Pisanje korijena kvadratne jednadžbe. Kvadratne jednadžbe. Rješavanje kvadratnih jednadžbi

Jednačina oblika

Izraz D= b 2 - 4 ac pozvao diskriminatorno kvadratna jednačina. AkoD = 0, tada jednačina ima jedan realni korijen; ako D> 0, onda jednačina ima dva realna korijena.
U slučaju D = 0 , ponekad se kaže da kvadratna jednadžba ima dva identična korijena.
Koristeći notaciju D= b 2 - 4 ac, možemo prepisati formulu (2) u obliku

Ako b= 2k, tada formula (2) poprima oblik:

Gdje k= b / 2 .
Posljednja formula je posebno pogodna u slučajevima kada b / 2 - cijeli broj, tj. koeficijent b- čak broj.
Primjer 1: Riješite jednačinu 2 x 2 - 5 x + 2 = 0 . Evo a = 2, b = -5, c = 2. Imamo D= b 2 - 4 ac = (-5) 2- 4*2*2 = 9 . Jer D > 0 , tada jednačina ima dva korijena. Nađimo ih pomoću formule (2)

Dakle x 1 =(5 + 3) / 4 = 2, x 2 =(5 - 3) / 4 = 1 / 2 ,
to je x 1 = 2 I x 2 = 1 / 2 - korijene date jednačine.
Primjer 2: Riješite jednačinu 2 x 2 - 3 x + 5 = 0 . Evo a = 2, b = -3, c = 5. Pronalaženje diskriminanta D= b 2 - 4 ac = (-3) 2- 4*2*5 = -31 . Jer D 0 , tada jednadžba nema pravi korijen.

Nepotpune kvadratne jednadžbe. Ako je u kvadratnoj jednadžbi sjekira 2 +bx+ c =0 drugi koeficijent b ili besplatni član c jednaka nuli, tada se kvadratna jednačina zove nepotpuno. Nepotpune jednadžbe se izdvajaju jer za pronalaženje njihovih korijena ne morate koristiti formulu za korijene kvadratne jednadžbe - lakše je riješiti jednadžbinu faktoringom njene lijeve strane.
Primjer 1: riješiti jednačinu 2 x 2 - 5 x = 0 .
Imamo x(2 x - 5) = 0 . Tako bilo x = 0 , ili 2 x - 5 = 0 , to je x = 2.5 . Dakle, jednadžba ima dva korijena: 0 I 2.5
Primjer 2: riješiti jednačinu 3 x 2 - 27 = 0 .
Imamo 3 x 2 = 27 . Dakle, korijeni ove jednadžbe su 3 I -3 .

Vietin teorem. Ako je redukovana kvadratna jednadžba x 2 +px+q =0 ima realne korijene, onda je njihov zbir jednak - str, a proizvod je jednak q, to je

x 1 + x 2 = -p,
x 1 x 2 = q

(zbir korijena gornje kvadratne jednadžbe jednak je drugom koeficijentu uzetom sa suprotnim predznakom, a proizvod korijena jednak je slobodnom članu).


Nastavljamo da proučavamo temu “ rješavanje jednačina" Već smo se upoznali sa linearnim jednačinama i prelazimo na upoznavanje sa kvadratne jednačine.

Prvo ćemo pogledati šta je kvadratna jednadžba, kako je napisana u opštem obliku i dati srodne definicije. Nakon toga ćemo na primjerima detaljno ispitati kako se rješavaju nepotpune kvadratne jednadžbe. Zatim ćemo prijeći na rješavanje kompletnih jednadžbi, dobiti formulu korijena, upoznati se s diskriminantom kvadratne jednadžbe i razmotriti rješenja tipičnih primjera. Na kraju, pratimo veze između korijena i koeficijenata.

Navigacija po stranici.

Šta je kvadratna jednačina? Njihove vrste

Prvo morate jasno razumjeti šta je kvadratna jednačina. Stoga je logično započeti razgovor o kvadratnim jednačinama definicijom kvadratne jednačine, kao i srodnim definicijama. Nakon toga, možete razmotriti glavne vrste kvadratnih jednadžbi: redukovane i nereducirane, kao i potpune i nepotpune jednadžbe.

