями, которым они служат. Когда мы спрашиваем, «почему» происходит то или иное событие, мы можем иметь в виду одно из двух. Мы можем подразумевать, «какой цели служит это событие?», или мы можем иметь в виду, «какие более ранние обстоятельства послужили причиной этого события?». Ответ на первый вопрос – это телеологическое объяснение, или объяснение через посредство конечной причины; ответ на последний вопрос – механистическое объяснение. Я не знаю, как могло быть заранее известно, какой из этих двух вопросов должна ставить наука или она должна ставить сразу же оба вопроса. Но опыт показал, что механистический вопрос ведет к научному знанию, в то время как телеологический не ведет. Атомисты поставили механистический вопрос и дали механистический ответ. Их последователи вплоть до Возрождения больше интересовались телеологическим вопросом и, таким образом, завели науку в тупик.

Относительно обоих вопросов в равной мере существуют пределы, которые часто игнорируются и в житейском мышлении и в философии. Нельзя поставить разумно никакого вопроса относительно реальности в целом (включая Бога), но только о частях ее. Что касается телеологического объяснения, то, следуя ему, мы обычно приходим к Творцу или по крайней мере к Создателю (Artificer), цели которого реализуются в ходе развития природы. Но если человек настолько упрям в своем телеологизме, что, продолжая спрашивать, поставит вопрос о том, какой цели служит сам Творец, то станет очевидным, что его вопрос нечестивый. Кроме того, он бессмыслен, так как, чтобы придать ему смысл, мы должны предположить, что сам Творец был создан неким Сверхтворцом, целям которого он служит. Понятие цели, следовательно, приложимо только к явлениям внутри реальности, но не к реальности как целому.

Та же самая аргументация применима и к механистическим объяснениям. Одно событие вызывается другим, другое – третьим и так далее. Но если мы спросим о причине целого, то опять придем к творцу, который сам не должен иметь причины. Всякое причинное объяснение должно, следовательно, иметь лишенное причины произвольное начало. Вот почему нельзя считать недостатком в теории атомистов то, что они оставляли первоначальное движение атомов необъясненным (unaccounted for).

Не следует думать, что атомисты исходили в своих теориях исключительно из эмпирических оснований. Атомистическая теория возродилась в Новое время, чтобы объяснить факты химии; но эти факты не были известны грекам. В древности не проводилось четкого различия между эмпирическим наблюдением и логическим доказательством. Верно, что Парменид с презрением относился к наблюдаемым фактам, но Эмпедокл и Анаксагор многое из своей метафизики связывали с наблюдениями над водяными часами и вращающимися ведрами. До софистов, по-видимому, ни один философ не сомневался, что законченная метафизика и космология могли быть созданы благодаря сочетанию большого количества рассуждений с некоторым количеством наблюдений. По счастливой случайности атомисты напали на гипотезу, для которой более чем через две тысячи лет были найдены некоторые основания, но в то время их учение было тем не менее лишено всякого твердого основания .

Как и многие философы того времени, Левкипп старался найти способ примирения парменидовских доводов с очевидным фактом движения и изменения. Аристотель говорит:

«Вот так и по таким причинам высказывались об истине. В рассуждениях это, по-видимому, выходит складно, однако на деле подобные взгляды близки к безумию. Ведь нет человека столь безумного, чтобы считать, что огонь и лед – это одно; лишь между прекрасными [вещами] и теми, что в силу привычки кажутся [таковыми], некоторые в своем безумии не видят никакого различия.

Левкипп же полагал, что у него есть доводы, которые согласуются с чувственным восприятием и не отрицают ни возникновения, ни уничтожения, ни движения, ни множественности существующего. В этом он согласился с [данными] явлений, а с теми, кто создал [учение] о едином, он пришел в согласие, говоря, что движение не может быть без пустоты, что пустота есть небытие и что ничто из существующего не есть небытие. Ведь подлинно сущее есть совершенно полное бытие. Но оно не едино, а [есть бесконечное] множество [частиц], невидимых из-за малости своих размеров. Они носятся в пустоте (ибо пустота существует) и, когда соединяются, вызывают возникновение, а когда разделяются – уничтожение. Они действуют и испытывают воздействие в той мере, в какой им случается соприкасаться друг с другом, потому что тогда они [уже] не единое. Их соединение и переплетение ведут к возникновению [вещей], а из подлинно единого не могло бы возникнуть множество, равно и из подлинно многих – единое. Это невозможно» .

Мы увидим, что был один пункт, относительно которого до сих пор соглашались все, а именно, что невозможно движение при отсутствии пустоты. В этом все одинаково ошибались. Круговое движение в заполненном пространстве возможно при том условии, что оно существовало всегда. Идея состояла в том, что вещь может двигаться только в пустом пространстве, а в заполненном пространстве нет пустых мест. Могут возразить, и, вероятно, это будет основательно, что движение никогда не может возникнуть в заполненном пространстве, но нельзя обоснованно утверждать, что оно там вовсе не может происходить. Грекам же, однако, казалось, что волей-неволей следует или признать неизменный мир Парменида, или допустить пустоту.

Аргументы Парменида против небытия, по-видимому, логически неопровержимы применительно к пустоте, и они были подкреплены открытием, что там, где, очевидно, ничего нет, содержится воздух. (Это пример распространенного беспорядочного смешения логики и наблюдения.) Парменидовскую позицию мы можем изложить следующим образом: «Вы говорите, что пустота есть ; следовательно, пустота – не ничто; следовательно, она – не пустота». Нельзя сказать, чтобы атомисты ответили на этот довод; они просто провозгласили, что предпочитают игнорировать этот довод на том основании, что движение есть факт восприятия. Должна , следовательно, быть пустота, как бы ни было трудно представить себе это .

Рассмотрим дальнейшую историю этого вопроса. Первым и наиболее очевидным способом устранения логических трудностей было различение между материей и пространством . Согласно такому взгляду, пространство – не ничто, но вместилище, которое может быть, а может и не быть в какой-либо данной части заполнено материей. Аристотель говорит («Физика», 208а): «Утверждающие существование пустоты называют ее местом; в этом смысле пустота была бы местом, лишенным тела». Эта точка зрения с предельной ясностью выражена Ньютоном, утверждавшим существование абсолютного пространства и соответственно отличавшим движение абсолютное от движения относительного. В коперниковском споре обе стороны (как бы мало они ни понимали это) придерживались этой точки зрения, поскольку они думали, что есть разница между положением «небеса вращаются с востока на запад» и положением «земля вращается с запада на восток». Если всякое движение относительно, то эти два утверждения – только разные способы высказывания одной и той же вещи, подобные положениям «Джон – отец Джемса» и «Джемс – сын Джона». Но если всякое движение относительно и пространство не субстанционально, то против пустоты в нашем распоряжении остаются лишь парменидовские аргументы.

Декарт, доводы которого точно совпадают с положениями ранних греческих философов, сказал, что протяженность является сущностью материи, а следовательно, материя имеется повсюду. У него протяженность – прилагательное, а не существительное, ее существительное – материя, и без своего существительного протяженность не может существовать. Для него пустое пространство так же абсурдно, как счастье без чувствующего существа, которое счастливо. Лейбниц, исходя из несколько других оснований, также полагал, что существует лишь заполненное пространство, но он утверждал, что пространство – только система отношений. По этому вопросу состоялся знаменитый спор между Лейбницем и Ньютоном; последний был представлен Кларком. Спор оставался неразрешенным вплоть до Эйнштейна, теория которого принесла окончательную победу Лейбницу.

В то время как современный физик верит, что материя является в некотором смысле атомистичной, он уже не верит в пустое пространство. Где нет материи, там все-таки что-то есть , хотя бы световые волны. Материя более не обладает тем высоким положением, которое она приобрела в философии благодаря аргументам Парменида. Она не является более неизменной субстанцией, но просто способом группировки событий. Некоторые события принадлежат к группам, которые могут рассматриваться как материальные вещи, другие, как, например, световые волны, к этим группам не принадлежат. Веществом (stuff) мира являются события, и каждое из них характеризуется недолговечностью. В этом отношении современные физики находятся на стороне Гераклита, против Парменида. Но они находились на стороне Парменида до тех пор, пока на арене не появились Эйнштейн и квантовая теория.

Что касается пространства, то современный взгляд на него состоит в том, что оно не представляет собой субстанцию, как это утверждал Ньютон и как должны были утверждать Левкипп и Демокрит; пространство не является также прилагательным протяженных тел, как думал Декарт, но представляет собой систему отношений, как утверждал Лейбниц. Как бы то ни было, но все же не ясно, совместим ли этот взгляд с существованием пустоты. Возможно, что абстрактно логически его можно примирить с пустотой. Мы могли бы сказать, что между любыми двумя вещами имеется определенный больший или меньший промежуток , а этот промежуток не означает существования промежуточных тел. Однако такую точку зрения было бы невозможно использовать в современной физике. Начиная с Эйнштейна, промежуток стал расстоянием между событиями , а не между вещами , и он носит характер столь же временной, как и пространственный. Это, по существу, причинная концепция, а в современной физике не существует действия на расстоянии. Все это, однако, имеет под собой скорее эмпирические, чем логические основания. Кроме того, современный взгляд не может быть выражен иначе, чем в терминах дифференциальных уравнений, а следовательно, не мог бы быть понятен философам древности.

Соответственно представляется, что свое логическое развитие взгляды атомистов нашли в ньютоновской теории абсолютного пространства, которая тоже сталкивается с трудностью приписывания реальности небытию. Против этой теории нет логических возражений. Главное возражение состоит в том, что абсолютное пространство абсолютно непознаваемо и, следовательно, не может выступать в качестве необходимой гипотезы в эмпирической науке. Более практическое возражение состоит в том, что физика может обойтись без абсолютного пространства. Но мир атомистов остается логически возможным, и он более близок к действительному миру, чем мир любого другого из философов древности.

Демокрит весьма детально разработал свои теории, и некоторые из его разработок интересны. Каждый атом, говорил Демокрит, непроницаем и неделим, потому что он не содержит пустоты. Когда вы применяете нож, чтобы разрезать яблоко, он должен находить пустые места, через которые может в него проникнуть; если бы яблоко не содержало пустоты, оно было бы абсолютно твердым и поэтому физически неделимым. Каждый атом внутренне неизменен и представляет собой фактически парменидовское единое. Единственное, что делают атомы, это движутся и сталкиваются друг с другом. Иногда они образуют соединения, когда им случается иметь такие формы, которые способны сцепляться. Существуют всевозможные виды форм. Из маленьких сферических атомов состоит огонь, а также душа. Сталкиваясь, атомы образуют вихри, которые порождают тела, а в конце концов – миры .

Существует множество миров, некоторые из них растут, другие приходят в упадок, некоторые, может быть, не имеют ни солнца, ни луны, другие же имеют по нескольку солнц и лун. Каждый мир имеет начало и конец. Мир может быть разрушен в столкновении с большим миром. Эта космология может быть суммирована словами Шелли:

Миры за мирами катятся вечно,

От сотворения до гибели,

Подобно пузырькам на поверхности реки,

Они сверкают, лопаются и исчезают.

Жизнь возникла из первобытной слизи. В живом теле повсюду имеется некоторое количество огня, но больше всего его в мозгу или в груди. (По этому вопросу авторитеты расходятся.) Мысль представляет собой своего рода движение, а потому способна повсюду вызывать движение. Восприятие и мышление – физические процессы. Восприятие бывает двух родов: одно – чувственное, другое – рассудочное. Восприятия последнего рода зависят только от воспринимаемых вещей, в то время как восприятия первого рода зависят также от наших чувств, а следовательно, способны вводить в заблуждение. Подобно Локку, Демокрит утверждал, что такие качества, как теплота, вкус, цвет, не присущи реально объектам, но обязаны своим существованием нашим органам чувств, тогда как такие качества, как тяжесть, плотность и твердость, реально присущи самим объектам.

Демокрит был решительным материалистом, для него, как мы видели, душа состоит из атомов, а мышление является физическим процессом. Вселенная не имеет целей, там только атомы, управляемые механическими законами. Он не верил в распространенную тогда религию и выступал против нуса Анаксагора. В этике он считал целью жизни бодрость, а умеренность и образование – наилучшими средствами для ее достижения. Он осуждал все неистовое и страстное; он не одобрял также сексуальной жизни, потому что, как он говорил, это вызывает преобладание удовольствия над сознанием. Он ценил дружбу, но плохо отзывался о женщинах. Он не хотел иметь детей, потому что заботы, связанные с их воспитанием, служат помехой философствованию. Во всем этом он был весьма похож на Иеремию Бентама; в равной степени он также любил то, что греки называли демократией .

Демокрит – таково по крайней мере мое мнение – последний греческий философ, который был свободен от известного недостатка, нанесшего вред всей более поздней древней и всей средневековой мысли. Все философы, которых мы рассматривали до сих пор, были охвачены беспристрастным стремлением к познанию мира. Они представляли себе это более легким делом, чем оно было в действительности, но без такого оптимизма у них не хватило бы мужества положить начало этому делу.

Их взгляд на мир в основном был подлинно научным взглядом, всякий раз, когда он не являлся просто выражением предрассудков того времени. Но этот взгляд был не только научным, он был образным и выразительным и был полон наслаждения смелым предприятием. Они интересовались всем: метеорами и затмениями, рыбами и вихрями, религией и моралью; с проницательным интеллектом у них сочеталась детская любознательность.

Начиная с этого момента впервые появляются некоторые признаки упадка, несмотря на предыдущие, не имеющие себе равных достижения, а затем наступает постепенное разложение. В философии, даже в самой лучшей философии после Демокрита, плохо то, что в ней делается чрезмерный упор на человека в ущерб стремлению к познанию Вселенной. Сперва, вместе с софистами, приходит скептицизм, приводящий к изучению того, как мы познаем, вместо попытки приобрести новое знание. Затем, вместе с Сократом, центр тяжести переносится на этику; с Платоном начинается отрицание чувственного мира в пользу самого себя творящего мира чистой мысли; с Аристотелем – вера в цель как основное понятие науки. Несмотря на гениальность Платона и Аристотеля, их мысль имела пороки, оказавшиеся бесконечно вредными. После них начался упадок энергии и постепенное возрождение вульгарных предрассудков. Новое мировоззрение возникло отчасти в результате победы католической ортодоксии; но вплоть до Возрождения философия не могла обрести вновь той энергии и независимости, которые были свойственны предшественникам Сократа.


Основатели атомистического учения - Левкипп и Демокрит (около 460-370 гг. до н. э.). Атомисты попытались преодолеть вытекающее из философии элеатов недоверие к чувственно воспринимаемой реальности. Для этого они выдвинули два принципиальных положения: 1) деление до бесконечности невозможно, существует предел делимости вещества, и его они называли словом "атом" (греч. atomos - неделимый), атомы и есть "подлинное" бытие, они существуют вечно и неизменно; 2) существует также и "небытие" - пустота, в которой движутся атомы.
Демокрит полагал, что атомы различаются формой, положением в пустоте, величиной. Невидимые из-за своих малых размеров, они, имея неровную поверхность, способны сцепляться друг с другом и образовывать видимые вещи. Из вихрей движущихся атомов возникает бесчисленное множество миров и подобных нашему, и совсем на него не похожих. В некоторых мирах нет ни солнца, ни луны, в других же их множество, некоторые не имеют влаги и жизни, одни миры только возникают, другие находятся в расцвете, третьи погибают, сталкиваясь друг с другом.
Утверждая, что существуют только атомы и пустота, атомисты тем самым отвергают существование какого-нибудь "мирового ума", управляющего миром. Все события происходят путем взаимодействия атомов, их столкновения, сцепления или разъединения.
В своей теории познания Демокрит в отличие от элеатов не только различает видимый и невидимый (умопостигаемый) миры, но и стремится объяснить связь между ними. Чувственное познание возможно благодаря тому, что из вещей истекают атомы и, проникая через поры в тело человека, возбуждают атомы души. Атомы, отделяющиеся от вещей, доставляют душе их образы, или подобия. Чувственный опыт, однако, сам по себе может дать лишь "темное", то есть неполное и недостоверное знание, поскольку видимая нам вещь "вторична", производна от составляющих ее атомов. Однако ум, опираясь на наблюдения, постигает в процессе размышления невидимые и невоспринимаемые первичные сущности. Демокрит утверждал; "[Лишь] в общем мнении существует сладкое, в мнении - горькое, в мнении - теплое, в мнении - холодное, в мнении - цвет, в действительности же существуют только атомы и пустота".
Демокрит первым охарактеризовал человека как "микрокосм" ввиду того, что он, как и большой мир, состоит из атомов. Разница между ними заключается в том, что в человеке выше концентрация тепла и огня, состоящего из особенно малых, округлых и подвижных атомов. Они составляют человеческую душу. Огненные атомы имеются также и в воздухе. При выдохе атомы души выходят наружу и рассеиваются, при вдохе втягиваются вновь. Выдох без последующего вдоха означает смерть - понижение концентрации огнеподобных атомов в теле, уравновешивание со средой. Таким образом, атомисты не признают бессмертия души. Существование богов, однако, ими не отвергается. Боги - это особые соединения огненных атомов; они мало подвержены распаду, но все же не вечны. Боги могут благотворно или зловредно воздействовать на человека, а также подавать людям те или иные знаки.
Важное место в учении Демокрита отводится вопросам социальной жизни и этики. Он полагал, что люди возникли естественным путем "без всякого творца и разумной цели". Опыт борьбы за выживание научил людей собираться в стада. В целях общения им пришлось создать язык. Таким образом, общество с его законами, язык и искусства не даны человеку от природы, а возникли "по установлению". Наилучшей формой государственного устройства Демокрит считал демократический полис. Необходимым условием сохранения демократии являются нравственные качества граждан, создающиеся воспитанием и поучением. В этике Демокрита высшим благом провозглашается блаженное состояние духа - эвтюмия.
Впоследствии Демокрита стали считать зачинателем "материалистической линии в философии". Атомистической концепции мира в дальнейшем придерживались также эпикурейцы.

