Что такое эффект доплера

Эффект Доплера – это физическое явление, состоящее в изменении частоты волн в зависимости от движения источника этих волн относительно наблюдателя. При приближении источника частота излучаемых им волн увеличивается, а длина уменьшается. При удалении источника волн от наблюдателя их частота уменьшается, а длина волны увеличивается.

Например, в случае звуковых волн при удалении источника высота звука понизится, а при приближении тон звука станет более высоким. Так, по изменению высоты тона можно определить, приближается или удаляется поезд, автомобиль со звуковым спецсигналом и т.д. Электромагнитные волны также демонстрируют эффект Доплера. Наблюдатель в случае удаления источника заметит смещение спектра в «красную» сторону, т.е. в сторону более длинных волн, а при приближении – в «фиолетовую», т.е. в сторону более коротких волн.

Эффект Доплера оказался крайне полезным открытием. Благодаря ему было обнаружено расширение Вселенной (спектры галактик смещены в красную сторону, следовательно, они от нас удаляются); разработан метод диагностики сердечно-сосудистой системы через определение скорости кровотока; созданы различные радары, в том числе и те, которые используются ГИБДД.

Самый популярный пример распространения эффекта Доплера: машина с сиреной. Когда она едет к тебе или от тебя, ты слышишь один звук, а когда проезжает мимо, то совершенной другой - более низкий. Эффект Доплера связан не только со звуковыми волнами, но и любыми другими. С помощью эффекта Доплера можно определить скорость чего-либо, будь это машина или небесные тела, при условии, что мы знаем параметры (частоту и длину волны). Все, что связано с телефонными сетями, вай-фаем, охранными сигнализациями - везде можно наблюдать эффект Доплера.

Или возьмем светофор - у него есть красный, желтый и зеленый цвета. В зависимости от того, с какой скоростью мы движемся, эти цвета могут меняться, но не между собой, а смещаться в сторону фиолетового: желтый будет уходить в зеленый, а зеленый в синий.

Ну почему же? Если мы движемся от источника света и смотрим назад (или светофор уезжает от нас), то цвета сдвинутся в сторону красного.

И, наверное, стоит уточнить, что скорость, на которой красный можно перепутать с зеленым, намного выше той, с которой можно ездить по дорогам.

Ответить

Прокомментировать

Суть эффекта Допплера заключается в том, что если источник звука приближается к наблюдателю или отдаляется от него, то частота звука, испускаемого им, с точки зрения наблюдателя изменяется. Так, например, изменяется звук двигателя машины, которая проезжает мимо вас. Он выше пока она приближается к вам и резко становится ниже, когда она пролетает мимо вас и начинает удаляться. Изменение частоты тем сильнее, чем выше скорость движения источника звука.

К слову, этот эффект справедлив не только для звука, но и, скажем, для света. Просто для звука он нагляднее - его можно наблюдать на относительно небольших скоростях. У видимого света настолько большая частота, что небольшие изменения за счёт эффекта Допплера невооружённым глазом незаметны. Однако, в некоторых случая эффект Допплера следует учитывать даже в радиосвязи.

Если не углубляться в строгие определения и попытаться объяснить эффект, что называется, на пальцах, то всё достаточно просто. Звук (как и свет или радиосигнал) - это волна. Для наглядности, давайте будем считать, что частота принимаемой волны зависит от того, как часто мы принимаем "гребни" схематической волны (). Если источник и приёмник будут неподвижны (да, относительно друг друга), то мы будем принимать "гребни" с той же частотой, с какой их излучает приёмник. Если же источник и приёмник начнут сближаться, то мы начнём принимать тем чаще, чем выше скорость сближения - скорости будут складываться. В итоге частота звука на приёмнике будет выше. Если же источник начнёт удаляться от приёмника, то каждому следующему "гребню" понадобится чуть больше времени, чтобы достигнуть приёмника - мы начнём принимать "гребни" чуть реже, чем их излучает источник. Частота звука на приёмнике будет ниже.