Definicija i primjeri kvadratnih jednadžbi

Definicija.

Kvadratna jednadžba je jednadžba oblika a x 2 +b x+c=0, gdje je x varijabla, a, b i c su neki brojevi, a a nije nula.

Recimo odmah da se kvadratne jednačine često nazivaju jednačinama drugog stepena. To je zbog činjenice da je kvadratna jednačina algebarska jednačina drugi stepen.

Navedena definicija nam omogućava da damo primjere kvadratnih jednadžbi. Dakle, 2 x 2 +6 x+1=0, 0,2 x 2 +2,5 x+0,03=0, itd. Ovo su kvadratne jednadžbe.

Definicija.

Brojevi a, b i c se nazivaju koeficijenti kvadratne jednačine a·x 2 +b·x+c=0, a koeficijent a se naziva prvi, ili najveći, ili koeficijent od x 2, b je drugi koeficijent, ili koeficijent od x, a c je slobodni član .

Na primjer, uzmimo kvadratnu jednačinu oblika 5 x 2 −2 x −3=0, ovdje je vodeći koeficijent 5, drugi koeficijent je jednak −2, a slobodni član je jednak −3. Imajte na umu da kada su koeficijenti b i/ili c negativni, kao u upravo datom primjeru, kratka forma kvadratne jednadžbe je 5 x 2 −2 x−3=0, a ne 5 x 2 +(−2) ·x+(−3)=0 .

Vrijedi napomenuti da kada su koeficijenti a i/ili b jednaki 1 ili −1, oni obično nisu eksplicitno prisutni u kvadratnoj jednadžbi, što je posljedica posebnosti pisanja takvog . Na primjer, u kvadratnoj jednadžbi y 2 −y+3=0 vodeći koeficijent je jedan, a koeficijent za y jednak je −1.

Reducirane i nereducirane kvadratne jednadžbe

U zavisnosti od vrijednosti vodećeg koeficijenta razlikuju se redukovane i nereducirane kvadratne jednadžbe. Hajde da damo odgovarajuće definicije.

Definicija.

Poziva se kvadratna jednadžba u kojoj je vodeći koeficijent 1 zadata kvadratna jednačina. Inače je kvadratna jednačina netaknut.

Prema ovoj definiciji, kvadratne jednačine x 2 −3·x+1=0, x 2 −x−2/3=0, itd. – dato, u svakom od njih je prvi koeficijent jednak jedan. A 5 x 2 −x−1=0, itd. - nereducirane kvadratne jednadžbe čiji su vodeći koeficijenti različiti od 1.

Iz bilo koje nereducirane kvadratne jednadžbe, dijeljenjem obje strane s vodećim koeficijentom, možete prijeći na redukovanu. Ova akcija je ekvivalentna transformacija, odnosno ovako dobijena redukovana kvadratna jednadžba ima iste korijene kao i originalna nereducirana kvadratna jednadžba, ili, poput nje, nema korijena.

Pogledajmo primjer kako se izvodi prijelaz iz nereducirane kvadratne jednadžbe na redukovanu.

Primjer.

Iz jednačine 3 x 2 +12 x−7=0 idite na odgovarajuću redukovanu kvadratnu jednačinu.

Rješenje.

Samo trebamo podijeliti obje strane originalne jednadžbe sa vodećim koeficijentom 3, on je različit od nule, tako da možemo izvesti ovu radnju. Imamo (3 x 2 +12 x−7):3=0:3, što je isto, (3 x 2):3+(12 x):3−7:3=0, a zatim (3: 3) x 2 +(12:3) x−7:3=0, odakle je . Tako smo dobili redukovanu kvadratnu jednačinu, koja je ekvivalentna originalnoj.

odgovor:

Potpune i nepotpune kvadratne jednadžbe

Definicija kvadratne jednadžbe sadrži uvjet a≠0. Ovaj uslov je neophodan da bi jednadžba a x 2 + b x + c = 0 bila kvadratna, jer kada je a = 0 zapravo postaje linearna jednačina oblika b x + c = 0.