Еще по теме Античный атомизм:

  1. Античная этика как философия добродетели. Этический рационализм античных философов. Основные направления античной этики.
  2. II.1. ХАРАКТЕРНЫЕ ЧЕРТЫ АНТИЧНОЙ ФИЛОСОФИИ. НАТУРФИЛОСОФИЯ АНТИЧНОСТИ. ПЕРВАЯ ИСТОРИЧЕСКАЯ ФОРМА ДИАЛЕКТИКИ
  3. Проникновение античной мысли в ближневосточную культуру в доисламский период и влияние ее на становление исламской теологии и философии. Переводческая деятельность. Особенности восприятия античности исламской культурой. «Фалсафа» как восприемница античной мудрости, теоретического оружия против исламского конформизма. Концепция двойственной истины: знания для «масс» и для «элиты». Учение Платона и Аристотеля в трудах «восточных перипатетиков».

ВВЕДЕНИЕ

Демокрит родился около 470-469 г. до н.э., умер в IV в. до н.э. Он был младшим современником Анаксагора и старшим - Сократа. Демокрит был ученым-энциклопедистом, крупнейшим представителем атомистического направления в философии. Родом он был из города Абдеры - греческой колонии на Фракийском побережье. Получив наследство, отправился в путешествие, побывал в ряде стран (Египте, Вавилоне, Индии). Где пополнял свои знания о природе и человеке. Вернувшись, встретил осуждение за растраченное богатство (против него было возбуждено судебное дело о растранжиренном наследстве). На судебном процессе Демокрит прочитал судьям свое сочинение «Мирострой», и судьи признали, что он взамен денежного богатства накопил мудрость, знания, по суду был оправдан и даже вознагражден деньгами.

Демокрит написал около семидесяти сочинений, но ни одно не дошло до нас в полном виде. Имеются фрагменты из них, дающие представление о его учении.

Основу философских размышлений Демокрита составляет идея атомизма, которая в самом общем виде уже появилась в древневосточной культуре и которая, как полагают историки, была воспринята Демокритом от его учителя Левкиппа. Но он разработал ее дальше, оформив в целостную концепцию.

Демокрит считал, что существует бесконечное множество миров; одни миры возникают, другое гибнут. Все они состоят из множества атомов и пустоты. Пустота - между мирами и атомами. Сами же атомы неделимы и лишены пустоты. Помимо свойства неделимости атомы неизменны, не имеют внутри себя никакого движения; они вечны, не уничтожаются и вновь не появляются. Число атомов в мире бесконечно. Они различаются друг от друга по четырем признакам:

1) по форме;

2) по величине;

3) по порядку;

4) по положению.

Так, А отличается от Р формой, АР от РА порядком, Ь от Р-положением. Величина у атомов тоже различна; на Земле они малы, причем настолько, что органы чувств не в состоянии их воспринимать. Таковы пылинки, имеющиеся в комнате, невидимые обычно, но заметные в луче света, подающем в темную комнату. Их незаметность в обычных условиях дает основание считать, что они не существуют, на самом же деле они имеются; таковы и атомы. Атомы бывают самой разной формы (А и Р, например); они могут быть шарообразны, угловаты, вогнуты, выпуклы, крючкообразны, якореобразны и т. п. Из разных атомов и разного их числа, путем сцепления и образуются различные вещи и миры. Если бы они находились в состоянии покоя, то объяснение многообразие вещей было бы невозможно. Им как самостоятельным элементам присуще движение. Находясь в движении, атомы сталкиваются друг с другом, изменяя направление движения; одним из видов движения является вихрь. Самодвижение безначальное и не будет иметь конца.

Демокрит первым в древнегреческой философии вводит в научный оборот понятие причины. Случайность он отрицает в смысле беспричинности.

Демокрит и его атомистическая теория

Знаменитый греческий философ Демокрит принимает тезис о том, что бытие есть нечто простое, понимая под ним неделимое - атом ("атом" по-гречески означает "нерассекаемое", "неразрезаемое"). Он дает материалистическую трактовку этому понятию, мысля атом как наименьшую, далее не делимую физическую частицу. Таких атомов Демокрит допускает бесчисленное множество, тем самым отвергая утверждение, что бытие - одно. Атомы, по Демокриту, разделены пустотой; пустота - это небытие и, как таковое, непознаваема: отвергая утверждение Парменида о том, что бытие не множественно.

Демокрит, наряду с Левкиппом, считается одним из основателей древнегреческого атомизма. На первый взгляд учение атомизма предельно просто. Начало всего сущего – неделимые частицы-атомы и пустота. Ничто не возникает из несуществующего и не уничтожается в несуществующее, но возникновение вещей – есть соединение атомов, а уничтожение – распадение на части, в пределе на атомы. Все возникает на некотором основании и по необходимости; причина возникновения - вихрь, который и именуется необходимостью. Ощущаем мы потому, что в нас попадают "видики", отделяющиеся от вещей. Душа - совокупность особых атомов. Конечная цель человека - душевное благосостояние, при котором душа пребывает в спокойствии и равновесии, не смущаемая ни страхом, ни суеверием, ни какой бы то ни было другой страстью.

Все, что существует, - это атомы и пустота. В бесконечной пустоте-пространстве движутся, сочетаясь между собою, бесконечное по числу и формам тельца; последние отличаются друг от друга формой, порядком, поворотом. Левкипп и Демокрит были внимательными слушателями Зенона и от них не ускользнули ни сильные ни слабые стороны его рассуждений, в частности, содержание апорий против множества: если разделить тело на бесконечное число частей, то или эти части не будут иметь величины - и тогда их сумма, т.е. исходное тело обратится в ничто, или они будут иметь величину - но тогда их сумма будет бесконечно велика. Но и то, и другое нелепо. Однако апория не возникает, если предположить существование предела делимости - неделимый далее атом. Атомы достаточно малы, но ведь простейшее наблюдение показывает, что материя действительно делима на весьма малые, даже не различимые глазом частицы. Таковы пылинки, видимые в луче света, падающем в темную комнату. " Демокрит не говорил, что эти видимые через окно, поднятые (ветром) пылинки (и есть те частицы), из которых состоит огонь или душа, или что вообще эти пылинки суть атомы, но он говорил: "Эти пылинки существуют в воздухе, но так как они не заметны из-за слишком малой величины, то и кажется, что они не существуют, и только лучи солнца, проникая через окно, обнаруживают, что они существуют. Подобным же образом существуют и неделимые тела, мелкие и неделимые из-за слишком малой величины" (Левкипп).

Таким образом разрешены сразу две проблемы. Множественность сущего не ведет больше к противоречиям: любое тело можно разделить на конечное множество частиц, имеющих величину, а затем снова из них составить. А "бытие" элеатов находит воплощение в атоме: он един, неделим, неизменен, неуничтожим, отвечая всем требованиям парменидова "бытия". Только атомов много. А для того, чтобы они могли существовать как множество, необходима пустота, которая отделяла бы один атом от другого и обусловливала возможность перемещения атомов - движения. Пустота - это уже не "несуществующее" элеатов, но существующее ничто.

Демокрит, однако, согласен с элеатами, что только бытие познаваемо. Характерно также, что и Демокрит различает мир атомов - как истинный и потому познаваемый лишь разумом - и мир чувственных вещей, представляющих собой лишь внешнюю видимость, сущность которой составляют атомы, их свойства и движения. Атомы нельзя видеть, их можно только мыслить. Здесь, как видим, тоже сохраняется противопоставление "знания" и "мнения". Атомы Демокрита различаются по форме и величине; двигаясь в пустоте, они соединяются ("сцепляются") между собой в силу различия по форме: у Демокрита есть атомы круглые, пирамидальные, кривые, заостренные, даже "с крючками". Так из них образуются тела, доступные нашему восприятию.

Демокрит предложил продуманный вариант механистического объяснения мира: целое у него представляет собой сумму частей, а беспорядочное движение атомов, их случайные столкновения оказываются причиной всего сущего. В атомизме отвергается положение элеатов о неподвижности бытия, поскольку это положение не дает возможности объяснить движение и изменение, происходящее в чувственном вире. Стремясь найти причину движения, Демокрит "раздробляет" единое бытие Парменида на множество отдельных "бытий" - атомов, которые трактует материалистически.

Доказательство существования пустоты у Демокрита и атомистов вообще сводится к тому, что, во первых, без пустоты не было бы возможно перемещение, так как наполненное не может восприять в себя еще что-то; во-вторых, о её существовании говорит наличие таких процессов, как уплотнение и сгущение, возможные только в том случае, если между телами и их частями существуют пустые промежутки. Пустота абсолютно однородна и может существовать как вмещая тела, так и без них. При этом она существует как вне тел, вмещая их в себя, отделяя их друг от друга, так и внутри сложных тел, отделяя друг от друга их части. Лишь атомы не содержат пустоты, чем объясняется их абсолютная плотность, - некуда вставить лезвие, чтобы разрезать атом, или расколоть его.

Что касается числа атомов в мире, то Демокрит признает его бесконечным. А следовательно, бесконечной должна быть и пустота, ибо конечное пространство не может вместить бесконечного числа атомов и бесконечного числа состоящих из них миров. Трудно сказать, что оказывается здесь первым допущением - бесконечность числа атомов или бесконечность пустоты. И то, и другое основывается на том аргументе, что как число атомов, так и величина пустоты "не более такое, чем иное". Распространяется этот аргумент и на число форм атомов, которое, по Демокриту, также бесконечно.

Последовательно материалистическую позицию Демокрит занимает и в вопросе о природе души и познания. Известно, что часто психическая деятельность человека объясняется наличием в его теле специфической субстанции или силы - "души".

В неорганической природе все совершается не по целям и в этом смысле случайно, а у ученика могут быть и цели, и средства. Таким образом, взгляд Демокрита на природу души является строго причинным, детерминистическим.

Он проповедовал последовательную материалистическую позицию в учении о природе души и познания. "Душа, по Демокриту состоит из шарообразных атомов, т.е. подобна огню".

Атомы души имеют способность к ощущению. Чувственные качества субъективны (вкус, цвет…) отсюда, он делал вывод о ненадежности чувственного познания (Мед горек для больного желтухой и сладок здоровому).

Но в то же время, он считал, что без "темного" знания, получаемого из ощущений не может быть никакого знания. "Сформулировав важную догадку о взаимосвязи чувственного и разумного, Демокрит не смог еще дать описания механизма перехода от одного к другому. Ему неизвестны видимо, логические формы и операции: суждение, понятие, умозаключение, обобщение, абстрагирование". Утеря "Канона", его логического произведения, не позволяет выявить его роль в этом.

Сложнее было аналогичным образом объяснить ощущение и мышление. Атомистическое объяснение ощущений основывается на представлении о том, что атомы души обладают способностью к ощущениям. В то де время Демокрит принимает в качестве единственно сущего только атомы и пустоту, тогда как чувственные качества, подобные, например, "противоположностям" ионийцев (сухое - влажное, теплое и холодное), существуют только "во мнении". Иначе говоря, чувственные качества - вкус, теплота и т.д. - субъективны, имея, однако, объективную основу в форме, порядке и расположении атомов. Способность же к восприятию коренится в особых свойствах атомов души. Отсюда делается вывод о ненадежности чувственного познания, не способного дать истину - ведь атомы и пустота чувствам недоступны.

Восприятие внешних предметов требует, с этой точки зрения, непосредственных контактов воспринимаемого с органом чувства. И если слух, осязание, вкусовые ощущения понятны, то как быть со зрением на расстоянии?

Демокрит избегает затруднений, создавая теорию "истечений". Согласно этой теории, от предметов отделяются тончайшие оболочки, как бы копии. Демокрит называет их "образами" или "подобиями", "изображениями". Попадая в глаз, они и вызывают представление о предмете.

Интересны взгляды Демокрита на человека, общество, мораль и религию. Он интуитивно полагал, что первые из людей вели неупорядоченную жизнь. Когда они научились добывать огонь, у них понемногу стали развиваться различные искусства. Он высказал версию, что искусство зародилось путем подражания (Мы научились от паука – ткачеству, от ласточки – строить дома и т.д.), что законы создаются людьми. Писал о дурных и хороших людях. "Дурные люди дают клятвы богам, когда попадают в безвыходное положение. Когда же от него избавились, все равно клятв не соблюдают".

Демокрит отвергал божественное провидение, загробную жизнь, посмертное воздаяние за земные поступки. Этика Демокрита пронизана идеями гуманизма. "Гедонизм Демокрита не только в удовольствиях, т.к. высшее благо блаженное состояние духа и мера в удовольствиях".

Его нравственные афоризмы дошли до нас в виде отдельных изречений. Например, "богат тот, кто беден желаниями", "добро не в том чтобы не делать несправедливости, а в том, чтобы даже не желать этого" и т.д.

Идеалом государственного устройства считал демократическое государство, когда оно в благополучии, все в благополучии, когда оно гибнет – все гибнут.

Левкипп и Демокрит гениально положили начало учению о бесконечности миров. Они продолжали развивать догадку Анаксагора о чисто физическом происхождении и чисто физической, а не божественной природе светил и всех явлений, наблюдаемых на небесном своде.

В целом следует отметить, что философия Демокрита – энциклопедическая наука, основанная на атомистической гипотезе.

Вопрос о взаимосвязи математики и философии впервые был задан довольно давно. Аристотель, Бэкон, Леонардо да Винчи - многие великие умы человечества занимались этим вопросом и достигали выдающихся результатов. Это не удивительно: ведь основу взаимодействия философии с какой-либо из наук составляет потребность использования аппарата философии для проведения исследований в данной области; математика же, несомненно, более всего, среди точных наук поддается философскому анализу (в силу своей абстрактности). Наряду с этим прогрессирующая математизация науки оказывает активное воздействие на философское мышление.

Совместный путь математики и философии начался в Древней Греции около VI века до н.э.

Демокрит был, по мнению Маркса, “первым энциклопедическим умом среди греков”. Диоген Лаерций (III в. н.э.) называет 70 его сочинений, в которых были освещены вопросы философии, логики, математики, космологии, физики, биологии, общественной жизни, психологии, этики, педагогики, филологии, искусства, техники и другие. Аристотель писал о нем: “Вообще, кроме поверхностных изысканий, никто ничего не установил, исключая Демокрита. Что же касается его, то получается такое впечатление, что он предусмотрел все, да и в методе вычислений он выгодно отличается от других”

Вводной частью научной системы Демокрита была “каноника”, в которой формулировались и обосновывались принципы атомистической философии. Затем следовала физика, как наука о различных проявлениях бытия, и этика. Каноника входила в физику в качестве исходного раздела, этика же строилась как порождение физики. В философии Демокрита прежде всего устанавливается различие между “подлинно сущим” и тем, что существует только в “общем мнении”. Подлинно сущими считались лишь атомы и пустота. Как подлинно сущее, пустота (небытие) есть такая же реальность, как атомы (бытие). “Великая пустота” безгранична и заключает в себе все существующее, в ней нет ни верха, ни низа, ни края, ни центра, она делает прерывной материю и возможным ее движение. Бытие образуют бесчисленные мельчайшие качественно однородные первотельца, различающиеся между собой по внешним формам, размеру, положению и порядку, они далее неделимы вследствие абсолютной твердости и отсутствия в них пустоты и “по величине неделимы”. Атомам самим по себе свойственно непрестанное движение, разнообразие которого определяется бесконечным разнообразием форм атомов. Движение атомов вечно и в конечном итоге является причиной всех изменений в мире.

Задача научного познания, согласно Демокриту, состоит в том, чтобы наблюдаемые явления свести к области “истинного сущего” и дать им объяснение исходя из общих принципов атомистики. Это может быть достигнуто посредством совместной деятельности ощущений и разума. Гносеологическую позицию Демокрита Маркс сформулировал следующим образом: “Демокрит не только не удалялся от мира, а, наоборот, был эмпирическим естествоиспытателем”. Содержание исходных философских принципов и гносеологические установки определили основные черты научного метода Демокрита:

а) в познании исходить от единичного;

б) любые предмет и явление разложимы до простейших элементов (синтез) и объяснимы исходя из них (анализ);

в) различать существование “по истине” и “согласно мнению”;

г) явления действительности - это отдельные фрагменты упорядоченного космоса, который возник и функционирует в результате действий чисто механической причинности.

Математика по праву должна считаться у Демокрита первым разделом собственно физики и следовать непосредственно за каноникой. В самом деле, атомы качественно однородны и их первичные свойства имеют количественный характер. Однако было бы неправильно трактовать учение Демокрита как разновидность пифагореизма, поскольку Демокрит хотя и сохраняет идею господства в мире математической закономерности, но выступает с критикой априорных математических построений пифагорейцев, считая, что число должно выступать не законодателем природы, а извлекаться из нее. Математическая закономерность выявляется Демокритом из явлений действительности, и в этом смысле он предвосхищает идеи математического естествознания. Исходные начала материального бытия выступают у Демокрита в значительной степени как математические объекты, и в соответствии с этим математике отводится видное место в системе мировоззрения как науке о первичных свойствах вещей. Однако включение математики в основание мировоззренческой системы потребовало ее перестройки, приведения математики в соответствие с исходными философскими положениями, с логикой, гносеологией, методологией научного исследования. Созданная таким образом концепция математики, называемая концепцией математического атомизма, оказалась существенно отличной от предыдущих.