Это объяснение в известной степени схематично, но общий принцип оно отражает.

Если коротко - изменение наблюдаемой частоты и длины волны в том случае, если источник и приемник движутся относительно друг друга. Связан с конечностью скорости распространения волн. Если источник с приемником сближаются - частота растет (пик волны регистрируется чаще); удаляются друг от друга - частота падает (пик волны регистрируется реже). Оычная иллюстрация эффекта - сирена спецслужб. Если скорая к вам подъезжает - сирена визжит, отъезжает - басовито гудит. Отдельный случай - распространение электромагнитной волны в ваккууме - там добавяется еще релятивистская составляющая и допплеровский эффект проявляется и в том случае, когда приемник и источник неподвижны относительно друг друга, что объясняется свойствами времени.

Попробую ответить наиболее простым способом:
Представте, что вы стоите на месте и каждую секунду запускаете волну (например голосом), которая радиально распространяется от вас со скоростью 100 м/с.

Эффектом Доплера называют изменение длины и частоты регистрируемых приемником волн, которое вызывает движение их источника либо самого приемника. Данное название эффект получил в честь Кристиана Доплера, который открыл его. Доказать гипотезу экспериментальным методом позднее удалось голландскому ученому Кристиану Баллоту, посадившему в открытый железнодорожный вагон духовой оркестр и собравшему на платформе группу из самых одаренных музыкантов. Когда вагон с оркестром проезжал рядом с платформой, музыканты тянули какую-либо ноту, а слушатели записывали на бумаге то, что им слышалось. Как и ожидалось, восприятие высоты звука напрямую зависело от , как и гласил закон Доплера.

Действие эффекта Доплера

Объясняется данное явление довольно просто. На слышимый тон звука влияет частота звуковой волны, которая доходит до уха. При движении источника звука навстречу человеку каждая последующая волна приходит все быстрее. Ухо воспринимает волны как более частые, из-за чего звук кажется более высоким. Но в процессе удаления источника звука последующие волны испускаются чуть дальше и доходят до уха позднее предыдущих, из-за чего звук ощущается ниже.

Такое явление происходит не только во время движения источника звука, но и человека. «Набегая» на волну, человек пересекает ее гребни чаще, воспринимая звук как более высокий, а уходя от волны – наоборот. Таким образом, эффект Доплера не зависит ни от движется источника звука, ни его приемника по отдельности. Соответствующее звуковое восприятие возникает в процессе их движения относительно друг друга, причем данный эффект характерен не только для звуковых волн, но и световых, а также радиоактивного излучения.

Применение эффекта Доплера

Эффект Доплера не перестает играть чрезвычайно важную роль в самых разных областях науки и жизнедеятельности человека. С помощью него астрономам удалось выяснить, что вселенная постоянно расширяется, а звезды «убегают» друг от друга. Также эффект Доплера позволяет определять параметры движения космических аппаратов и планет. Он же составляет основу действия радаров, которые используют сотрудники ГИБДД для автомобиля. Этим же эффектом пользуются медицинские специалисты, которые при помощи ультразвукового прибора отличают вены от артерий во время проведения инъекций.

Регистрируемых приёмником, вызванное движением их источника и/или движением приёмника. Его легко наблюдать на практике, когда мимо наблюдателя проезжает машина с включённой сиреной. Предположим, сирена выдаёт какой-то определённый тон, и он не меняется. Когда машина не движется относительно наблюдателя, тогда он слышит именно тот тон, который издаёт сирена. Но если машина будет приближаться к наблюдателю, то частота звуковых волн увеличится (а длина уменьшится), и наблюдатель услышит более высокий тон, чем на самом деле издаёт сирена. В тот момент, когда машина будет проезжать мимо наблюдателя, тот услышит тот самый тон, который на самом деле издаёт сирена. А когда машина проедет дальше и будет уже отдаляться, а не приближаться, то наблюдатель услышит более низкий тон, вследствие меньшей частоты (и, соответственно, большей длины) звуковых волн.