Što se tiče koeficijenata b i c, oni mogu biti jednaki nuli, kako pojedinačno tako i zajedno. U tim slučajevima, kvadratna jednačina se naziva nepotpuna.

Definicija.

Kvadratna jednačina a x 2 +b x+c=0 se zove nepotpuno, ako je barem jedan od koeficijenata b, c jednak nuli.

Zauzvrat

Definicija.

Potpuna kvadratna jednadžba je jednadžba u kojoj su svi koeficijenti različiti od nule.

Takva imena nisu data slučajno. To će postati jasno iz narednih diskusija.

Ako je koeficijent b nula, tada kvadratna jednačina ima oblik a·x 2 +0·x+c=0, i ekvivalentna je jednačini a·x 2 +c=0. Ako je c=0, odnosno kvadratna jednadžba ima oblik a·x 2 +b·x+0=0, onda se može prepisati kao a·x 2 +b·x=0. A sa b=0 i c=0 dobijamo kvadratnu jednačinu a·x 2 =0. Rezultirajuće jednadžbe se razlikuju od potpune kvadratne jednadžbe po tome što njihove lijeve strane ne sadrže ni član s promjenljivom x, ni slobodni član, ili oboje. Otuda im i naziv - nepotpune kvadratne jednadžbe.

Dakle, jednačine x 2 +x+1=0 i −2 x 2 −5 x+0,2=0 su primjeri potpunih kvadratnih jednačina, a x 2 =0, −2 x 2 =0, 5 x 2 +3=0 , −x 2 −5 x=0 su nepotpune kvadratne jednadžbe.

Rješavanje nepotpunih kvadratnih jednadžbi

Iz podataka iz prethodnog stava proizilazi da postoji tri vrste nepotpunih kvadratnih jednadžbi:

  • a·x 2 =0, njemu odgovaraju koeficijenti b=0 i c=0;
  • a x 2 +c=0 kada je b=0;
  • i a·x 2 +b·x=0 kada je c=0.

Ispitajmo redom kako se rješavaju nepotpune kvadratne jednadžbe svakog od ovih tipova.

a x 2 =0

Počnimo sa rješavanjem nepotpunih kvadratnih jednadžbi u kojima su koeficijenti b i c jednaki nuli, odnosno sa jednadžbama oblika a x 2 =0. Jednačina a·x 2 =0 je ekvivalentna jednačini x 2 =0, koja se dobija iz originala dijeljenjem oba dijela brojem a koji nije nula. Očigledno, korijen jednačine x 2 =0 je nula, jer je 0 2 =0. Ova jednadžba nema druge korijene, što se objašnjava činjenicom da za bilo koji broj p različit od nule vrijedi nejednakost p 2 >0, što znači da za p≠0 jednakost p 2 =0 nikada nije postignuta.

Dakle, nepotpuna kvadratna jednadžba a·x 2 =0 ima jedan korijen x=0.

Kao primjer dajemo rješenje nepotpune kvadratne jednadžbe −4 x 2 =0. Ekvivalentna je jednadžbi x 2 =0, njen jedini korijen je x=0, stoga originalna jednačina ima jedan korijen nula.

Kratko rješenje u ovom slučaju može se napisati na sljedeći način:
−4 x 2 =0 ,
x 2 =0,
x=0 .

a x 2 +c=0

Pogledajmo sada kako se rješavaju nepotpune kvadratne jednadžbe u kojima je koeficijent b nula i c≠0, odnosno jednadžbe oblika a x 2 +c=0. Znamo da premještanje člana s jedne strane jednačine na drugu sa suprotnim predznakom, kao i dijeljenje obje strane jednačine brojem koji nije nula, daje ekvivalentnu jednačinu. Stoga možemo izvršiti sljedeće ekvivalentne transformacije nepotpune kvadratne jednadžbe a x 2 +c=0:

  • pomjeriti c na desnu stranu, što daje jednačinu a x 2 =−c,
  • i podijelimo obje strane s a, dobivamo .