У Демокрита все математические объекты (тела, плоскости, линии, точки) выступают в определенных материальных образах. Идеальные плоскости, линии, точки в его учении отсутствуют. Основной процедурой математического атомизма является разложение геометрических тел на тончайшие листики (плоскости), плоскостей - на тончайшие нитки (линии), линий - на мельчайшие зернышки (атомы). Каждый атом имеет малую, но ненулевую величину и далее неделим. Теперь длина линии определяется как сумма содержащихся в ней неделимых частиц. Аналогично решается вопрос о взаимосвязи линий на плоскости и плоскостей в теле. Число атомов в конечном объеме пространства не бесконечно, хотя и настолько велико, что недоступно чувствам. Итак, главным отличием учения Демокрита от рассмотренных ранее является отрицание им бесконечной делимости. Таким образом он решает проблему правомерности теоретических построений математики, не сводя их к чувственно воспринимаемым образам, как это делал Протагор. Так, на рассуждения Протагора о касании окружности и прямой Демокрит мог бы ответить, что чувства, являющиеся отправным критерием Протагора, показывают ему, что чем точнее чертеж, тем меньше участок касания; в действительности же этот участок настолько мал, что не поддается чувственному анализу, а относится к области истинного познания.

Руководствуясь положениями математического атомизма, Демокрит проводит ряд конкретных математических исследований и достигает выдающихся результатов (например, теория математической перспективы и проекции). Кроме того, он сыграл, по свидетельству Архимеда, немаловажную роль в доказательстве Евдоксом теорем об объеме конуса и пирамиды. Нельзя с уверенностью сказать, пользовался ли он при решении этой задачи методами анализа бесконечно малых. А.О. Маковельский пишет: “Демокрит вступил на путь, по которому дальше пошли Архимед и Кавальери. Однако, подойдя вплотную к понятию бесконечно малого, Демокрит не сделал последнего решительного шага. Он не допускает безграничного увеличения числа слагаемых, образующих в своей сумме данный объем. Он принимает лишь чрезвычайно большое, не поддающееся исчислению вследствие своей огромности число этих слагаемых”.

Выдающимся достижением Демокрита в математике явилась также его идея о построении теоретической математики как системы. В зародышевой форме она представляет собой идею аксиоматического построения математики, которая затем была развита в методологическом плане Платоном и получила логически развернутое положение у Аристотеля.

Характерные особенности античного атомизма

Специфическая особенность учения атомистов состоит, во-первых, в том, что философия, как ее понимает Демокрит, должна объяснить явления физического мира. В этом отношении Демокрита вполне можно отнести к досократикам - «физикам».

Во-вторых, само объяснение физического мира понимается атомистами как указание на механические причины всех возможных изменений в природе. Все изменения в качестве своей причины имеют в конечном счете движение атомов, их соединение и разъединение, причем чувственно воспринимаемые качества эмпирических предметов (теплота и холод, гладкость и шероховатость, цвет, запах и т.д.) объясняются только формой, порядком и положением атомов.

В-третьих, объясняющий принцип (атомы и пустота) и долженствующий быть объясненным объект (эмпирический мир) существенно отделены: атомы ― это то, что невозможно видеть, их можно только мыслить. Правда, как поясняет Демокрит, они невидимы «из-за их малости», но, как мы знаем, у Демокрита было весьма детально разработано учение, позволяющее принципиально отделить мир эмпирический (как мир субъективного восприятия) и мир истинно существующий (объективного знания).

В-четвертых, специфической чертой атомизма является наглядность объясняющей модели. Хотя то, что происходит поистине (движение атомов в пустоте), отличается от нашего субъективного «мнения», т.е. того, что мы воспринимаем с помощью органов чувств, но, несмотря на это, сами атомы, их форма, порядок, их движение («носятся» в пустоте), их соединения не просто мыслятся нами, но и представляются вполне наглядно. Мы в состоянии видеть как бы оба мира одновременно: «качественный» мир чувственного опыта, звучащий, окрашенный и т.д., и мир движущегося множества атомов - не случайно атомисты ссылались на «движение пылинок в луче света» как на наглядный образ движения атомов.

Этот наглядный характер атомистической объясняющей гипотезы оказался одним из важных ее преимуществ, заставлявших многих ученых (и не только в древности, но и в новое время) обращаться к атомизму в поисках наглядной модели для объяснения физических явлений.

В-пятых, важной особенностью объяснительной теории атомистов является то, что их теоретическая модель непосредственно соотносится с эмпирическими явлениями, которые она призвана объяснить. Между теоретическим и эмпирическим уровнями нет никаких посредствующих звеньев.

Характерной особенностью античного атомизма как метода «собирания целого из частей» является то, что при этом целое не мыслится как нечто действительно единое, имеющее свою особую специфику, несводимую к специфике составляющих его элементов. Оно мыслится как составное, а не как целое в собственном смысле этого слова. Согласно Демокриту, скопления (сцепления) атомов только кажутся некоторыми единствами, целостностями (вещами) нашему субъективному восприятию; объективно же они остаются чисто механическими соединениями, т.к. по мнению Демокрита, «совершенно нелепо, чтобы две или еще большее число (вещей) стали когда-либо единой (вещью)». Таким образом, все явления эмпирического мира, по Демокриту, суть лишь агрегаты, соединения атомов.

ЗАКЛЮЧЕНИЕ

Демокрит внес большой вклад, как в дальнейшее развитие философской мысли так и в науку, в частности в объяснение физических явлений.

Говоря о его учении, о познании, необходимо отметить, прежде всего, то, что он заложил основы концепции вторичных качеств, имеющей и поныне важное значение для выяснения сущности мироустройства и познавательных способностей человека.

Высшее благо ― по Демокриту ― блаженство, которое состоит в покое и веселии души и может быть достигнуто благодаря обузданию своих желаний и умеренному образу жизни.

Большое место в философском учении Демокрита занимают также проблемы этики, в особенности вопросы о справедливости, честности, достоинстве человека. Известны его утверждения: «не телесные силы и не деньги делают людей счастливыми» но правота и многосторонняя мудрость»; «как из ран самая худшая болезнь есть рак, так при обладании деньгами самое худшее - желание постоянно прибавлять к ним». Он был сторонником демократического устройства общественной жизни, утверждал, что «лучше быть бедным в демократическом государстве, чем жить в богатстве при монархии».

Таким образом, Демокрит первым в древнегреческой философии вводит в научный оборот эксплицитно сформулированное понятие причины и развивает систему материалистического детерминизма.

Трудно сказать, является ли колебательное движение, по Демокриту, неотъемлемым свойством атомов, или же оно порождается их столкновениями. Во всяком случае, ясно, что Демокрит не обращается в целях объяснения к разумному началу, упорядочивающему движение. Именно поэтому критики обвиняют основателя атомизма в злоупотреблении случайностью и неспособности объяснить, каким образом из неупорядоченного движения получаются закономерность и необходимость. Но Демокрит считает исходное движение не беспорядочным, а с самого начала подчиненным определенной закономерности. Это - закономерность соединения подобного с подобным.

Демокриту для объяснения мировых процессов хватает атомов, пустоты и движения. Движущиеся атомы собираются в "вихрь"; распространяясь по отдельным местам в пустоте, они образуют отдельный мир, ограниченный своим "небом". Возникновение мира и всех вещей в нем происходит в результате соединения атомов, уничтожение же сводится к разъединению и распадению на составные части.

Демокрит ввел в этику первоначальные разработки таких понятий, как совесть, т.е. требование стыдиться своих собственных постыдных поступков, долг и справедливость.

Этика Демокрита не представляет единой, логически стройной системы. Его нравственные причины дошли до нас в виде отдельных афоризмов. Есть некоторые основания думать, что это результат определенной обработки тех произведений философа, где этика излагалась в систематической форме. Однако принципы демоктритовой этики позволяют пролить дополнительный свет на политическое учение мыслителя.

Этическая концепция Демокрита сохраняет ту основную характеристику, которая присуща всей античной философии, созерцательность. Устраняя все, что препятствует блаженному состоянию духа, выявляя идеал нравственной жизни, Демокрит не видит в философии средства преобразования существующего общества, - его задача не выходит за пределы его объяснения.


Похожая информация.


1Введение…………………………………………………………………………1

1.2Античный атомизм……………………………………………………………1

2Атомизм Демокрита…………………………………………………………..2

5Заключение…………………………………………………………………....13

Введение

Европейская атомистика возникла в Древней Греции.

Атомизм был создан представителями досократического периода развития древнегреческой философии Левкиппом и его учеником Демокритом Абдерским. Согласно их учению, существуют только атомы и пустота. Атомы - мельчайшие неделимые, невозникающие и неисчезающие, качественно однородные, непроницаемые (не содержащие в себе пустоты) сущности (частицы), обладающие определённой формой. Атомы бесчисленны, так как пустота бесконечна. Форма атомов бесконечно разнообразна. Атомы являются первоначалом всего сущего, всех чувственных вещей, свойства которых определяются формой составляющих их атомов.

Демокрит предложил продуманный вариант механистического объяснения мира: целое у него представляет собой сумму частей, а беспорядочное движение атомов, их случайные столкновения оказываются причиной всего сущего. В атомизме отвергается положение элеатов о неподвижности бытия, поскольку это положение не дает возможности объяснить движение и изменение, происходящее в чувственном мире. Стремясь найти причину движения, Демокрит «раздробляет» единое бытие Парменида на множество отдельных «бытий»-атомов, мысля их как материальные, телесные частицы.

Противники атомизма Демокрита утверждали, что материя делится до бесконечности.

Сторонником атомизма был Платон, который считал, что атомы имеют форму идеальных Платоновских тел (правильных многогранников).

Эпикур, основатель эпикуреизма, воспринял от атомистов учение об атомах. Мысль об атомистическом строении мира развивается Эпикуром в письмах к Геродоту и Пифоклу .

В поэме древнеримского эпикурейца Лукреция «О природе вещей» атомы характеризуются как телесные («тельца» - корпускулы) и состоящие из материи.

Атомизм Демокрита

Демокрит утверждает, что все существующее состоит из атомов и пустоты. Атомы- это неделимые частицы. Атомы соединяются между собой и образуются вещи.Пустота по своему характеру однородна, она может отделять тела между собой, а может находиться и внутри самих тел и отделять отдельные часть этих тел.

Атомы же не содержат пустоты, они отличаются абсолютной плотностью. По мнениюДекарта, в мире существует бесконечное множество атомов. Также бесконечно ичисло форм атомов. Одновременно Демокрит признает вечность мира во времени и бесконечность его в пространстве. Он был убежден, что существует множество миров, постоянно возникающих и погибающих. Атомы обладают свойством движения от природы, и передается оно посредством столкновения атомов. Движение выступает основным источником развития. Он полагал, что не только ничего не возникает из ничего, но и что ничего не возникает без причины. Все происходит по строгой необходимости. Таким образом, Демокрит стоит на позициях жесткого детерминизма, вытекающего из его признания механического движения единственной формой движения.

Объясняя психическую деятельность человека, Демокрит пишет, что душа –это движущее начало и орган ощущения и мышления. Душа состоит из атомов, поэтому она смертна, так как после смерти человека атомы души тоже рассеиваются. Он полагал, что люди пришли к вере в богов под влиянием существования грозных явлений природы: грома, молнии, солнечных и лунных затмений. По своим политическим взглядам Демокрит был горячим защитником греческой демократии, выступавшей против аристократии за рабовладельческую форму правления. В этике Демокрит исходит из индивидуалистического принципа. Для него главное – это "достижение доброй мысли". Философия Демокрита сыграла огромную роль для всей последующей философии.

Поворот философии к науке: Ф. Бэкона и Р. Декарта - предпосылка развития атомистики Нового времени

Семнадцатый век открывает новый период в развитии философии, который принято называть философией Нового времени.

В последней трети XVI - начале XVII века происходит буржуазная революция в Нидерландах, сыгравшая важную роль в развитии капиталистических отношений в буржуазных странах. С середины XVII века (1640-1688) буржуазная революция развертывается в Англии, наиболее развитой в промышленном отношении европейской стране. Эти ранние буржуазные революции были подготовлены развитием мануфактурного производства, пришедшего на смену ремесленному труду.

Развитие нового буржуазного общества порождает изменение не только в экономике, политике и социальных отношениях, оно меняет и сознание людей. Важнейшим фактором такого изменения общественного сознания оказывается наука, и, прежде всего, экспериментально-математическое естествознание, которое как раз в XVII переживает период своего становления.В XVII веке разделение труда в производстве вызывает потребность в рационализации производственных процессов, а тем самым – в развитии науки, которая могла бы эту рационализацию стимулировать.

Развитие науки Нового времени, как и социальные преобразования, связанные с разложением феодальных общественных порядков и ослаблением влияния церкви, вызвали к жизни новую ориентацию философии. Если в средние века она выступала в союзе с богословием, а в эпоху Возрождения – с искусством и гуманитарным знанием, то теперь она опирается главным образом на науку.Поэтому для понимания проблем, которые стояли перед философией XVII века, надо учитывать: во-первых, специфику нового типа науки – экспериментально-математического естествознания, основы которого закладываются именно в этот период; и, во-вторых, поскольку наука занимает ведущее место в мировоззрении этой эпохи, то и в философии на первый план выходят проблемы теории познания – гносеологии.

Важнейшая отличительная черта философии Нового времени по сравнению со схоластикой – это новаторство. Но следует особо подчеркнуть, что первые философы Нового времени были учениками неосхоластов. Однако они со всей силой своего ума, и души стремились пересмотреть, проверить на истинность и прочность унаследованные знания. Пересматривалось старое знание, для нового звания отыскивались прочные рациональные основания.

Поиск рационально обосновываемых и доказуемых истин философии, сравнимых с истинами науки, - другая черта философии Нового времени

Поворот к чувственному познанию действительности, с которым мы уже встречались в эпоху Ренессанса, проносит с собой небывалый рост фактических данных в различных областях как формирующейся науки, так в производственной и социальной (ремесленной) практики.

Формирование естествознания в этот период связано с тенденцией познания не единичных, изолированных факторов, но определенных систем, целостностей.

Человек пытается найти ответ на наиболее общие и глубокие вопросы: что представляет собой окружающий мир и каково место и предназначение в нем человека? что лежит в основе всего существующего: материальное или духовное? подчинен ли мир каким-либо законам? может ли человек познать окружающий мир, что представляет собой это познание? в чем смысл жизни, ее цель? Такие вопросы называют мировоззренческими

Основная проблема философии Нового времени - проблема познания, научных методов, общественного устройства

На первый план выходят проблемы гносеологии. Гносеологическая философиясостоит в изучении познавательного отношения в системе “мир-человек”.

Два основных направления философии Нового времени

1. Эмпиризм - направление в теории познания, которое признает чувственный опыт как единственный источник знаний.

а) идеалистический эмпиризм (представители Дж. Беркли (1685-1753), Д. Юм (1711-1776). Эмпирический опыт - совокупность ощущений и представлений, величина мира равны величине опыта

б) материалистический эмпиризм (представители Ф. Бэкон,Т. Гоббс) - источник чувственного опыта существующий внешний мир.

2. Рационализм (лат. разумный) выдвигает на первый план логическое основание науки, признает разум источником познания и критерием его истинности. Рене Декарт, Бенедикт Спиноза, Лейбниц

Гносеология – философское учение о человеческом познании. Человек и общество в своем бытии изменяют окружающий мир, но общество может существовать, только изменяя мир. Это практическое отношение к миру и является практической основой общества Непосредственными провозвестниками и идеологами нарождающейся науки были Ф. Бэкон и Р. Декарт.

Рассмотрим теперь, какие вклады внесли в становление науки выдающиеся представители Нового времени. Речь едет о мощном движении –научной революции, которое обретает в XVII в. характерные черты в работах Галилей, идеях Бекона и Декарта и которое впоследствии получит свое завершение в классическом ньютоновском образе Вселенной, подобной часовому механизму.

За те сто пятьдесят лет, которые отделяют Коперника от Ньютона, меняется не только образ мира. С этим изменением связано и изменение- также медленное, мучительное, но неуклонное – представлений о человеке, о науке, о человеке науки, о научном поиске и научных институтах, об отношении между наукой и обществом, между наукой и философией и между научным знанием и религиозной верой.

Наука –это экспериментальная наука. В эксперименте ученые обретают истинные суждения о мире. И это новый образ науки – возникший из теорий, систематически контролируемых с помощью эксперимента.

В результате «научной революции» родился новый образ мира, с новыми религиозными и антропологическими проблемами. Вместе с тем возник новый образ науки – развивающейся автономно, социальной и доступной контролю. Другая фундаментальная характеристика научной революции – формирование знания, которое в отличие от предшествующего, средневекового, объединяет теорию и практику, науку и технику, создавая новый тип ученого –носитель того типа знания, который для обретения силы нуждается в постоянном контроле со стороны практики, опыта. Научная революция порождает современного ученого –экспериментатора, сила которого – в эксперименте, становящемся все долее строгим благодаря новым измерительным приборам, все белее и более точным.

Прогресс опытного знания, экспериментальной науки требовал замены схоластического метода мышления новым методом познания, обращенным к реальному миру. Возродились и развивались принципы материализма и элементы диалектики.

14. Работа Р.Декарта «Рассуждения о методе» и ее значение для развития новоевропейской философии.

С проблематикой познания в философии Декарта тесно связан вопрос о способе конкретного достиже­ния наиболее истинного, т. е. наиболее достоверного, познания. Рассуждения о методе. Правила, которых он придерживается и которые на основе своего опыта полагает важнейшими, он фор­мулирует следующим образом:

Не принимать никогда любую вещь за истин­ную, если ты ее не познал как истинную с очевидно­стью, чтобы не было никакой возможности сомне­ваться в этом;

Разделить каждый из вопросов, которые следует изучить, на столько частей, сколько необходимо, чтобы эти вопросы лучше разрешить;

Свои идеи располагать в надлежащей последо­вательности, начиная с предметов продвигаться медленно, к знанию наиболее сложных;

Совершать везде такие полные расчеты и такие полные обзоры, чтобы быть уверенным в том, что ты ничего не обошел.