Для волн, распространяющихся в какой-либо среде (например, звука) нужно принимать во внимание движение как источника так и приёмника волн относительно этой среды. Для электромагнитных волн (например, света), для распространения которых не нужна никакая среда, имеет значение только относительное движение источника и приёмника.

Также важен случай, когда в среде движется заряженная частица с релятивистской скоростью. В этом случае в лабораторной системе регистрируется черенковское излучение , имеющее непосредственное отношение к эффекту Доплера.

где f 0 - частота, с которой источник испускает волны, c - скорость распространения волн в среде, v - скорость источника волн относительно среды (положительная, если источник приближается к приёмнику и отрицательная, если удаляется).

Частота, регистрируемая неподвижным приёмником

u - скорость приёмника относительно среды (положительная, если он движется по направлению к источнику).

Подставив значение частоты из формулы (1) в формулу (2), получим формулу для общего случая.

где с - скорость света, v - относительная скорость приёмника и источника (положительная в случае их удаления друг от друга).

Как наблюдать эффект Доплера

Поскольку явление характерно для любых колебательных процессов, то его очень легко наблюдать для звука. Частота звуковых колебаний воспринимается на слух как высота звука . Надо дождаться ситуации, когда быстро движущийся автомобиль будет проезжать мимо вас, издавая звук, например, сирену или просто звуковой сигнал. Вы услышите, что когда автомобиль будет приближаться к вам, высота звука будет выше, потом, когда автомобиль поравняется с вами, резко понизится и далее, при удалении, автомобиль будет сигналить на более низкой ноте .

Применение

Доплеровский радар

Ссылки

  • Применение эффекта Доплера для измерения течений в океане

Wikimedia Foundation . 2010 .

Эффектом Доплера называют определенное физическое явление, характеризующее изменение длины и частоты волн, которые регистрируются приемником при условии, что источник волн и их приемник движутся относительно друг друга. Эффект Доплера

Наблюдается при распространении именно волновых явлений - света, звука, радиоволн и так далее, но не частиц, имеющих массу. Эту зависимость первым теоретически обосновал австрийский физик Кристиан Доплер в 1842 году. В честь него она, собственно, и была названа. Десятилетием позже эффект был более детально разработан в трудах француза Армано Физо, а на практике проверен уже в начале XX века.

Эффект Доплера в акустике

Скорость света составляет 300 000 км в секунду, что, по представлениям современной науки, является максимальной скоростью в природе вообще. Это затрудняет наблюдение изменения частоты волн света невооруженным взглядом. Однако эффект Доплера можно наблюдать не только на примере распространения фотонов или электромагнитных волн. Ему подчинены и звуковые колебания. Обычно для популярного объяснения используется пример сирены автомобиля. Представьте, что вы стоите на обочине дороги, к вам приближается автомобиль с включенной сиреной. Когда он находится еще далеко от вас, звук сирены будет казаться низким и глухим. Но по мере приближения частота Доплера (издаваемых волн) будет повышаться (то есть, буквально, расстояние между гребнями волны будет сокращаться), и вы будете слышать все более высокий тон звука. Однако когда автомобиль минует вас и вновь станет

удаляться, соответственно, частота звука вновь станет понижаться. Это происходит по причине того, что издаваемый звук сперва как бы «догоняется» автомобилем, что делает расстояние между гребнями (впадинами) волны все выше, а потом, наоборот, «убегает» от него, и волна «разглаживается». Это и есть эффект Доплера в нашей повседневной жизни.

Значение закономерности

Эффект Доплера является вовсе не сухим научным фактом, известным ученым. Так, например, он широко используется в некоторых современных радарах, основанных на измерении частоты распространения волн. Изменение этой частоты говорит о скорости объекта и ее изменении. Так определяется скорость автомобилей службами ГИБДД, самолетов, кораблей, течений воды в реках и морях и так далее. Охранные сигнализации, реагирующие на движение в помещении, также используют эффект Доплера.