Rezultirajuća jednačina nam omogućava da izvučemo zaključke o njenim korijenima. Ovisno o vrijednostima a i c, vrijednost izraza može biti negativna (na primjer, ako je a=1 i c=2, onda ) ili pozitivna (na primjer, ako je a=−2 i c=6, onda ), nije jednako nuli , jer po uslovu c≠0. Pogledajmo slučajeve odvojeno.

Ako , tada jednadžba nema korijena. Ova izjava slijedi iz činjenice da je kvadrat bilo kojeg broja nenegativan broj. Iz ovoga slijedi da kada , Tada za bilo koji broj p jednakost ne može biti istinita.

Ako je , onda je situacija s korijenima jednadžbe drugačija. U ovom slučaju, ako se sjetimo o , tada korijen jednadžbe odmah postaje očigledan; to je broj, budući da . Lako je pretpostaviti da je broj također korijen jednadžbe, zaista, . Ova jednadžba nema druge korijene, što se može prikazati, na primjer, kontradikcijom. Hajde da to uradimo.

Označimo korijene upravo najavljene jednadžbe sa x 1 i −x 1 . Pretpostavimo da jednačina ima još jedan korijen x 2, različit od navedenih korijena x 1 i −x 1. Poznato je da zamjena njenih korijena u jednadžbu umjesto x pretvara jednačinu u ispravnu numeričku jednakost. Za x 1 i −x 1 imamo , a za x 2 imamo . Svojstva numeričkih jednakosti nam omogućavaju da izvodimo počlanu oduzimanje tačnih numeričkih jednakosti, tako da oduzimanjem odgovarajućih dijelova jednakosti dobijemo x 1 2 −x 2 2 =0. Svojstva operacija sa brojevima nam omogućavaju da prepišemo rezultujuću jednakost kao (x 1 −x 2)·(x 1 +x 2)=0. Znamo da je proizvod dva broja jednak nuli ako i samo ako je barem jedan od njih jednak nuli. Dakle, iz rezultirajuće jednakosti slijedi da je x 1 −x 2 =0 i/ili x 1 +x 2 =0, što je isto, x 2 =x 1 i/ili x 2 =−x 1. Tako smo došli do kontradikcije, jer smo na početku rekli da je korijen jednačine x 2 različit od x 1 i −x 1. Ovo dokazuje da jednačina nema korijene osim i .

Hajde da sumiramo informacije u ovom paragrafu. Nepotpuna kvadratna jednadžba a x 2 +c=0 je ekvivalentna jednadžbi koja

  • nema korijena ako ,
  • ima dva korijena i , ako .

Razmotrimo primjere rješavanja nepotpunih kvadratnih jednadžbi oblika a·x 2 +c=0.

Počnimo s kvadratnom jednačinom 9 x 2 +7=0. Nakon pomjeranja slobodnog člana na desnu stranu jednačine, on će poprimiti oblik 9 x 2 =−7. Dijeljenjem obje strane rezultirajuće jednačine sa 9, dolazimo do . Budući da desna strana ima negativan broj, ova jednadžba nema korijena, prema tome, originalna nepotpuna kvadratna jednadžba 9 x 2 +7 = 0 nema korijena.

Riješimo još jednu nepotpunu kvadratnu jednačinu −x 2 +9=0. Pomeramo devetku na desnu stranu: −x 2 =−9. Sada podijelimo obje strane sa −1, dobićemo x 2 =9. Na desnoj strani nalazi se pozitivan broj, iz kojeg zaključujemo da je ili . Zatim zapisujemo konačni odgovor: nepotpuna kvadratna jednačina −x 2 +9=0 ima dva korijena x=3 ili x=−3.

a x 2 +b x=0

Ostaje da se pozabavimo rješenjem posljednje vrste nepotpunih kvadratnih jednadžbi za c=0. Nepotpune kvadratne jednadžbe oblika a x 2 + b x = 0 omogućavaju vam da riješite metoda faktorizacije. Očigledno možemo, smješteni na lijevoj strani jednačine, za što je dovoljno uzeti zajednički faktor x iz zagrada. Ovo nam omogućava da pređemo sa originalne nepotpune kvadratne jednačine na ekvivalentnu jednačinu oblika x·(a·x+b)=0. A ova jednačina je ekvivalentna skupu dvije jednačine x=0 i a·x+b=0, od kojih je posljednja linearna i ima korijen x=−b/a.