Рационализм –философское направление, признающее разум основой познания и поведения людей.

Научная революция XVI–XVII вв. Привела к систематическому применению в естествознании математических методов. И особенности рационализма XVII

У истоков западноевропейского рационализма стоит философия французского ученого и философа Рене Декарта (1596–1650), с которого, согласно Гегелю, начинается обетованная земля философии Нового времени и закладываются основы дедуктивно-рационалистического метода познания.

Декарт был одним из тех мыслителей, кто тесно связал развитие научного мышления с общими философскими принципами. Он подчеркивал, что нужна философия нового типа, которая сможет помочь в практических делах людей. Подлинная философия должна быть единой как в своей теоретической части, так и по методу. Эту свою мысль Декарт поясняет с помощью образа дерева, корни которого составляет философская метафизика, ствол – физика как часть философии, а разветвленную крону – все прикладные науки, включая этику, медицину, прикладную механику и т.д.

Итак, рационализм Декарта основывался на том, что он попытался применить ко всем наукам особенности математического метода познания . Декарт, будучи одним из великих математиков своего времени, выдвинул идею всеобщей математизации научного знания. Французский философ при этом истолковывал математику не просто как науку о величинах, но и как науку о порядке и мере, царящей во всей природе. В математике Декарт более всего ценил то, что с ее помощью можно прийти к твердым, точным, достоверным выводам. К таким выводам, по его мнению, не может привести опыт. Рационалистический метод Декарта и представляет собой, прежде всего, философское осмысление и обобщение тех приемов открытия истин, которыми оперировала математика.

Суть рационалистического метода Декарта сводится к двум основным положениям. Во-первых, в познании следует отталкиваться от некоторых интуитивно ясных, фундаментальных истин, или, иначе говоря, в основе познания, по Декарту, должна лежать интеллектуальная интуиция. Интеллектуальная интуиция, по Декарту, – это твердое и отчетливое представление, рождающееся в здоровом уме посредством воззрения самого ума, настолько простое и отчетливое, что оно не вызывает никакого сомнения. Во-вторых, разум должен из этих интуитивных воззрений на основе дедукции вывести все необходимые следствия. Дедукция – это такое действие ума, посредством которого мы из определенных предпосылок делаем какие-то заключения, получаем определенные следствия.

Дедукция, по Декарту, необходима потому, что вывод не всегда может представляться ясно и отчетливо. К нему можно прийти лишь через постепенное движение мысли при ясном и отчетливом осознании каждого шага. С помощью дедукции мы неизвестное делаем известным.

Декарт сформулировал следующие три основных правила дедуктивного метода:

– во всяком вопросе должно содержаться неизвестное;

– это неизвестное должно иметь какие-то характерные особенности, чтобы исследование было направлено на постижение именно этого неизвестного;

– в вопросе также должно содержаться нечто известное.

После определения основных положений метода перед Декартом встала задача сформировать такой исходный достоверный принцип, из которого, руководствуясь правилами дедукции, можно было бы логически вывести все остальные понятия философской системы, то есть Декарт должен был осуществить интеллектуальную интуицию.Интеллектуальная интуиция у Декарта начинается с сомнения.То есть, в своих поисках Декарт стал на позиции скептицизма. Его скептицизм носит методологический характер, поскольку он нужен Декарту только для того, чтобы прийти к абсолютно достоверной истине. Ход рассуждений Декарта следующий. Любое утверждение о мире, о Боге и человеке может вызвать сомнение. Несомненным является только одно положение: "Cogito ergo sum" – "Мыслю, следовательно, существую", поскольку акт сомнения в нем означает и акт мышления, и акт существования. Именно поэтому положение "мыслю, следовательно, существую" – основа философии Декарта.

Философия Декарта получила название дуалистической , так как в ней постулируется существование двух субстанций – материальной , которая обладает протяженностью, но не обладает мышлением, и духовной , которая обладает мышлением, но не обладает протяженностью. Эти две не зависимые друг от друга субстанции, будучи продуктом деятельности Бога, соединяются в человеке, который может познать и Бога, и созданный им мир.

Декарт утверждает, что разум в состоянии извлечь из себя высшие идеи, необходимые и достаточные для осмысления природы и руководства поведением. Человек усматривает эти идеи "внутренним" зрением (интеллектуальной интуицией) в силу их отчетливости и ясности. Пользуясь далее точно сформулированным методом и правилами логики, он выводит из этих идей все остальное знание.

В работе "Рассуждение о методе" Декарт сформулировал основные правила, которым нужно следовать, чтобы "вести свой разум к познанию истины".

Первое правило: принимать за истинное то, что самоочевидно, воспринимается ясно и отчетливо и не дает повода к сомнению.

Второе правило: каждую сложную вещь следует делить на простые составляющие, доходя до самоочевидных вещей (правило анализа).

Третье правило: в познании надо идти от простых, элементарных вещей к более сложным (правило синтеза).

Четвертое правило требует полноты перечисления, систематизации как познанного, так и познаваемого, чтобы быть уверенным в том, что ничто не пропущено.

Таким образом, интуиция и дедукция из интуитивного постигнутого – это основной путь, ведущий к познанию всего возможного. В своей рационалистической методологии Декарт предлагает идти от наиболее общих философских положений к более частным положениям конкретных наук, а уже от них – к максимально конкретным знаниям. Можно сказать, что рационалистический метод Декарта представляет собой философское осмысление методологии математика.

Декарт затем конкретизирует правила метода. Важнейшая философская конкретизация состоит в том, чтобы понять процедуру выделения простейшего именно в качестве операции интеллекта. "...Вещи должны быть рассматриваемы по отношению к интеллекту иначе, чем по отношению к их реальному существованию". "Вещи", поскольку они рассматриваются по отношению к интеллекту, делятся на "чисто интеллектуальные" (таковы уже рассмотренные сомнение, знание, незнание, воление), "материальные" (это, например, фигура, протяжение, движение), "общие" (таковы существование, длительность и т.д

15. Философия Р.Декарта. Соотношение метафизики, физики и других наук в системе знания Декарта.

Как было сказано выше, физика составляет, по Декарту, ствол древа познания, вырастающий из метафизики. Сохраняя аристотелевский термин «метафизика», Декарт, подобно многим своим современникам, твердо придерживался идеи единства природоведческого знания, подчеркивая тем самым его мировоззренческую функцию. Но принципы аристотелевской физики, оставшиеся в основном незыблемыми и в схоластике, были радикально пересмотрены автором «Рассуждения о методе» и «Первоначал философии». Он отказался и от тех истолкований природы, которые процветали в ренессансной натурфилософии Телезио, Патрици, Бруно, Кампанеллы и других мыслителей.

Декарт полностью исключает все изменчивые чувственные признаки вещей из понятия материи. Единственным неотъемлемым ее признаком - атрибутом - становится протяженность, способность занимать определенное пространство (поэтому и частицы материи отличаются друг от друга лишь той или иной геометрической формой, фигурой).

Отождествление материальности с протяженностью делало картезианскую физику континуалистской. Здесь - один из главных пунктов связи физики Декарта с его метафизикой. Континуалистская позиция исключает возможность совершенной пустоты. О пустоте можно говорить в относительном смысле - как о большей или меньшей заполненности той или иной части пространства, но абсолютная пустота - как полное отсутствие здесь телесности - с позиций картезианской метафизики противоречит самому понятию бытия. В мировоззренческих условиях той эпохи такая позиция углубляла понимание материального единства универсума, ибо, по словам Декарта, «во всем универсуме существует одна и та же материя», и материя неба не отличается от материи земли.

Континуалистская позиция, отождествляющая пространственность с телесностью, материальностью, в своих истоках также восходит к античности, к Пармениду. Однако уже в античности ей была противопоставлена дискретистская позиция, сформулированная Демокритом. Согласно Демокриту, бытие, мыслимое как бесчисленное множество мельчайших неделимых телец, названных атомами, получает возможность движения лишь благодаря наличию небытия - огромной мировой пустоты, космического вместилища атомов и их простых и сложных соединений, вплоть до бесчисленных миров. Борьба сторонников континуалистского и дискретистского истолкования бытия возобновилась в Новое время. В качестве атомистов, рассматривавших свое учение как наиболее адекватную основу рождавшейся экспериментально-математической физики, выступали виднейшие современники Декарта, начиная с его соотечественника Пьера Гассенди. В дальнейшем позицию атомизма в общем принял и Исаак Ньютон.

16. Особенности эмпиристской философии Ф.Бэкона. Теория «идолов». Индукция как метод познания

Родоначальником эмпиризма,всегда имевшего своих приверженцев в Великобритании, был английский философ Фрэнсис Бэкон (1561-1626 г.г.). Как и большинство мыслителей его эпохи, Бэкон, считая задачей философии создание нового метода научного познания, переосмысливает предмет и задачи науки, как её понимали в средние века. Цель научного знания – в принесении пользы человеческому роду; в отличие от тех, кто видел в науке самоцель, Бэкон подчёркивает, что наука служит жизни и практике и только в этом видит своё оправдание. Общая задача всех наук – увеличение власти человека над природой. Те, кто относились к природе созерцательно, склонны были, как правило, видеть в науке путь к более углублённому и просветлённому разумом созерцанию природы. Такой подход был характерен для античности. Бэкон резко осуждает такое понимание науки. Наука – средство, а не цель сама по себе; её миссия в том, чтобы познать причинную связь природных явлений ради использования этих явлений для блага людей. Именно Бэкону принадлежит знаменитый афоризм: «Знание – сила», в котором отразилась практическая направленность новой науки.

Деятельность Бэкона как мыслителя и писателя была направлена на пропаганду науки, на указание её первостепенного значения в жизни человечества, на выработку нового целостного взгляда на её строение, классификацию, цели и методы исследования. Он занимался наукой как её лорд-канцлер, разрабатывая её общую стратегию, определяя генеральные маршруты её продвижения и принципы организации в будущем обществе. Идея Великого Восстановления Наук пронизывала всё его философские сочинения, провозглашались им с многозначительностью, афористической проникновенностью, завидной настойчивостью и энтузиазмом.

Согласно Бэкону, наука, подобно воде, имеет своим источником или небесные сферы, или землю. Она состоит из двух видов знания – один внушается Богом, а другой ведёт своё начало от органов чувств. Наука, таким образом, делится на теологию и философию, т. е. существует истина религиозная и «светская». При этом он требовал строго разграничения сфер компетенции этих видов истины. Вера в Бога достигается путём откровения, тогда как «светская» истина постигается опытом и разумом.

Одна из линий бэконовской критики – это «изобличение доказательств». Он считает, что логика, которая тогда имелась, бесполезна для научных открытий. Слишком живые для того времени примеры бесплодных спекулятивных дедукций схоластики подвигли Бэкона на разработку своего метода. Схоластика была «книжной» наукой, т.е. пользовалась сведениями, полученными из книг. Ощущался недостаток не столько в идеях, сколько в методе для получения новых открытий

Наблюдение – это активная форма деятельности, направленная на определённые объекты и предполагающая формулировку целей и задач. Наблюдение фиксирует то, что предлагает сама природа. Но человек не может ограничиться лишь ролью наблюдателя. Проводя эксперименты, он является и деятельным испытателем. Особую форму познания составляет мысленный эксперимент, который совершается над воображаемой моделью.

Эмпирический уровень познания связан с использованием всевозможных приборов; он предлагает наблюдение, описывание наблюдаемого, ведение протоколов, использование документов.

Компенсацию несостоятельности чувства и исправление его ошибок даёт правильно организованный и специально приспособленный для того или иного исследования опыт или эксперимент. При этом для науки важны не всякие опыты, но, прежде всего поставленные, с целью открытия новых свойств явлений, их причин или, как выражается философ, аксиом, дающие материал для последующего более полного и глубокого теоретического понимания. Формируя теоретические аксиомы и понятия о природных явлениях, не следует полагаться на абстрактные обоснования, какими бы заманчивыми и справедливыми они не казались. Надо расшифровать тайный язык природы из документов самой же природы, из фактов опыта. Самое главное – выработать правильный метод анализа и обобщения опытных данных, позволяющий постепенно проникнуть в сущность исследуемых явлений. По Бэкону, таким методом должна стать индукция, что означает «наведение».

Простейшим случаем индуктивного метода является так называемая полная индукция, когда перечисляются все предметы данного класса и обнаруживается присущее им свойство. Так, может быть сделан индуктивный вывод о том, что в этом букете все розы жёлтые. Однако в науке роль полной индукции не очень велика. Гораздо чаще приходится прибегать к неполной индукции, когда на основе наблюдения конечного числа фактов делается общий вывод относительно всего класса данных явлений. Таким образом, естествознание должно пользоваться двумя средствами: перечислением и исключением, причём главное значение имеют именно исключения. Должны быть собраны по возможности все случаи, где присутствует данное явление, а затем все, где оно отсутствует. Если удастся найти какой-либо признак, который всегда сопровождает данное явление и который отсутствует, когда этого явления нет, то этот признак можно считать «формой», или «природой», данного явления. С помощью своего метода Бэкон, например, нашёл, что «формой» теплоты является движение мельчайших частиц тела.

Суммируя метод «индукции» можно выделить следующие принципы и умения метода:

1. Формировать суждения, опираясь на возможно большее количество фактов;

2. Постепенно восходить от фактов к аксиомам;

Атомистическая теория

Атомистика философов Древней Греции и Рима

Атомистика в период до XVII в

Физика в XVIII и XIX вв

Атомистика конца XIX – начала XX в

Атомистика первой половины XX в

Атомистика в предвоенные годы

Атомистика от послевоенных лет до наших дней

Заключение

Список литературы

Введение.

В конце тысячелетия, когда общество все дальше продвигается по пути техногенного развития, развиваются уже существующие и зарождаются новые производственные отрасли, когда «высокие технологии» вошли практически в каждый современный дом, и многие люди не могут представить жизни без них, мы более отчетливо видим, неограниченность человеческих потребностей. Чем больше человечество создает, тем большем оно потребляет. В том числе такого важного ресурса, как энергии.

Человечество с древних времен искало новые источники энергии. К середине XX столетия были освоены почти все ее природные источник, причем использование их в промышленных масштабах привело к значительному загрязнению отходами производства окружающей среды, особенно в крупных, промышленно развитых городах.

Овладение же ядерной энергией – величайшее, ни с чем не соизмеримое достижение науки и техники XX в. Высвобождение внутриядерной энергии атома, проникновение в природные кладовые тайн вещества, атома превосходит все, что когда-либо ранее удавалось сделать людям. Новый источник энергии огромной мощности сулил богатейшие неоценимые возможности.

Для открытия такого вида энергии, как внутриядерная энергия атома, понадобились долгие годы упорной и самоотверженной работы ученых многих поколений и разных стран. Высвобождение внутриядерной энергии атома потребовало такого уровня развития науки, такого научно-технического оборудования, таких аппаратуры, химических материалов, такой высокой культуры и техники производства, которые смогли сложиться в мире только к середине XX столетия. Однако человечество должно было пройти долгий путь поисков, преодолеть множество препятствий, отвергнуть прежние представления о природе вещей.

Народы Азии и Африки в глубокой древности многое сделали для понимания природных явлений и основных законов природы.

Древние цивилизации Китая, Индии, Вавилона, Египта, Греции заложили фундамент, на котором возникло натурфилософское учение, теоретическое мышление, преобразующее мифологию в эпос и формирующее при этом основные принципы строения и превращения веществ.

Натурфилософские представления, возникшие в древнем мире, в строгом смысле теоретическим мышлением становятся только в Греции.

В Индии атомистическая точка зрения была окрашена спиритуалистической тенденцией одухотворения природы, чего нет в греческой атомистике, поскольку греки развивали материалистический атомизм.

Греческая форма атомизма плодотворно повлияла на развитие науки. Наиболее полно и в ясном изложении дошли до нас изустные и письменные работы древних греков. Древние греки одними из первых стали изучать природу с помощью методов (примитивных в нашем понимании), сформулированных в их научных диспутах, лекциях. В Древней Греции человеческий разум осознавал свою силу, и именно тогда начали появляться систематические научные исследования.

Атомистика философов Древней Греции и Рима.

Характерные черты естествознания того времени – это накопление эмпирического материала, попытки объяснить мир с помощью общих умозрительных гипотез и теорий, в которых предсказывалось, предвосхищалось немало позднейших научных открытий. К примеру, в ту эпоху зародились идеи об атомарном, дискретном строении материи.

Древние греки создали учение о материальной первооснове всех вещей, родоначальниками которого были Фалес Милетский (625-547 до н. э.), Анаксимандр (610-547 до н. э.), Анаксимен (585-525 до н. э.) и другие античные философы. С вершин нынешних знаний многое в их учении кажется наивным. Так, Фалес считал, что основой всего является вода. Анаксимандр усматривал такую основу в некоем «алейроне» – единой, вечной, бескачественной материи, а Анаксимен – в воздухе. Все они представляли первоначально существующего как нечто материальное.

Другой известный древнегреческий философ Гераклит Эфесский (530-470 до н. э.) считал основой основ огонь. Все вещи появляются из огня и снова в него возвращаются. Гераклит утверждал: «Мир единый, не создан никем из богов и никем из людей, а был, есть и будет вечно живым огнем, закономерно воспламеняющимся и закономерно угасающим».

Непосредственными предшественниками атомистов были Эмпедокл (490-430 до н. э.) и Анаксагор (500-428 до н. э.), они выдвинули концепцию элементов, из которых построена Вселенная.