Открытие Хаббла

Однако, пожалуй, наиболее значимым открытием, сделанным благодаря знаниям этой зависимости, стал так называемый закон Хаббла. В 1929 году американский астроном Эдвин Хаббл, наблюдая звездное небо в свой телескоп, обнаружил удивительнейшую

вещь. Далекие галактики были окутаны красноватой дымкой. Так называемое красное смещение, предсказанное еще в 1912-1914 годах другим американцем, Весто Слайфером, означало, что эти галактики буквально отдаляются от нашей. Спектр волн нашего видимого света укладывается в промежуток между 380 и 780 нм. Все, что ниже, называют ультрафиолетовым излучением, выше - инфракрасным. Смещение доходящего до нас света галактики в красную сторону говорит об увеличении частоты и, таким образом, аналогично звуку, о ее отдалении. Будь это смещение синим, галактики бы приближались. Но, что интересно, Эдвин Хаббл развернул свой телескоп на другие точки Вселенной и обнаружил, что почти все галактики отдаляются и от нашей, и друг от друга, более того, чем дальше находится в данный момент галактика, тем сильнее красное смещение, то есть скорость ее удаления увеличивается. Это существенно способствовало становлению в научном мире самой популярной на сегодняшний день теории о происхождении нашего мира: теории Большого взрыва.

Если источник волн движется относительно среды, то расстояние между гребнями волн (длина волны) зависит от скорости и направления движения. Если источник движется по направлению к приёмнику, то есть догоняет испускаемую им волну, то длина волны уменьшается. Если удаляется - длина волны увеличивается.

Частота волны в общем виде, зависит только от того, с какой скоростью двигается приемник

Как только волна пошла от источника, скорость ее распространения определяется только свойствами среды, в которой она распространяется, - источник же волны никакой роли больше не играет. По поверхности воды, например, волны, возбудившись, далее распространяются лишь в силу взаимодействия сил давления, поверхностного натяжения и гравитации. Акустические же волны распространяются в воздухе (и иных звукопроводящих средах) в силу направленной передачи перепада давлений. И ни один из механизмов распространения волн не зависит от источника волны. Отсюда и эффект Доплера .

Для того чтоб был более понятным, рассмотрим пример на машине с сиреной.

Предположим для начала, что машина стоит. Звук от сирены доходит до нас потому, что упругая мембрана внутри нее периодически воздействует на воздух, создавая в нем сжатия - области повышенного давления, - чередующиеся с разряжениями. Пики сжатия - «гребни» акустической волны - распространяются в среде (воздухе), пока не достигнут наших ушей и не воздействуют на барабанные перепонки. Так вот, пока машина стоит, мы так и будем слышать неизмененный тон ее сигнала.

Но как только машина тронется с места в вашу сторону, добавится новый эффект . За время с момента испускания одного пика волны до следующего машина проедет некоторое расстояние по направлению к вам. Из-за этого источник каждого следующего пика волны будет ближе. В результате волны будут достигать ваших ушей чаще, чем это было, пока машина стояла неподвижно, и высота звука, который вы воспринимаете, увеличится. И, наоборот, если машина с звуковым сигналом поедет в обратном направлении, пики акустических волн будут достигать ваших ушей реже, и воспринимаемая частота звука понизится.

Имеет важное значение в астрономии, гидролокации и радиолокации. В астрономии по доплеровскому сдвигу определенной частоты испускаемого света можно судить о скорости движения звезды вдоль линии ее наблюдения. Наиболее удивительный результат дает наблюдение доплеровского сдвига частот света удаленных галактик: так называемое красное смещение свидетельствует о том, что все галактики удаляются от нас со скоростями примерно до половины скорости света, возрастающими с расстоянием. Вопрос о том, расширяется ли Вселенная подобным образом или красное смещение обусловлено чем-то иным, а не «разбеганием» галактик, остается открытым.

В формуле мы использовали.