Dakle, nepotpuna kvadratna jednačina a·x 2 +b·x=0 ima dva korijena x=0 i x=−b/a.

Kako bismo konsolidirali materijal, analizirat ćemo rješenje na konkretnom primjeru.

Primjer.

Riješite jednačinu.

Rješenje.

Uzimanje x iz zagrada daje jednačinu . To je ekvivalentno dvjema jednadžbama x=0 i . Rješavamo rezultirajuću linearnu jednačinu: , i dijeljenjem mješovitog broja običnim razlomkom nalazimo . Stoga su korijeni originalne jednadžbe x=0 i .

Nakon stjecanja potrebne prakse, rješenja ovakvih jednačina mogu se ukratko napisati:

odgovor:

x=0 , .

Diskriminant, formula za korijene kvadratne jednadžbe

Za rješavanje kvadratnih jednadžbi postoji formula korijena. Hajde da to zapišemo formula za korijene kvadratne jednadžbe: , Gdje D=b 2 −4 a c- takozvani diskriminanta kvadratne jednačine. Unos u suštini znači da .

Korisno je znati kako je korijenska formula izvedena i kako se koristi u pronalaženju korijena kvadratnih jednadžbi. Hajde da shvatimo ovo.

Izvođenje formule za korijene kvadratne jednadžbe

Trebamo riješiti kvadratnu jednačinu a·x 2 +b·x+c=0. Izvršimo neke ekvivalentne transformacije:

  • Možemo podijeliti obje strane ove jednačine brojem različitom od nule a, što rezultira sljedećom kvadratnom jednačinom.
  • Sad odaberite cijeli kvadrat na njegovoj lijevoj strani: . Nakon toga, jednačina će poprimiti oblik.
  • U ovoj fazi moguće je posljednja dva člana prenijeti na desnu stranu sa suprotnim predznakom, imamo .
  • I transformirajmo izraz na desnoj strani: .

Kao rezultat, dolazimo do jednačine koja je ekvivalentna originalnoj kvadratnoj jednačini a·x 2 +b·x+c=0.

Jednadžbe slične forme već smo rješavali u prethodnim paragrafima, kada smo ih ispitivali. To nam omogućava da izvučemo sljedeće zaključke u vezi s korijenima jednadžbe:

  • ako je , tada jednačina nema realnih rješenja;
  • ako , tada jednadžba ima oblik , dakle, , iz kojeg je vidljiv njen jedini korijen;
  • ako , onda ili , što je isto kao ili , To jest, jednadžba ima dva korijena.

Dakle, prisustvo ili odsustvo korena jednadžbe, a samim tim i originalne kvadratne jednačine, zavisi od predznaka izraza na desnoj strani. Zauzvrat, predznak ovog izraza je određen predznakom brojioca, pošto je imenilac 4·a 2 uvijek pozitivan, odnosno predznakom izraza b 2 −4·a·c. Ovaj izraz b 2 −4 a c je nazvan diskriminanta kvadratne jednačine i označeno pismom D. Odavde je suština diskriminanta jasna - na osnovu njegove vrijednosti i predznaka zaključuju da li kvadratna jednačina ima realne korijene, i ako ima, koji je njihov broj - jedan ili dva.

Vratimo se na jednadžbu i prepišimo je koristeći diskriminantnu notaciju: . I donosimo zaključke:

  • ako D<0 , то это уравнение не имеет действительных корней;
  • ako je D=0, onda ova jednadžba ima jedan korijen;
  • konačno, ako je D>0, onda jednačina ima dva korijena ili, što se može prepisati u obliku ili, a nakon proširenja i dovođenja razlomaka na zajednički nazivnik dobijamo.

Tako smo izveli formule za korijene kvadratne jednadžbe, izgledaju kao , gdje se diskriminanta D izračunava po formuli D=b 2 −4·a·c.