По учению Эмпедокла такими материальными элементами являются огонь, воздух, вода и земля. Они вечны, неразрушимы, хотя и изменяются по числу и величине путем соединения и разделения. Эмпедокл утверждал: «Ничто не может произойти из ничего, и никак не может то, что есть, уничтожиться». Эта мысль Эмпедокла очень близка к знакомому нам закону сохранения вещества, который играет такую фундаментальную роль в современной физике.

Анаксагор считал, что мир состоит из бесконечного множества частиц («семян») веществ и в результате их совокупного движения темный холодный воздух отделяется от светлого горячего эфира, а частицы соединяются с себе подобными. Так образуются материальные тела. Следует обратить внимание на высказывания Анаксагора об эфире. О нем впоследствии через ряд веков ученые будут вести длительные споры, дискуссии.

Ученые Древней Греции за свои смелые идеи и высказывания подвергались наказаниям и преследованиям. Так, Анаксагор был изгнан из Афин за утверждение о том, что вопреки укоренившимся верованиям солнце, луна, звезды являются лишь раскаленными камнями и не имеют божественной природы.

Философы Левкипп и его ученик Демокрит (460-370 до н. э.) стали основателями атомистической теории. По учению Левкиппа материя состоит из отдельных частиц – атомов, находящихся в пустом пространстве, и слишком мелких, чтобы их можно было увидеть в отдельности. Атомы непрерывно движутся в пространстве и воздействуют друг на друга при помощи толчков и давления.



Более полно и стройно атомистическая теория была изложена великим древнегреческим философом-материалистом Демокритом. Хотя им было написано много сочинений по математике, физике, астрономии, медицине, филологии, теории музыки и др., но из многочисленных его сочинений до нас дошло только около 300 фрагментов.

В сочинениях Демокрита много сказано о душе, о человеческих отношениях, о мышлении, об этике и другом, но нас в данном случае интересуют только атомы, только материалистическое воззрение Демокрита.

Приведем некоторые принципиальные положения Демокрита, имеющие отношение к атомистической теории:

1. Ничто не возникает из ничего и ничего не переходит в ничто.

2. Материя состоит из бесконечного числа мельчайших, неделимых частиц – атомов.

3. Атомы вечны и неизменны, а все сложные тела, из них состоящие, изменчивы и преходящи.

4. Не существует ничего, кроме атомов и «чистого» пространства.

5. Атомы вечно движутся. Движение всегда присуще атомам и происходит в силу господства во Вселенной закона универсальной необходимости.

6. Атомы бесконечны по числу и бесконечно разнообразны по форме.

7. Во Вселенной существует бесконечное множество миров. Наш мир один из них.

8. Различие между вещами связано с различием их атомов по числу, величине, форме...

Естественно-научное мировоззрение древних получило свое развитие в трудах знаменитого философа того времени Аристотеля (384-322 до н. э.). В своем творчестве он охватил почти все существовавшие тогда отрасли знаний. Хотя Аристотель критиковал своего учителя философа-идеалиста Платона (427-347 до н. э.), он не был материалистом. Он признавал объективное существование материального мира и его познаваемость, но противопоставлял земной и небесный миры, верил и учил верить в существование божественных сил.

Аристотель считал, что все космические тела состоят из эфира, основного элемента природы, в котором изначально заложено совершенное движение по кругу.

Естественный путь познания природы, учил Аристотель, идет от менее известного и явного для нас к более явному и известному с точки зрения природы вещей. Он рассматривал такие общие понятия, как материя и движение, пространство и время, конечное и бесконечное.

В своей работе «Физика» Аристотель подробно разобрал взгляды своих предшественников – Анаксагора, Левкиппа, Демокрита и др. Он резко критиковал воззрения атомистов, признающих существование бесчисленного множества атомов и миров. По Аристотелю реальный мир конечен, ограничен и построен из «конечного числа» элементов. Понятие пустоты по Аристотелю противоречит действительности. Бесконечное разреженное пустое пространство ведет к бесконечному движению, а это, по мнению Аристотеля, невозможно.

«Канонизированное» учение Аристотеля в средние века надолго задержало развитие атомистических воззрений. И все же учение об атомах, атомистика, пройдя через многие века, выдержало ожесточенную борьбу и дошло до наших дней с более глубокими представлениями об атоме, полученными в результате огромного числа физико-химических экспериментов и исследований по физике атома.

В Древнем Риме поэт и философ Тит Лукреций Кар (99-55 до н. э.) в своей знаменитой поэме «О природе вещей» изложил атомистическое учение греческого философа Эпикура.

Представитель афинской школы Эпикур (341-270 до н. э.), а за ним Лукреций пытались существованием атомов объяснить все естественные и социальные явления. Лукреций рисует модель движения атомов, уподобляя его движению пылинок в солнечном луче в темной комнате. Это по существу одно из первых в истории естественных наук описание молекулярного движения. Созданная древними философами теория атомов совпадает с современными концепциями только в самых общих чертах.

Гениальные догадки философов-материалистов, атомистов Древней Греции и Рима предопределили рождение современной атомистической теории – физики атома, ядерной физики. Мы и сегодня поражаемся изумительным научным догадкам и идеям древних философов, основанным только на чисто умозрительных предположениях почти без всяких экспериментальных подтверждений. Это лишний раз доказывает, что возможностям человеческого разума нет пределов. Экскурсом в древность мы хотели подчеркнуть, что толчком к поискам энергии атомного ядра явился вывод древнегреческих и других древних философов о том, что материя состоит из бесконечного числа мельчайших неделимых частиц – атомов. Наука XIX и XX вв., непрерывно обогащаясь новыми знаниями и идеями, подтверждаемыми научными экспериментами и теориями, продвигалась вперед к познанию атома. Движение к высвобождению внутриядерной энергии сопровождалось длительным, многовековым накоплением знаний во многих отраслях науки.

Атомистика в период до XVII в.

В период средневековья атомистика переживала тяжелые времена. В средние века господствовали схоластика, теология и открытия в науке были спорадическими. И в те времена люди немало сделали, продвигаясь к вершинам познания, но все же такого расцвета, как в Древней Греции и Риме, в странах Западной Европы не наблюдалось.

Средневековый Восток имел более широкие, чем Западная Европа, связи со многими близкими и далекими странами, что способствовало развитию геометрии, алгебры, тригонометрии, медицины и других наук. Так, труды Аристотеля, Птолемея и других пришли в Европу в переводах с арабского. Арабы были как бы связующим звеном между античной и средневековой культурой и наукой.

В 1121 г. в Средней Азии появился курс физики Аль-Хазини, в котором были таблицы удельных весов ряда твердых и жидких тел. Много сделал хорезмский ученый Бируни (973-1048) в опытах по определению удельной массы веществ. В Бухаре жил знаменитый ученый философ Абу Али Ибн Сина (Авиценна). В своих работах он, последователь учения Аристотеля и позднее неоплатонизма, проповедовал вечность материи.

В середине XV в. в экономическом, политическом и культурном развитии Европы начинают отчетливо проступать новые, самобытные черты.

Николай Коперник (1473-1543) сломал общепризнанную до того концепцию мироздания, по которой Земля считалась неподвижной по отношению к Солнцу. Коперник отбросил геоцентрическую систему Птолемея и создал гелиоцентрическую систему мироздания. Возникнув в астрономии, она распространилась и на физику, дав новый импульс развитию атомистических идей. Атомы неощутимы, считал Коперник, несколько атомов не составляют видимого тела. И все же число этих частиц можно так умножить, что их будет достаточно для слияния в заметное тело. Коперник вплотную подошел к материалистической атомистике. В эпоху Возрождения физические наблюдения и опыты еще не носили систематического характера, хотя и были достаточно широко развиты.

Началу использования в физике экспериментального метода положил Галилео Галилей (1564-1642), итальянский физик, механик, астроном, один из основателей естествознания. Его влияние на развитие механики, оптики, астрономии неоценимо. Основа мировоззрения Галилея – признание объективного существования мира, т. е. существования вне и независимо от человеческого сознания. Галилей считал, что мир бесконечен, материя вечна. Материя состоит из абсолютно неделимых атомов, ее движение – единственное, универсальное механическое перемещение. Галилей экспериментально подтвердил ряд гипотез древних философов об атомах. В своих трудах он поддержал гелиоцентрическую систему мироздания, за что жестоко пострадал от католической инквизиции.

Научная деятельность Галилея, его огромной важности открытия, научная смелость имели решающее значение для утверждения гелиоцентрической системы мира.

Научные открытия и наследие великого английского ученого Исаака Ньютона (1643-1727) относятся к трем основным областям: математике, механике и астрономии. Ньютон вошел в историю как подлинный корифей науки, его основные труды и сейчас не утратили своего значения, хотя время и вносит коррективы в некоторые их разделы. Первый ощутимый удар по учению Ньютона нанесла теория электромагнитного поля Дж. Максвелла (1831-1879), основателя классической электродинамики и статистической физики. Утверждение современной физики было подготовлено открытием рентгеновских лучей, радиоактивности элементов и их взаимных превращений, теорией относительности Эйнштейна, квантовой теорией и др. И все же это ни в коей мере не умаляет огромного значения для науки классических работ И. Ньютона.

Физика в XVIII и XIX вв.

В XVIII и XIX вв. классическая физика вступила в период, когда многие ее положения стали подвергаться серьезному переосмыслению. В 1746 г. М. В. Ломоносов (1711-1765) писал: «Мы живем в такое время, в которое науки после своего возобновления в Европе возрастают и к совершенству приходят».

Михаил Ломоносов – первый русский профессор химии, автор первого русского курса физической химии. В области физики он оставил нам ряд важных работ по кинетической теории газов, теории теплоты, оптике и др. Рассматривая основу химических явлений» Ломоносов на базе атомно-молекулярных представлений развивал учение о «нечувствительных» (т. е. неощутимых) частицах материи – «корпускулах» (молекулах). Он полагал, что всем свойствам вещества можно дать исчерпывающее объяснение с помощью представления о различных чисто механических движениях корпускул, состоящих из атомов. Он утверждал, что химическая теория должна строиться на законах механики и математики.

В химических работах Ломоносова важную роль играет атомистика, она – краеугольный камень его научного мышления. Ломоносов дал свою формулировку принципа сохранения материи и движения: «...все перемены, в натуре случающиеся, такого суть состояния, что сколько чего у одного тела отнимается, столько присовокупится к другому... Сей всеобщий естественный закон простирается и в самые правила движения, ибо тело, движущее своею силою другое, столько же оныя у себя теряет, сколько сообщает другому, которое от него движение получает...»

Введение понятия «корпускулы» наряду с понятием «элемента» (атома) означало признание того, что определенная совокупность атомов создает новое единство, действующее как целое, некий новый качественный «узел». Это была перспективная идея, ибо только через естествознание человечество могло прийти к идее развития, образования сложных форм вещества из соединения простых.

Самый характер соединения Ломоносов мыслил не как простое сложение составных элементов. Он подчеркивал, что природа новых образований зависит не только от того, какие элементы входят в эти образования (корпускулы), но и от того, каков характер связи между элементами. Ломоносов, приняв гипотезу о вращательном движении молекул-корпускул, вывел ряд следствий:

1. Частицы-корпускулы имеют шарообразную форму.

2. При более быстром вращении частиц теплота увеличивается, а при более медленном – уменьшается.

3. Горячее тело должно охлаждаться при соприкосновении с холодным и, наоборот, холодные тела должны нагреваться вследствие ускорения движения при соприкосновении.

Ломоносов критиковал теорию теплорода (или флогистона – не имеющей массы невесомой жидкости), которую он считал возвратом к представлениям древних об элементарном огне.

По мысли Ломоносова, упругость газов (воздуха) является свойством коллектива атомов. Сами атомы «должны быть телесными и иметь продолжение», форма их «весьма близка» к шарообразной.

Воззрения на теплоту как форму движения мельчайших «нечувствительных» частиц высказывались еще в XVI в. Бэконом, Декартом, Ньютоном, Гуком. Эту же идею разрабатывал и М. Ломоносов, однако он оставался почти в одиночестве, так как многие его современники были сторонниками концепции «теплорода». И только позднее Дэви и затем Юнг и Мор доказали, что теплота является формой движения и что следует рассматривать теплоту как колебательное движение частиц материи. Последующими работами Майера, Джоуля, Гельмгольца был установлен закон сохранения и превращения энергии.

Атомно-молекулярное учение о материи лежало в основе многих физических и химических исследований на всем протяжении истории науки. Со времени Бойля оно стало служить химии и было положено Ломоносовым в основу учения о химических превращениях.

Итальянский ученый Э. Торричелли (1608-1647) доказал существование атмосферного давления. Французский математик и физик Б. Паскаль (1623-1662) открыл закон: давление, производимое на поверхность жидкости внешними силами, передается жидкостью одинаково во всех направлениях.

Вместе с Г. Галилеем и С. Стевиным Блез Паскаль считается основоположником классической гидростатики. Он указал на общность основных законов равновесия жидкостей и газов. В 1703 г. немецкий ученый Г. Шталь (1659-1734) сформулировал теорию, точнее, гипотезу о природе горючести в веществах.

Английский ученый Р. Бойль (1627-1691) ввел в химию атомистику, это дало основание Ф. Энгельсу сказать о работах Бойля: «Бойль делает из химии науку». Голландец X. Гюйгенс (1629-1695) вошел в историю науки как создатель подтвержденного экспериментами первого научного труда по волновой оптике – «Трактата о свете»; он был первым физиком, исследовавшим поляризацию света.

Наука о тепле потребовала точных температурных измерений. Появились термометры с постоянными точками отсчета: Фаренгейта, Делиля, Ломоносова, Реомюра, Цельсия.

А. Лавуазье (1743-1794) разработал в 1780 г. кислородную теорию, выявил сложный состав воздуха. Объяснил горение, тем самым доказав несостоятельность теории флогистона, который и М. В. Ломоносов исключал из числа химических элементов.

Работавший в Петербургской академии наук Л. Эйлер (1707-1783) установил закон сохранения момента количества движения, развил волновую теорию света, определил уравнения вращательного движения твердого тела.

Американский ученый Б. Франклин (1706-1790) разработал теорию положительного и отрицательного электричества, доказал электрическую природу молнии.

Английский физик Г. Кавендиш (1731-1810) и независимо от него французский физик Ш. Кулон (1736-1806) открыли закон электрических взаимодействий.

Итальянский ученый А. Вольта (1745-1827) сконструировал первый источник постоянного тока («вольтов столб») и установил связь между количеством электричества, емкостью и напряжением. Одним из первых трудов, посвященных описанию нового источника постоянного тока, была выпущенная в 1803 г. книга русского ученого В. Петрова «Сообщение о гальвано-вольтовых опытах».

Начало практическим исследованиям электромагнетизма положили работы датчанина X. Эрстеда, француза А. Ампера, русских ученых Д. М. Велланского и Э. Ленца, англичанина М. Фарадея, немецкого физика Г. Ома и др.

Крупнейший немецкий ученый Г. Гельмгольц (1821-1894) распространил закон сохранения энергии с механических и тепловых процессов на явления электрические, магнитные и оптические. Им был установлен ряд законов, касающихся газов, заложены основы кинетической теории газов, термодинамики, открыты инфракрасные и ультрафиолетовые лучи.

М. Фарадей (1791-1867) - английский физик, химик и физико-химик, основоположник учения об электромагнитном поле, электромагнитной индукции – открыл количественные законы электролиза.

В 1803 г. английский физик и химик Дж. Дальтон (1766-1844) опубликовал основополагающие работы по химической атомистике, вывел закон кратных отношений. Дальтон ввел в науку, в частности в химию, понятие атомного веса (атомной массы), приняв за единицу вес водорода. По Дальтону, атом - мельчайшая частица химического элемента, отличающаяся от атомов других элементов своей массой. Он открыл явление диффузии газов (кстати, явление, которым примерно через сто лет воспользовались для получения высокообогащенного урана при создании ядерных бомб).

В XVII–XIX вв. атомы считались абсолютно неделимыми и неизменными частицами материи. Атомистика в значительной мере носила все еще абстрактный характер. В XIX в. большой вклад в разработку научной базы атомистики внесли такие ученые, как Максвелл, Клаузиус, Больцман, Гиббс и др.

В недрах химической науки родилась гипотеза о строении всех атомов из атомов водорода. Именно химико-физики ближе всех подошли к пониманию физического смысла идей атомистики. Они постепенно приближались к выяснению природы атомизма, а последующие поколения ученых – к пониманию действительного строения атома и его ядра.

Предыстория познания атомного ядра начинается в 1869 г. с гениального открытия Д. И. Менделеевым периодического закона химических элементов. Д. И. Менделеев (1834-1907) был первым, кто попытался классифицировать все элементы, и именно ему мы обязаны нынешним видом Периодической системы. Пытаясь охватить все элементы, он вынужден был заключить, что некоторые места Периодической системы элементов (теперь носящей его имя) не заполнены. Исходя из положения в таблице и свойств химических элементов, соседствующих с ними в периодах и группах, он предсказал химические свойства трех отсутствовавших тогда элементов. Примерно через 10 лет эти элементы (галлий, скандий и германий) были открыты и заняли свои места в таблице Менделеева.

Периодический закон стал как бы последней инстанцией, выносящей окончательный приговор соотношению между химическим эквивалентом и атомной массой. Так, первоначально бериллий считался трехвалентным с атомной массой 13,5, а индий – двухвалентным с атомной массой 75,2, а благодаря их положению в таблице были проведены тщательные проверки и уточненные атомные массы стали равными 9 и 112,8 соответственно. Урану сначала приписывали атомную массу, равную 60, затем исправили на 120, однако периодический закон показал, что значение атомной массы урана 240.

Периодическая система элементов стала в конце прошлого века памятником упорству, труду и аккуратности в экспериментальной работе. В Периодической системе Менделеева нашли отражение сложность структуры атома и значимость ранее неизвестных основных характеристик атомного ядра – его массового числа А и порядкового номера 2. В течение всей последующей истории ядерной физики периодический закон Менделеева, обогащенный новыми открытиями, служил путеводной нитью исследований. Именно с конца XIX в. подход к изучению атома стал действительно научным, имеющим экспериментальную основу.

Никто из естествоиспытателей той эпохи не проник так глубоко в понимание взаимосвязи между атомами и молекулами, как Д. И. Менделеев. В 1894 г., когда еще не была ясна модель не только атома, но и молекулы, Менделеев выдвинул гипотезу о строении атома и молекулы. Положив в основу признание существования атомов и молекул, связи между материей и движением, он высказал мысль, что атомы можно представить себе как бесконечно малую Солнечную систему, находящуюся в непрерывном движении. Неизменность атомов, подчеркивал Менделеев, не дает исследователю никакого основания считать их «неподвижными» и «недеятельными в их внутренней сущности», атомы подвижны.

Менделеев показал, что развитие науки невозможно, если отказаться от признания объективной реальности атомов. Он подчеркивал глубокую внутреннюю связь между атомистическими воззрениями древних (Демокрита) и материалистической философией. Развитие классического учения Демокрита составило, по Менделееву, основу материализма.

Спустя почти 30 лет после появления Периодической системы Менделеева начала свое победное шествие новая наука – ядерная физика. А примерно 60 лет спустя американские ученые Г. Сиборг и другие, синтезировавшие в 1955 г. элемент 101, дали ему название «менделевий», как они выразились «...в знак признания приоритета великого русского химика Дмитрия Менделеева, который первым использовал Периодическую систему элементов для предсказания химических свойств тогда еще не открытых элементов. Этот принцип явился ключевым при открытии почти всех трансурановых элементов».

В 1964 г. имя Д. И. Менделеева занесено на Доску почета науки Бриджпортского университета (штат Коннектикут, США) в числе имен величайших ученых мира.

Д. И. Менделеев при жизни был известен во многих странах, получил свыше 150 дипломов и почетных званий от русских и зарубежных академий, ученых обществ и учебных заведений.

Атомистика конца XIX – начала XX в.

Гениальные догадки древних ученых о том. что все вещества состоят из атомов, к концу XIX в. полностью подтвердились. К тому времени также было установлено, что атом как единица любого вещества неделим (само слово «атом» по-гречески означает «неделимый»).

С открытия А. Беккерелем в 1896 г. явления радиоактивности берет свое начало новый раздел физики – ядерная физика. С этого момента, собственно, и начинается непосредственно история исследования атомной энергии.

Немецкий физик В. Рентген (1845-1923) открыл в 1895 г. излучение, названное им Х-лучами (впоследствии они получили название рентгеновских лучей, или рентгеновского излучения). Он создал первые рентгеновские трубки и сделал анализ некоторых свойств открытого им излучения. Это открытие и последующие исследования сыграли важную роль в изучении строения атома, структуры вещества.

Рентгеновское излучение нашло широкое применение в медицине, технике, в различных областях науки.

24 февраля 1896 г. французский физик А. Беккерель (1852-1908) на заседании Парижской Академии наук докладывал: «Фотографическую пластинку Люмьера обертывают двумя листами очень плотной черной бумаги... На верхний лист бумаги кладут какое-либо люминесцирующее вещество (бисульфат урана и калия), а затем все это выставляется на несколько часов на солнце. При проявлении фотопластинки на черном фоне появляется силуэт люминесцирующего вещества». Позднее А. Беккерель убедился в том, что нет необходимости выставлять фотопластинку на солнце, и более того, если урановое соединение в течение многих месяцев находится в темноте, то процесс проявления все равно происходит. При этом у физиков возник вопрос, откуда же черпается энергия, хотя и очень небольшая, но непрерывно выделяющаяся из урановых соединений в виде ионизирующего излучения?

Открытие радиоактивности урана Беккерелем невозможно переоценить, хотя важность этого открытия поняли не сразу. В тот период физики были полностью поглощены работами по изучению свойств рентгеновского излучения, и потому высказывались предположения, что явление радиоактивности сродни рентгеновскому излучению. Но рентгеновское излучение возникает при электрическом разряде, происходящем в сильно разреженном газе, независимо от природы газа, независимо от вещества, из которого сделаны электроды. Радиоактивность же солей урана, обнаруженная Беккерелем, не требует электрического напряжения - ни большого, ни малого. Не нужен и разреженный газ. Рентгеновское излучение возникает только в присутствии электрического разряда, излучение, открытое Беккерелем, – всегда, непрерывно, и его излучает только уран.

Но только ли уран? Этот вопрос и был поставлен Марией Склодовской-Кюри. Таким образом, был открыт новый этап исследований, который провели супруги Кюри.

Мария Кюри воспользовалась наблюдением Беккереля, что под влиянием излучения, испускаемого ураном, воздух становится проводником электричества. Это упростило поиск веществ, которые испускают так называемые беккерелевы лучи. М. Кюри натолкнулась на удивительный факт: урановая смолка – руда, из которой добывают металлический уран, испускает беккерелевы лучи с гораздо большей интенсивностью, чем чистый уран. В результате супруги Кюри открыли два новых радиоактивных вещества, которые они назвали полонием и радием.

Всем веществам, которые способны излучать лучи Беккереля, Мария Кюри дала общее название – радиоактивные (что означает способные испускать лучи).

С помощью метода сцинтилляций, камеры Вильсона, ионизационной камеры и другой аппаратуры Марии и Пьеру Кюри, Резерфорду, Содди, Вилларду и другим ученым либо независимо, либо совместно удалось обнаружить и изучить три типа лучей Беккереля, испускаемых ураном. Каждый из них получил свое название: альфа, бета, гамма. Альфа-лучами назвали те лучи, которые магнитным полем отклоняются слабо и представляют собой поток положительно заряженных частиц. Бета-лучами назвали лучи, которые магнитным полем отклоняются сравнительно сильно и представляют собой поток электронов, т. е. отрицательно заряженных частиц. Гамма-лучами назвали лучи, которые магнитным полем не отклоняются вовсе.

Успехи физики XIX в. позволили существенно продвинуться в создании целостной системы, объединяющей механику Ньютона и электродинамику Максвелла и Лоренца. Теория электромагнитного поля, созданная Максвеллом, вошла в историю науки наряду с такими фундаментальными обобщениями, как ньютонова механика, квантовая механика. Процесс коренного преобразования физики подготавливался научными открытиями конца XIX в., сделанными В. Рентгеном (рентгеновские лучи, 1895 г.), А. Беккерелем (естественная радиоактивность урана, 1896 г.), Дж. Томсоном (открытие электрона, 1897 г., первая модель строения атома), М. Склодовской-Кюри (радиоактивные элементы – полоний и радий, 1898 г.), М. Планком (теория квантов, 1900 г.) и др. Выполненные к началу XX в. работы химиков и физиков, теоретиков и экспериментаторов, вплотную приблизили науку об атоме к проблеме высвобождения ядерной энергии атома.

Атомистика первой половины XX в.

Исследования по радиоактивнос­ти стали проводиться в России поч­ти сразу после открытия Беккереля. Ученые И. И. Боргман (1900 г.) и А. П. Афанасьев исследовали свойст­ва радиоактивного излучения, в част­ности лечебные свойства целебных грязей. В. К. Лебединский (1902 г.) и И. А. Леонтьев (1903 г.) изучали влия­ние радиоактивности на искровые разряды и определили одними из пер­вых природу гамма-лучей. Н. А. Ор­лов исследовал действие радия на ме­таллы, парафин, легкоплавкие орга­нические вещества. Кроме Петербург­ского университета такого рода рабо­ты велись в Медицинской академии, в университетах Новороссийска, Харькова и других городов. Важные результаты в этой области были по­лучены В. А. Бородовским, Г. Н. Антоновым, Л. С. Коловрат-Червинским.

В. А. Бородовский, закончив фи­зико-математический факультет Юрьевского университета в 1902 г., работал с 1908 г. в Англии в лабора­тории Кенсингтона, а затем в лабо­ратории Кавендиша (Кембридж). Им написана работа «Поглощение бета-лучей радия», он одним из первых установил наличие радия в ферганс­кой радиоактивной руде. Именно из нее в 1921 г. В. Г. Хлопин получил отечественный препарат радия.

Г. Н. Антонов работал несколь­ко лет в лаборатории Резерфорда. В 1911 г. он открыл уран V. Среди ученых были сомнения. Тогда Резерфорд по рекомендации Содой пере­дал Антонову 60 г ураннитрата, с по­мощью которого в России Антонов доказал свою правоту. «Уран превра­щается одновременно в два продук­та, - докладывал Антонов на заседа­нии Российского физико-химичес­кого общества (РФХО), – в уран Х и в меньшем количестве в уран V».

Результаты работ Л. С. Коловрат-Червинского по радиоактивности имели большое научное значение. С 1906 г. он в течение пяти лет работал в лаборатории М. Кюри, провел эк­сперименты по исследованию бета-лучей и составил «Таблицы констант радиоактивных веществ». Его рабо­ты нашли отражение в монографии Марии Кюри и в книге Резерфорда «Радиоактивные вещества и их излу­чение». Коловрат-Червинским было написано около 250 научных трудов. Он был одним из первых крупных ученых дореволюционной России, который после Октябрьской револю­ции развернул в нашей стране рабо­ты по радиологии. Смерть в 1921 г. в возрасте 49 лет прервала его работу в Государственном рентгенологичес­ком и радиологическом институте.

В 1910 г. в Одессе была создана радиологическая лаборатория, в Том­ске спустя некоторое время была ор­ганизована аналогичная лаборатория.

После 1917 г. был создан Ра­диевый институт под руководством В. И. Вернадского, заместителем ко­торого стал В. Г. Хлопин. В послере­волюционные годы было создано радиевое производство на базе оте­чественных месторождений.

Без участия в этих работах русских ученых-радиологов всех направлений не было бы базы для создания оте­чественной радиевой промышленнос­ти и развития советской радиологии, а в будущем советской атомной на­уки и промышленности.

История высвобождения и исполь­зования внутриядерной энергии ато­ма не могла идти самостоятельным, каким-то отдельным путем, это ис­тория развития многих наук, прежде всего физики и химии.

В открытии и высвобождении внутриядерной энергии атома при­няли участие ученые многих стран мира, разных национальностей и раз­нообразных профессий. Этот невиданный ранее источник энергии, скрывающийся в недрах атома, при­надлежит всему человечеству.

В 1900 г. немецкий физик-теоре­тик М. Планк (1858-1947) ввел но­вую универсальную постоянную, на­званную им элементарным квантом действия. Введя понятие кванта энер­гии, он сформулировал квантовую гипотезу, положив тем самым начало квантовой теории, или, коротко, атомизации действия. В первые годы эта теория не имела «шумного успеха», пока ее не применил А. Эйнштейн и не показал ее Незаменимость для понимания явлений, происходящих в микромире.

В 1910-1914 гг. А. Эйнштейн (1879-1955) создал общую теорию относительности, в которой сформу­лировал новый подход к проблеме пространства и времени. Принцип относительности Эйнштейна – за­кон такой же абсолютной силы и значения, как и закон сохранения энергии. Позже Эйнштейн был вынужден эмигрировать из Германии и отказаться от немецкого гражданства. Он уехал в 1932 г. из гитлеровской Гер­мании, стал эмигрантом, переселил­ся в США и приступил к работе в Принстоне в Институте высших ис­следований. Принимал участие в ан­тивоенном движении, выступал про­тив фашизма.

Но фашизм наступал. Гитлеровс­кая Германия в марте 1938 г. захвати­ла Австрию, в марте 1939 г. аннекси­ровала Чехословакию.

Великобритания и Франция шли на уступки территориальным притя­заниям гитлеровского правительст­ва, надеясь этим удовлетворить по­ползновения гитлеровской Германии и направить ее военную силу против СССР.

Общественность всех стран чув­ствовала, что мировая война стано­вится неизбежной. Ученые США, в частности, понимали, к каким тяже­лым последствиям она может привести, поскольку гитлеровская Гер­мания обладала очень сильным науч­ным и техническим потенциалом. Немецкие ученые вплотную подошли к возможности применения внут­риядерной энергии атомов урана в военных целях. Именно в Германии впервые было осуществлено деление ядер урана. Вот почему ученые – физики-эмигранты, и среди них Сцилард и Теллер, ­- убеждали Альберта Эйнштейна обратиться к президенту Соединенных Штатов Ф. Рузвельту с предложением развернуть в США работы по созданию ядерного ору­жия, ядерной бомбы, с тем чтобы опередить Германию.

После длительных размышлений и внутренней борьбы Эйнштейн пред­ложил начать работы по созданию ядерной бомбы, хотя по натуре своей он был убежденным пацифистом.

2 августа 1939 г. Альберт Эйнштейн направил письмо президенту США Франклину Делано Рузвельту.

Ф. Д. Рузвельту

Президенту Соединенных Штатов

Белый дом, Вашингтон

Сэр!

Некоторые недавние работы Фер­ми и Сциларда, прочитанные мной в рукописи, заставляют меня ожидать, что уран может быть в ближайшем будущем превращен в новый и важ­ный источник энергии. Некоторые аспекты возникшей ситуации, по-видимому, требуют бдительности и, при необходимости, быстрых дейст­вий со стороны правительства. Я счи­таю своим долгом обратить Ваше внимание на следующие факты и рекомендации.

В течение последних четырех ме­сяцев благодаря работам Жолио во Франции, а также Ферми и Сциларда в Америке стало реальным получе­ние ядерной реакции при больших количествах урана, вследствие чего можно освободить значительную энергию и получить большие коли­чества радиоактивных элементов. Можно считать почти достоверным, что это будет достигнуто в ближай­шем будущем. В свою очередь это может способствовать созданию бомб, возможно, исключительно мощных бомб нового типа. Одна бом­ба этого типа, доставленная на ко­рабле и взорванная в порту, пол­ностью разрушит весь порт с приле­гающей к нему территорией. Такие бомбы могут оказаться слишком тя­желыми для воздушной перевозки.

Соединенные Штаты обладают малым количеством урана. Ценные месторождения его находятся в Ка­наде и Чехословакии. Серьезные ис­точники – в Бельгийском Конго. Ввиду этого было бы желательным установление постоянного контакта между правительством и группой физиков, исследующих в Америке проблемы цепной реакции.

Для такого контакта Вы могли бы уполномочить лицо, пользую­щееся Вашим доверием, неофици­ально выполнять следующие обя­занности:

а) поддерживать связь с прави­тельственными учреждениями, информировать их об исследованиях и давать им необходимые рекомен­дации, в особенности в части обес­печения Соединенных Штатов ура­ном;

б) содействовать ускорению эк­спериментальных работ, ведущихся сейчас за счет внутренних средств университетских лабораторий, путем привлечения частных лиц и промыш­ленных лабораторий, обладающих нужным оборудованием.

Мне известно, что Германия в настоящее время прекратила прода­жу урана из захваченных чехословац­ких рудников.

Необходимость таких шагов, быть может, станет понятна, если учесть, что сын заместителя германского министра иностранных дел фон Вайцзеккер прикомандирован к Фи­зическому институту Общества кай­зера Вильгельма в Берлине, где в настоящее время повторяются аме­риканские работы по урану.

Искренне Ваш Альберт Эйнштейн

Олд Гров Ред, Нассау-Пойнт-Пеконик, Лонг Айленд

В интервью японской газете в 1951 г. А. Эйнштейн так объяснил свою роль в создании ядерной бом­бы:

«Мое участие в создании ядерной бомбы состояло в одном-единственном поступке, я подписал письмо президенту Рузвельту, в котором под­черкивал необходимость проведения в крупных масштабах экспериментов по изучению возможности создания ядерной бомбы. Я полностью отда­вал себе отчет в том, какую опасность для человечества означает успех это­го мероприятия. Однако вероятность того, что над той же самой пробле­мой с надеждой на успех могла рабо­тать и нацистская Германия, заста­вила меня решиться на этот шаг. Я не имел другого выбора, хотя я всегда был убежденным пацифис­том...»

Письмо А. Эйнштейна не сразу привело к действиям администрации США.

Рузвельт распорядился о созда­нии Консультативного комитета по урану в тот же день, когда ответил на письмо Эйнштейна, но решение о развертывании крупномасштабной программы создания ядерного ору­жия было принято только в октябре 1941 г., после получения сведений о работе англичан в этом направле­нии.

Нападение японских военно-воз­душных сил на Пирл-Харбор 8 де­кабря 1941 г. привело к тому, что США объявили войну Японии, Гер­мании и Италии. После вступления США в войну программа создания ядерной бомбы перешла из стадии научных исследований в стадию прак­тических разработок.

В середине 1942 г. администрация США поняла, что «...несколько ки­лограммов урана-235 или плутония-239 представляют собой взрывчатку, эквивалентную по своей мощи не­скольким тысячам тонн обычных взрывчатых веществ» (из доклада В. Буша 17 июня 1942 г. президенту США Ф. Д. Рузвельту).

В результате указаний президента США 13 августа 1942 г. был создан специальный округ инженерных войск под названием Манхэттенский в Лос-Аламосе, штат Нью-Мексико, в пус­тыне, недалеко от Санта-Фэ. Руково­дителем Манхэттенского проекта был назначен бригадный генерал инже­нерных войск Л. Гровс, а научным руководителем – физик-теоретик Юлиус Роберт Оппенгеймер.

С этого времени началась работа огромного масштаба, поглотившая колоссальные средства, материаль­ные ресурсы, человеческие усилия и приведшая к созданию ядерной бом­бы невиданной мощи в июле 1945 г.

Но вернемся к истокам освоения нового источника энергии.