Uz njihovu pomoć, uz pozitivan diskriminant, možete izračunati oba realna korijena kvadratne jednadžbe. Kada je diskriminanta jednaka nuli, obje formule daju istu vrijednost korijena, što odgovara jedinstvenom rješenju kvadratne jednadžbe. A s negativnim diskriminantom, kada pokušavamo upotrijebiti formulu za korijene kvadratne jednadžbe, suočavamo se s izvlačenjem kvadratnog korijena negativnog broja, što nas vodi izvan okvira školskog programa. Sa negativnim diskriminantom, kvadratna jednadžba nema pravi korijen, ali ima par kompleksni konjugat korijene, koji se mogu pronaći korištenjem istih korijenskih formula koje smo dobili.

Algoritam za rješavanje kvadratnih jednadžbi korištenjem korijenskih formula

U praksi, kada rješavate kvadratne jednadžbe, možete odmah koristiti formulu korijena za izračunavanje njihovih vrijednosti. Ali ovo se više odnosi na pronalaženje složenih korijena.

Međutim, u školskom kursu algebre obično ne govorimo o kompleksnim, već o realnim korijenima kvadratne jednadžbe. U ovom slučaju, preporučljivo je, prije upotrebe formula za korijene kvadratne jednadžbe, prvo pronaći diskriminanta, uvjeriti se da nije negativna (inače možemo zaključiti da jednačina nema realne korijene), i tek onda izračunati vrijednosti korijena.

Gornje rezonovanje nam omogućava da pišemo algoritam za rješavanje kvadratne jednačine. Da biste riješili kvadratnu jednačinu a x 2 +b x+c=0, trebate:

  • koristeći diskriminantnu formulu D=b 2 −4·a·c, izračunaj njegovu vrijednost;
  • zaključiti da kvadratna jednadžba nema pravi korijen ako je diskriminanta negativna;
  • izračunati jedini korijen jednadžbe koristeći formulu ako je D=0;
  • pronađite dva realna korijena kvadratne jednadžbe koristeći formulu korijena ako je diskriminanta pozitivna.

Ovdje samo napominjemo da ako je diskriminant jednak nuli, možete koristiti i formulu; ona će dati istu vrijednost kao .

Možete prijeći na primjere korištenja algoritma za rješavanje kvadratnih jednadžbi.

Primjeri rješavanja kvadratnih jednačina

Razmotrimo rješenja tri kvadratne jednadžbe sa pozitivnim, negativnim i nultim diskriminantom. Nakon što se pozabavimo njihovim rješenjem, po analogiji će biti moguće riješiti bilo koju drugu kvadratnu jednačinu. Počnimo.

Primjer.

Naći korijene jednačine x 2 +2·x−6=0.

Rješenje.

U ovom slučaju imamo sljedeće koeficijente kvadratne jednačine: a=1, b=2 i c=−6. Prema algoritmu, prvo morate izračunati diskriminantu; da biste to učinili, zamijenimo naznačene a, b i c u diskriminantnu formulu, imamo D=b 2 −4·a·c=2 2 −4·1·(−6)=4+24=28. Pošto je 28>0, odnosno diskriminanta veća od nule, kvadratna jednadžba ima dva realna korijena. Nađimo ih koristeći korijensku formulu, dobijamo , ovdje možete pojednostaviti rezultirajuće izraze tako što ćete pomicanje množitelja izvan predznaka korijena nakon čega slijedi smanjenje razlomka:

odgovor:

Prijeđimo na sljedeći tipičan primjer.

Primjer.

Riješite kvadratnu jednačinu −4 x 2 +28 x−49=0 .

Rješenje.

Počinjemo od pronalaženja diskriminanta: D=28 2 −4·(−4)·(−49)=784−784=0. Dakle, ova kvadratna jednadžba ima jedan korijen, koji nalazimo kao , tj.

odgovor:

x=3.5.

Ostaje da razmotrimo rješavanje kvadratnih jednadžbi s negativnim diskriminantom.

Primjer.

Riješite jednačinu 5·y 2 +6·y+2=0.