В 1911 г. Э. Резерфорд (1871-1937) сделал в Манчестере доклад «Рассея­ние альфа- и бета-лучей и строение атома». X. Гейгер и Э. Марсден про­вели экспериментальную провер­ку идеи Резерфорда о строении ато­ма. Они подтвердили существование ядра атома как устойчивой его части, несущей в себе почти всю массу ато­ма и обладающей положительным зарядом.

В 1913 г. Н. Бор (1885-1962) опуб­ликовал серию статей «О строении атомов и молекул», открывших путь к атомной квантовой механике. При­мерно в это же время начались, как известно, первые трудности электро­магнитной концепции микромира. Уже квантовая механика несла в себе совершенно новые взгляды на мик­ропроцессы. Так, в основу многих уравнений квантовой механики вхо­дило значение массы микрочастиц, а открытие спина (от английского spin – вращение), т. е. собственного мо­мента количества движения, у элек­трона С. Гаудсмитом и Дж. Уленбеком (1925 г.) и выдвижение принци­па запрета В. Паули (1925г.) противо­речили существовавшим представле­ниям в физике. Но наиболее важной оказалась гипотеза нейтрино, выдвинутая в 1931 г. Паули с целью объяс­нения кажущихся аномалий в энер­гетическом распределении электро­нов, вылетающих при бета-распаде. Нейтрино было четвертой элемен­тарной частицей (после электрона, фотона и протона), с которой столкнулась физика того времени.

В. Паули предположил, что при бета-распаде из ядра вылетает не одна частица – электрон (как предполага­лось ранее), а две – электрон и час­тица, названная Паули нейтрино.

На основе опытов Дж. Аллена, выполненных 10 лет спустя, в 1942 г. было установлено, что нейтрино име­ет массу покоя, значительно мень­шую (1/30) массы электрона, и полностью лишено электрического за­ряда и магнитного момента.

Если природа трех ранее откры­тых элементарных частиц (электро­на, фотона и протона) могла считать­ся электромагнитной, то в отноше­нии нейтрино сказать это было почти невозможно. Однако до 1932 г. элек­тромагнитная теория господствова­ла. Решающим шагом в признании новой физической идеи стало откры­тие Чедвиком (1932 г.) пятой частицы - нейтрона.

История открытия нейтрона до­статочно поучительна. Еще в 1920 г. Резерфорд выдвинул предположение о существовании нейтральной час­тицы. В 1930 г. В. Боте и Г. Бекер сообщили о проникающем излуче­нии, появляющемся при бомбарди­ровке альфа-частицами ядер легких элементов. Особенно значительный эффект получался при бомбардиров­ке бериллия. В качестве детектора излучения был использован счетчик Гейгера. Боте и Бекер предположи­ли, что наблюдаемое излучение пред­ставляет собой поток гамма-квантов высокой энергии.

Почти одновременно с этими не­мецкими учеными Ирен и Фреде­рик Жолио-Кюри повторили их опыты, используя источник поло­ния большой активности. Детек­тором служила ионизационная ка­мера. Используя разные экраны, они убедились в «сверхпроникающей» способности исследуемого излучения. Помещая на пути пото­ка частиц экраны из водородсодержащих веществ (парафина в том числе), они ожидали, что поток уменьшится, но он даже увели­чился. Ученые пришли к выводу, что столкнулись с каким-то новым явлением. Продолжая опыты, они убедились, что излучение Боте-Бекера способно выбивать ядра из ато­мов водорода, гелия и азота. Они установили, что выбитые частицы приобретали значительную энергию и что в пространство излучаются элек­троны высоких энергий. Жолио-Кюри опубликовали результаты сво­их опытов и выяснилось, что энер­гия излучения Боте-Бекера гораздо больше энергии гамма-излучения.

В феврале 1932 г. ученик Резерфорда Дж. Чедвик после ознакомле­ния с результатами опытов Жолио-Кюри измерил с помощью электрон­ного оборудования, пропорционального усилителя, отдельные импуль­сы, возникающие при прохождении ядер и электронов через счетчик, и разделил их. Оборудование, которым пользовался Чедвик, было более со­вершенным, и результаты его опытов показали, что первоначальное пред­положение Боте и Бекера, а также И. и Ф. Жолио-Кюри об электро­магнитной природе сверхпроникающего излучения неверно.

Чедвик установил, что это излуче­ние состоит из электрически ней­тральных частиц с массой, пример­но равной массе ядра протона. Это были нейтроны.

Открытие нейтрона является ре­зультатом работы ученых трех стран: Германии, Франции и Англии. Исто­рия открытия нейтрона лишний раз иллюстрирует, что путь к высотам науки изобилует сложностями и весь­ма тернист.

Открытие нейтрона указало на су­ществование в природе нового типа сил – ядерных. Значение этого откры­тия для развития ядерной физики необычайно велико, оно позволило пре­одолеть трудности, стоявшие на пути познания строения ядра атома. Нейт­рон – это «золотой ключик», открыв­ший двери в ядерную энергетику.

Открытие нейтрона стимулирова­ло появление фундаментальных направлений науки, таких как физика атомного ядра, физика элементар­ных частиц. Впоследствии самостоя­тельной областью физики стала ней­тронная физика.

При этом следует отметить, что открытие нейтрона не было случайным, на его существование указы­вало много сопутствующих фактов, и потому его обнаружение – зако­номерное следствие знаменитых опытов Резерфорда 1919 г. по ис­кусственному расщеплению ядер альфа-частиц, работ Боте и Бекера, И. и Ф. Жолио-Кюри. Но обнаружил нейтрон Дхеймс Чедвик. Свое от­крытие Чедвик опубликовал в статье «Возможное существование нейтро­на», которую он направил в печать 17 февраля 1932 г.

Этот день по праву считается днем открытия нейтрона.

О гениальном английском физике Эрнесте Резерфорде (1871-1937) говорилось уже не раз, но в связи с открытием нейтрона Дж. Чедвиком, его учеником и со­трудником Кавендишской лаборато­рии, следует сказать о нем и о его вкладе в физическую науку.

Э. Резерфорд заложил основы уче­ния о радиоактивности и строении атома. Он первым осуществил искусственное превращение элементов, установил, что корпуску­лярное излучение состоит из альфа- и бета-лучей.

В 1903 г. совместно с Ф. Содди Резерфорд объяснил радиоактивность как спонтанный распад атома вещес­тва, при котором он меняет свое место в периодической системе эле­ментов. Резерфорд доказал, что в центре атомов существует массивное положительно заряженное ядро, он же предложил планетарную модель атома, в центре которого находится положительно заряженное ядро, а вокруг него по орбитам движутся отрицательно заряженные электро­ны. (Здесь хочется на­помнить о гениальных догадках древ­негреческих философов, которые указывали, что атомы непрерывно движутся.) За 12 лет до открытия нейтрона Резерфорд высказал предположение о существовании нейтральной час­тицы - нейтрона, и в 1932 г. оно подтвердилось.

В Кавендишской лаборатории Резерфорда работали и стажирова­лись молодые ученые из разных стран и в том числе и русские уче­ные П. Л. Капица, К. И. Синельников, А. И. Лейпунский, Ю. Б. Харитон.

Итак, 1932 год стал годом великих открытий в ядерной физике. В этом году возникла физика нового типа, имеющая дело со строением атомов и исследующая неизвестные до того времени силы и взаимодействия частиц в ядре атома. Три открытия 1932 г. считаются особенно важными для дальнейшего развития атомной и ядерной физики:

1. открытие нейтрона;

2. обнаружение позитрона К. Андерсоном в космических лучах. Это была первая открытая учеными ан­тичастица;

3. открытие американским хими­ком Г. Юри вместе с Ф. Брикведце и Г. Мерфи дейтерия – тяжелого водо­рода, стабильного изотопа водорода с массовым числом 2. При создании первой американской бомбы Юри руководил производством тяжелой воды (с дейтерием) и участвовал в работах по разделению изотопов ура­на.

Хотя мы и называем 1932 год годом великих открытий, но роль этих замечательных открытий в раз­витии науки была определена го­раздо позднее. Тогда за ними лишь следовали события, которые слу­жили как бы продолжением этих открытий.

Первым наиболее выдающимся открытием, совершенным после того, как Чедвик доказал существование нейтрона, было открытие Ирен и Фредериком Жолио-Кюри в 1934 г. искусственной радиоактивности. В этом могли видеть некоторую закономерность. Ведь Жолио-Кюри сде­лали важный шаг к открытию ней­трона, и естественно, что они про­должали опыты по исследованию нейтрона. Для этого у них в лабора­тории било все приспособлено. Они имели источники альфа-излучения и опыт работы в молодой тогда области физики элементарных частиц. Их работы показали, что при облучении альфа-частицами легких элементов некоторые из них испускали наряду с нейтронами и позитроны.

И. и Ф. Жолио-Кюри предпол­ожили, что натолкнулись на какое-то совершенно новое явление, нигде ранее не упоминавшееся, а именно – позитронное излучение. В своих опы­тах они бомбардировали алюминий альфа-частицами большой скорости, а затем постепенно удаляли источ­ник альфа-частиц, но алюминиевый листок продолжал излучать положи­тельные электроны, т. е. позитроны, в течение достаточно продолжитель­ного времени. Так была открыта ис­кусственная радиоактивность (тер­мин родился в Париже, где почти за 40 лет до этого появился термин «радиоактивность»).

Искусственную радиоактивность открыли в 1933 г., а в 1935 г. Ф. Жо­лио-Кюри в своем Нобелевском до­кладе сказал: «Мы видим, что не­сколько сотен различного рода ато­мов, составляющих нашу планету, не являются раз и навсегда созданными и существуют не вечно. Мы воспри­нимаем это именно так потому, что некоторые существуют еще и сейчас. Другие же, менее устойчивые атомы уже исчезли. Из этих последних некоторые, вероятно, будут вновь получены в лабораториях. До настоя­щего времени удалось получить лишь элементы с небольшой продолжи­тельностью жизни - от доли секунды до нескольких месяцев. Чтобы полу­чить достойные упоминания количества элементов со значительно большой продолжительностью жиз­ни, необходимо располагать очень мощным источником излучений».

Ныне в США, России, Европе и других странах появились очень мощ­ные источники излучений в виде ус­корителей протонов и электронов на гигантские энергии.

Дж. Кокрофт (1897-1967), ан­глийский физик, в 1932 г. вместе с Э. Уолтоном создал высоковольтный генератор, работающий по принципу умножения напряжения. Ускоряя ионы до больших скоростей, они сумели в первой половине 1932 г. ускоренными протонами осуществить ядерную реакцию, облучая литиевую мишень, и расщепили ядра атомов лития. Здесь уместно добавить, что в Советском Союзе, в Харьковском физико-техническом институте, ученые-физики К. Д. Синельников, А. К. Вальтер, А. И. Лейпунский и Г. Д. Латышев повторили к ноябрю 1932 г. эксперимент на каскадном генераторе, созданном харьковчана­ми, и расщепили ядро лития. Это сообщение произвело на Западе фу­рор, так как никто не мог ожидать, что в далеком Харькове есть такие кадры физиков и возможности со­здать каскадный генератор в корот­кие сроки.

Вскоре после открытия нейтрона возникли гипотезы о строении ядра. В дискуссии включились физики-тео­ретики, и в их числе Д. Д. Иваненко. В 1932 г. он высказал гипотезу о про­тон-нейтронном составе ядер. Эта модель не сразу была принята, и, в частности, теоретик В. Гейзенберг провел большую работу, участвуя в дискуссиях по структуре атомного ядра: он развил идею обменного характера взаимодействий нуклонов в ядре.

Итальянский физик Э. Ферми (1901-1954), в 1938 г. эмигрировав­ший из фашистской Италии в США, внес большой вклад в развитие со­временной теоретической и экспериментальной физики. Он заложил основы нейтронной физики, впер­вые наблюдал искусственную радио­активность, вызванную бомбардиров­ками нейтронами ряда элементов, в том числе урана, создал теорию этого явления. Позднее, а именно в декаб­ре 1942 г., Ферми первому в мире удалось осуществить управляемую цепную реакцию в построенном им в США первом в мире ядерном реак­торе.

В 1934 г. Э. Ферми пытался с помощью бомбардировки нейтрона­ми элемента урана получить заурановые элементы, не существующие в природе. В результате бомбардиров­ки наблюдалось образование ряда радиоактивных веществ. Химичес­кие исследования показали, что эти вещества являлись изотопами из­вестных элементов периодической системы. Наблюдаемое им впервые в истории физики деление ядер урана не было правильно понято. Ферми предположил, что ядро урана, захватив нейтрон, становится бета-радиоактивным и после испускания бета-частицы превращается в ядро нового трансуранового элемента.

Эта работа Ферми и посвященные тем же проблемам работы его друга Э. Сегре привлекли широкое внима­ние ученых к возможности деления ядер урана. В конце 1934 г. извест­ный физико-химик Ида Ноддак вы­ступила в техническом журнале с общим тезисом о том, что с научной точки зрения недопустимо говорить о новых элементах, не установив, что при облучении урана нейтронами не возникают какие-либо известные химические элементы: «Допустимо, что при бомбардировке тяжелых ядер нейтронами эти ядра распадаются на несколько больших осколков, кото­рые являются изотопами известных элементов, хотя и не соседних с об­лученными».

«Читая сегодня эту фразу, мы ви­дим в ней ясное предсказание воз­можности деления ядер» (это выска­зывание принадлежит В. Герлаху, известному немецкому физику). Но в 1934 г. на эту мысль Иды Ноддак не обратили внимания, ее пророчество повисло в воздухе, и только после опубликования работ по делению ядер О. Ганом и Ф. Штрассманном в 1939 г. И. Ноддак попыталась при­своить себе честь открытия деления ядер урана. Но ученые с этим не согласились, так как Ган и Штрассманн осуществили деление ядер урана медленными нейтронами.

Атомистика в предвоенные годы.

Этот период был полон ожиданий новых открытий в ядерной физике.

В начале нашего столетия очень немногие верили в решение «атом­ной проблемы». В первые годы XX в. в университетских учебниках физи­ки было написано «атомная гипоте­за», даже не теория. Более того, лю­дей, веривших в нее, высмеивали, их исследования не поддерживали. Слишком уж многое было неясно. И только ученые – физики и химики, дерзкая мысль которых проникла в строение атома, понимали, какие глубины и тайны таит в себе природа микромира.

Виднейшие ученые-физики, очень многое сделавшие для проникнове­ния внутрь атома и его ядра, хорошо осознавали, какая бездна трудностей ждет их на пути овладения тайнами строения ядра. В 1933 г. в своем письме Британской ассоциации Э. Резерфорд заявил: «...эти превращения атомов представляют исключитель­ный интерес для ученых, но мы не сможем управлять ядерной энергией в такой степени, чтобы это имело какую-нибудь коммерческую цен­ность. И я считаю, что вряд ли мы когда-нибудь будем способны это сде­лать. Наш интерес к этой проблеме – чисто научный».

Резерфорд интуитивно понимал, каких огромных усилий, в том числе и материальных, может потребовать управление ядерной энергией. Ему было ясно, что только военные на­добности могут заставить государст­во освоить ядерную энергию, а это­го, хотелось бы верить, опасался ве­ликий ученый. Последние фразы есть, конечно, домысел авторов. К сожалению, на алтарь войны часто приносились в жертву гениальные научные открытия, величайшие на­учные достижения.

В 1938 г. И. Кюри вместе с П. Савичем установила, что при по­падании нейтронов в ядро урана пос­леднее разделяется и получается элемент, обладающий свойствами лантана, а не трансуранового эле­мента, как предполагал в 1934г. Э. Ферми, бомбардируя уран. По существу Ферми и И. Кюри были в своих опытах очень близки к откры­тию деления ядер урана, к сенсации в физике, к установлению факта, что существуют ядерные реакции, при которых ядро «раскалывается» на два приблизительно равных по массе ос­колка. Кстати, А. фон Гроссе пытал­ся доказать, что в опыте Ферми из урана образуется изотоп предшес­твующего атома – протактиния. Од­нако Э. Ферми образование протак­тиния решительно отвергал и был прав.

Физики-ядерщики, теоретики и экспериментаторы, в 1937-1938 гг. были в некоем ажиотаже, в состоя­нии ожидания скорой сенсации в ядерной физике. Кстати, в эти годы и в жизни народов происходили круп­ные события. Гитлеровская Германия набирала силу. В марте 1938 г. Германия захватила всю Австрию. На Мюнхенской конференции в сен­тябре 1938 г. главами Великобри­тании (Н. Чемберлен), Франции (Э. Даладье), Италии (Б. Муссолини) и Германии (А. Гитлер) было подпи­сано соглашение о передаче Герма­нии Судетской области Чехослова­кии (со всеми сооружениями, укреп­лениями, фабриками, заводами, за­пасами сырья, путями сообщения и пр.). Это соглашение можно рас­сматривать как «умиротворение» Гер­мании за счет стран Центральной и Юго-Восточной Европы.

Многое ученые, подвергшись го­нениям со стороны гитлеровского режима, были вынуждены эмигриро­вать из Германии и искать убежища во Франции, Англии, США и других странах. Это были годы настойчивых попыток овладеть ядерной энергией; сознавая перспективность этого но­вого источника энергии, ученые упор­но продвигались к цели. И успех был достигнут в конце декабря 1938 г.

На какой-то стадии в дискуссии по опытам Э. Ферми и И. Жолио-Кюри включились О. Ган, Л. Мейтнер и Ф. Штрассманн из Германии. У них был большой опыт в области радиохимии, и поэтому они посчита­ли необходимым разобраться в таком важном и сложном вопросе, как со­здание новых химических элемен­тов. Новые элементы Ферми напом­нили им об уране-2, открытом О. Гамом в 1923 г. и оказавшемся изотопом протактиния. Это исклю­чало протактиниевую гипотезу Гроссе.

Началась погоня за трансурано­выми элементами, которые, как было доказано впоследствии, не могли ими оказаться.

С большим трудом и постепенно Ган, Мейтнер и Штрассманн уточ­няли и расширяли представления о последствиях облучения урана и то­рия нейтронами. (В Германии, в Далемском институте, источники ней­тронов обладали слабой интенсив­ностью, и потому, следя за ходом опытов, Ган, Мейтнер и Штрассманн тратили много времени, сменяя друг друга каждые восемь часов.) Работа И. Кюри и Савича в Париже подтвердила, что при воздействии мед­ленных нейтронов на уран возникает не протактиний, а элемент, напоми­нающий лантан, т. е. элемент с по­рядковым номером, гораздо мень­шим номера урана. Но это утвержде­ние не было ими распространено в среде физиков.

Работы И. Кюри и Савича послу­жили поводом для Гана и Штрассманна (Л. Мейтнер вынуждена была покинуть Берлин в июле 1938 г.) еще раз исследовать химическую природу бета-излучателей» возникающих в уран-нейтронных реакциях. Они вы­явили, что в осадок выпал и барий. Развитие этих событий запечатлено в обширной переписке между тремя главными участниками – О. Ганом, Л. Мейтнер и О. Фришем (племянником Мейтнер). Эти частные пись­ма запечатлели историю открытия деления ядер урана медленными нейтронами. Вот одно из писем Гана в Стокгольм, Л. Мейтнер: «Вечер, понедельник, 19 декабря 1938г. Весь день я и неутомимый Штрассманн при поддержке ассистенток Либер и Боне работали с продуктами урана. Сейчас 11 часов вечера, в 12.00 вер­нется Штрассманн, и я смогу пойти домой...» После рассказа о ходе экс­перимента он пишет: «Через пару дней я вновь напишу тебе о результа­тах. Сердечный привет твоему Отто». Л. Мейтнер ответила 21 декабря: «Ваши результаты ошеломляют. Про­цесс, идущий на медленных нейтро­нах и приводящий к барию...»

21 декабря О. Ган пишет Л. Мей­тнер: «Активированный барий не превращается в излучающий лан­тан...»

22 декабря 1938 г. в редакцию журнала «Naturwissenschaft» поступи­ла работа О. Гана и Ф. Штрассманиа «О доказательстве существования и свойствах щелочноземельных метал­лов, возникающих при облучении урана нейтронами». В статье было написано об образовании ядер ба­рия.

Несколько позже Л. Мейтнер и О. Фриш показали, что ядра урана-235 делятся под действием медлен­ных нейтронов на два осколка. Они ввели термин «деление ядер».

Деление тяжелого ядра (урана) сопровождается выделением энергии осколков порядка 200 МэВ. В после­дующем было установлено, что при бомбардировке урана медленными нейтронами число нейтронов на один акт деления составляет 2,5. Для более тяжелых элементов число нейтронов несколько увеличивается, именно это обстоятельство позволяет осущест­влять цепную ядерную реакцию.

28 января 1939 г. в «Naturwissenschaft» была направлена вторая, бо­лее обстоятельная статья О. Гана и Ф. Штрассманна «Доказательство возникновения активных изотопов бария из урана и тория при облуче­нии их нейтронами». Сразу же после-публикации в январе 1939 г. статьи Гана и Штрассманна о делении ура­на в ряде лабораторий опыты с рас­щеплением ядер были повторены и дали подтверждение результатов ра­бот О. Гана и Ф. Штрассманна.

В Принстоне (США) Н. Бор и А. Уилер приступили к разработке теории деления ядра (как капли). В их статье была ссылка на работы Я. И. Френкеля (из ЛФТИ), который независимо от Бора и Уилера пос­троил теорию деления. Капельной моделью ядра занимался и извест­ный ленинградский физик-теоретик (эмигрировавший из СССР) Г. Гамов.

Ныне, когда прошло уже много лет с того времени, как был открыт процесс деления ядер атомов, можно с уверенностью сказать, что это было одно из тех редких открытий, кото­рое оказало значительное влияние на жизнь всего человечества. Качественно процесс деления был объяснен учеными сразу трех стран: Бором (Дания), Уилером (США) и Френкелем (СССР). Деление ядер происходит при определенном соот­ношении кудоновских сил отталки­вания, которые стремятся разорвать тяжелое ядро (урана), и сил поверх­ностного натяжения, которые это­му препятствуют. Основной величи­ной в этой модели являлся так назы­ваемый порог деления, который, как предполагалось, определялся только этими противоборствующими сила­ми.

В советских научных центрах, и прежде всего связанных с ядерной физикой, интерес к радиохимичес­ким исследованиям ядра атома вспых­нул с новой силой после сообщений об открытии деления ядер урана в Германии в начале 1939 г. Уже первая информация о теории процесса поз­воляла сделать фантастические вы­воды: новая форма ядерной реакции высвобождает огромное количество энергии.

Внеочередное заседание так на­зываемого «ядерного семинара», регулярно проводимого в ЛФТИ И. В. Курчатовым, привлекло внима­ние не только сотрудников Физтеха, но и ученых из других организаций, в том числе из Института химичес­кой физики: Н. Н. Семенова, Ю. Б. Харитона, Я. Б. Зельдовича и др.

На семинаре было высказано пред­положение, что при бомбардиров­ке урана нейтронами возникают не только крупные осколки, но и сво­бодные нейтроны. Ю. Б. Харитон и Я. Б. Зельдович развили мысль, что свободные нейтроны могут быть захвачены соседними урановыми ядрами и реакция станет нарастать лавиной, т.е. по принципу цеп­ной реакции, а это взрыв! В том же 1939 г. Ю. Б. Харитон и Я. Б. Зельдович показали возможность осу­ществления цепной реакции деле­ния ядер урана-235.

Впечатляющие исследования, свя­занные с проблемой атома, проводи­лись в РИАН. РИАН ставил задачей изучение явлений природной и ис­кусственной радиоактивности. Запу­щенный в те далекие годы первый в СССР и Европе циклотрон на энергию 4 МэВ позволил получить ре­зультаты по взаимодействию ней­тронов почти со всеми элементами периодической системы. С помощью циклотрона были сформированы нейтронные пучки высокой интен­сивности. Среди продуктов деления В. Хлопиным, М. Пасвик и Н. Во­лковым весной 1939 г. были обна­ружены радиоактивные изотопы брома, теллура и сурьмы.

И. В. Курчатов, работая над про­блемой ядра атома, отлично созна­вал, что сооружаемый в РИАН цик­лотрон является идеальной установ­кой для получения интенсивных по­токов нейтронов. Вложив много тру­да и изобретательности, Курчатов ускорил ввод этой установки и вмес­те с Мысовским, создателем циклот­рона, получил много интересных результатов. Но И. В. Курчатов хоро­шо понимал, что нужен циклотрон на еще большие энергии, и получил согласие на сооружение к 1 января 1942 г. циклотрона на 12 МэВ в специально построенном для него новом здании ЛФТИ. Однако его запуску помешала война, и он был введен в эксплуатацию уже после войны, в 1949 г.

В ЛФТИ были получены сообще­ния, что сотрудник Калифорнийско­го университета У. Либби пытался наблюдать вылет вторичных ней­тронов в процессе спонтанного деления ядер урана, но потерпел неуда­чу. Чувствительность его метода была такой, что он мог бы обнару­жить спонтанное деление, если бы период полураспада не превосходил 10 14 лет. Поручив решить эту задачу своим ученикам Г. Н. Флерову и К. А. Петржаку, Курчатов возглавил работу в целом. После длительных и упорных исследований он понял, что надо избавиться от окружающего фона путем защиты эксперименталь­ной установки, камеры, толстым сло­ем вещества. Самое простое, что при­шло ему в голову, – это погрузиться с аппаратурой на подводной лодке в глубины моря. Но оказалось, что вблизи Ленинграда Балтийское море мелкое – 20-30 м. Такого слоя во­ды было явно недостаточно для эф­фективной защиты от проникающе­го космического излучения. Тогда Курчатов договорился с руководст­вом Московского метрополитена о том, чтобы ему разрешили провести этот эксперимент на одной из глубокозаложенных шахт станции мет­ро. Получив согласие, Курчатов от­командировал своих сотрудников Г. Н. Флерова и К. А. Петржака в Москву.

Аппаратуру они разместили на станции метро «Динамо». По ночам, когда движение поездов метро пре­кращалось, на глубине 60 м Флеров и Петржак проводили свои измерения. Эффект получился постоянный, без помех. Через месяц работы Курчатов пришел к заключению, что вся сово­купность экспериментальных данных служит бесспорным доказательством существования нового вида радиоактивности – спонтанного, самопро­извольного деления урана. Курчатов потребовал, чтобы Флеров и Петржак подготовили сообщение об этом открытии для опубликования в печа­ти. Короткое сообщение А. Ф. Иоф­фе направил по трансатлантическо­му кабелю – каблограммой – в аме­риканский журнал «Physical Review», и в июне 1940 г. она была опублико­вана.

По мнению Флерова и Петржака, под этим сообщением должна была стоять также и подпись Курчатова, но он отказался его подписывать, так как, по его выражению, не хотел «затенять» своих учеников.

Дни и месяцы предвоенного 1940 г. неуклонно вели ученых к высвобождению внутриядерной энергии, скрытой в недрах атомов. Приближе­ние этого волнующего события чув­ствовал каждый, кто стремился уско­рить его осуществление.

В печати, не только научной, все чаще появлялись сообщения о ско­ром появлении нового, невиданного никогда ранее источника энергии. 26 июня 1940 г. в газете «Известия» сообщалось в одной из статей: «В последнее время советскими и зарубежными физиками установлено, что деление ядер урана происходит толь­ко под действием медленных нейтро­нов. Это дает возможность регулиро­вать процесс деления атомов урана и тем самым использовать огромное количество внутриатомной энергии.

По приблизительным подсчетам одна весовая единица урана может дать в два с лишним миллиона раз больше энергии, чем такое же коли­чество угля. Уран, таким образом, становится драгоценным источником энергии...» А через полгода, 31 декабря 1940г., в той же газете «Известия» в статье «Уран-235» говорилось о новом ис­точнике энергии, в миллионы раз превосходящем все до того сущест­вовавшие. В этой статье рассказыва­лось: «При бомбардировке нейтро­нами ядер металла урана происходит необыкновенное явление: из каждо­го разбитого ядра вылетают новые нейтроны. Они попадают, в свою очередь, в ядра урана, расщепляют их и вновь рождают нейтроны. Про­цесс идет как лавина. Он идет сам... Тот уран... это разновидность урана, один из его изотопов. Секрет заклю­чается в том, что он почти ничем не отличается от вообще урана...

Выделить уран-235 из урана вооб­ще – вот цель, вот задача.

Физика стоит перед открытиями, значение которых неизмеримо».

Приведенные краткие выдержки из газетных статей и высказывания советских ученых подтверждают, что овладение ядерной энергией, ее высвобождение из недр атомов стано­вилось реальным уже к середине 1941 г. Но все упиралось в отсутствие отечественного урана и в необходи­мость огромных материальных за­трат для создания мощной, очень крупной и специализированной ядер­ной индустрии.

В конце 1940 г. И. В. Курчатов представил в Урановую комиссию доклад, в котором указывал на хозяй­ственное и военное значение про­блемы получения ядерной энергии при делении урана.

То, как оживленно в среде ученых проходили обсуждения проблем ядер­ной физики, хорошо показывает про­ведение регулярных конференций по ядерной физике, по атомному ядру с участием ведущих иностранных уче­ных. Первая такая конференция про­шла в сентябре 1933 г., вторая – в сентябре 1936 г., третья – в октябре 1938 г., четвертая – в 1939 г. и пятая была намечена на октябрь 1941 г., но помешала война.

Советские ученые были близки к освоению ядерной энергии, но война и первые месяцы пора­жений надолго остановили работы, связанные с освоением ядерной энер­гии в СССР. Практически все работы этого направления были заморожены, так как все силы наших физических, химических и других институтов были нацелены на нужды войны. Все силы народа были брошены на фронт, «все для фронта, все для победы».

Тем временем, в США, Англии и Германии работы, связанные с освоением ядерной энергии развивались в полную силу. Этому способствовала, как основная причина, ее военная привлекательность. Перспектива раньше всех создать оружие, устрашающее своей разрушительной мощью, побуждала правительства этих стран финансировать разработки в сфере ядерной физики.

Результатом этих усилий явился первый исследовательский атомный реактор, пущенный 2 декабря 1942 года в Соединенных Штатах под руководством итальянского ученого Энрико Ферми. Дальнейшие разработки в этом направлении привели к беспримерной по своей разрушительной силе атомной бомбардировке японских городов Хиросима и Нагасаки, ознаменовавшей начало ядерной эры.

Атомистика от послевоенных лет до наших дней.

Испытания, связанные с расщеплением атомного ядра, в Советском Союзе возобновились лишь в середине 1943 года, но уже в декабре 1946 г. в Москве на территории Инсти­тута атомной энергии (носящего сейчас имя его основателя И. В. Курча­това) был введен в действие первый в Европе и Азии исследовательский ядерный реактор. В августе 1949 г. было проведено испытание атомной бомбы, а в августе 1953 г. - водородной. Советские ученые овладели тай­нами ядерной энергии, лишив США монополии на ядерное оружие.

Но создавая ядерное оружие, советские специалисты думали и об использовании ядерной энергии в интересах народного хозяйства, промышлен­ности, науки, медицины и других областей человеческой деятельности. В декабре 1946 г. в СССР был пущен первый в Европе ядерный реактор. В июне 1954 г. вошла в строй первая в мире атомная электростанция в подмосковном городе Обнинске. В 1959 г. спущен на воду первый в мире атомный ледокол «Ленин». Таким образом, ядерная физика создала научную основу атомной тех­нике, а атомная техника в свою очередь явилась фундаментом ядерной энергетики, которая, опираясь на ядерную науку и технику, стала в на­стоящее время развитой отраслью электроэнергетического производства.

Уже в 1986 г. выработка электроэнергии на АЭС мира достигала 15% от общего количества энергии, производимой всеми электростанциями, а в ряде стран ее доля составила 30% (Швеция, Швейцария), 50% (Бельгия) и даже 65-70% (Франция). Достаточно успешно атомная энергетика развивалась и на территории бывшего Советского Союза: строились АЭС, наращивалась минерально-сырьевая урановая база.

Происшедшая в 1986 г. Чернобыльская авария помимо колоссального общего ущерба людям, народному хозяйству страны нанесла тяжелый удар по ядерной энергетике в целом и прежде всего по развивающейся в бывшем СССР, где стало формироваться общественное мнение о необходимости полного запрещения строительства новых и ликвидации действующих АЭС. Однако всесторонний анализ перспектив развития мировой энергетики однозначно показал, что реальных альтернатив у других видов энергии по отношению к атомной энергетике в обозримом будущем, по существу, нет – при обязательном условии, что проектирование и строительство АЭС осуществляется с многократным запасом прочности, с обеспечением их полной безопасности. Именно по такому пути развивается в настоящее время атомная энергетика в высокоразвитых странах – во Франции, Бельгии, в сейсмоактивной Японии, США и других. Уже в 1990 г. мощность АЭС во всем мире достигла около 327 млн кВт и возрастает, по данным МАГАТЭ, к 2005 г. до 447 млн кВт.

Заключение.

Итак, к концу XX века человечество в полной мере освоило использование запасов энергии атомных ядер урана-235. Этого вида топлива, сжигаемого в атомных котлах, не так уж много в земной коре. Если всю энергетику земного шара перевести на него, то при современных темпах роста потребления энергии урана, хватит лишь на 50–60 лет.

Безусловно существует возможность использования, в целях получения энергии, природного газа, угля и нефти. Но такой путь развития энергетики неприемлем. Причин множество: это и экологическая проблема – заражение окружающей среды токсичными химическими продуктами сгорания органического топлива, создание парникового эффекта, и постоянной возрастающей ценой на органическое топливо. В случае с нефтью и газом, можно сказать, что их использование в качестве источника энергии по меньшей мере неразумно.

Здесь возникает проблема: из какого материала и какими методами, в будущем человечество должно получать энергию? На сегодня существует несколько основных концепций решения проблемы:

1. Расширение сети станций на урановом топливе.

2. Переход к использованию в качестве ядерного топлива тория-232, который в природе более распространен, нежели уран.

3. Переход к атомным реакторам на быстрых нейтронах, воспроизводящих ядерное топливо, которое могло бы обеспечить воспроизводство ядерного топлива более, чем на 3000 лет, в настоящее время является сложной инженерной проблемой и несет в себе огромную экологическую опасность, в связи с чем испытывает серьезное противодействие со стороны мировой экологической общественности, по причине чего имеет низкую перспективу на внедрение

4. Освоение термоядерных реакций. В термоядерных реакциях происходит выделение энергии в процессе превращения водорода в гелий. Быстро протекающие термоядерные реакции осуществляются в водородных бомбах. Сейчас перед наукой стоит задача осуществления термоядерной реакции не в виде взрыва, а в форме управляемого, спокойно протекающего процесса. Решение этой задачи даст возможность использовать громадные запасы водорода на Земле в качестве ядерного топлива.

В настоящее время наиболее разумным представляется следующая схема развития энергетики: расширение сети урановых и уран-ториевых атомных станций в период решения проблемы управления термоядерной реакцией.

Список литературы:

1. В. Н. Михайлов, «Создание первой советской ядерной бомбы», Москва, ЭНЕРГОАТОМИЗДАТ, 1995

2. А. М. Петросянц, «Ядерная энергетика»,

3. В. Г. Язиков, Н. Н. Петров, «Урановые месторождения Казахстана», Алматы, «Гылым», 1995