Rješenje.

Evo koeficijenata kvadratne jednačine: a=5, b=6 i c=2. Zamjenjujemo ove vrijednosti u diskriminantnu formulu, koju imamo D=b 2 −4·a·c=6 2 −4·5·2=36−40=−4. Diskriminant je negativan, stoga ova kvadratna jednadžba nema pravi korijen.

Ako trebate naznačiti kompleksne korijene, tada primjenjujemo dobro poznatu formulu za korijene kvadratne jednadžbe i izvodimo operacije sa kompleksnim brojevima:

odgovor:

nema pravih korena, složeni koreni su: .

Napomenimo još jednom da ako je diskriminanta kvadratne jednadžbe negativna, onda u školi obično odmah zapišu odgovor u kojem ukazuju da nema pravih korijena, a kompleksni korijeni nisu pronađeni.

Formula korijena za parne druge koeficijente

Formula za korijene kvadratne jednadžbe, gdje je D=b 2 −4·a·c omogućava vam da dobijete formulu kompaktnijeg oblika, što vam omogućava da rješavate kvadratne jednadžbe s parnim koeficijentom za x (ili jednostavno sa koeficijent koji ima oblik 2·n, na primjer, ili 14· ln5=2·7·ln5). Izvucimo je.

Recimo da trebamo riješiti kvadratnu jednačinu oblika a x 2 +2 n x+c=0. Pronađimo njegove korijene koristeći formulu koju poznajemo. Da bismo to učinili, izračunavamo diskriminant D=(2 n) 2 −4 a c=4 n 2 −4 a c=4 (n 2 −a c), a zatim koristimo formulu korijena:

Označimo izraz n 2 −a c kao D 1 (ponekad se označava D"). Tada će formula za korijene kvadratne jednadžbe koja se razmatra sa drugim koeficijentom 2 n poprimiti oblik , gdje je D 1 =n 2 −a·c.

Lako je vidjeti da je D=4·D 1, ili D 1 =D/4. Drugim riječima, D 1 je četvrti dio diskriminanta. Jasno je da je predznak D 1 isti kao i znak D . Odnosno, znak D 1 je takođe pokazatelj prisustva ili odsustva korena kvadratne jednačine.

Dakle, da biste riješili kvadratnu jednačinu sa drugim koeficijentom 2·n, trebate

  • Izračunajte D 1 =n 2 −a·c ;
  • Ako je D 1<0 , то сделать вывод, что действительных корней нет;
  • Ako je D 1 =0, onda izračunajte jedini korijen jednadžbe koristeći formulu;
  • Ako je D 1 >0, pronađite dva realna korijena koristeći formulu.

Razmotrimo rješavanje primjera pomoću formule korijena dobivene u ovom pasusu.

Primjer.

Riješite kvadratnu jednačinu 5 x 2 −6 x −32=0 .

Rješenje.

Drugi koeficijent ove jednačine može se predstaviti kao 2·(−3) . To jest, možete prepisati originalnu kvadratnu jednačinu u obliku 5 x 2 +2 (−3) x−32=0, ovdje a=5, n=−3 i c=−32, i izračunati četvrti dio diskriminatorno: D 1 =n 2 −a·c=(−3) 2 −5·(−32)=9+160=169. Pošto je njena vrijednost pozitivna, jednačina ima dva realna korijena. Pronađimo ih koristeći odgovarajuću formulu korijena:

Imajte na umu da je bilo moguće koristiti uobičajenu formulu za korijene kvadratne jednadžbe, ali bi u ovom slučaju trebalo obaviti više računskog rada.

odgovor:

Pojednostavljivanje oblika kvadratnih jednadžbi

Ponekad, prije nego što počnete izračunavati korijene kvadratne jednadžbe pomoću formula, ne škodi da postavite pitanje: "Da li je moguće pojednostaviti oblik ove jednadžbe?" Slažemo se da će u smislu proračuna biti lakše riješiti kvadratnu jednačinu 11 x 2 −4 x−6=0 nego 1100 x 2 −400 x−600=0.

Obično se pojednostavljivanje oblika kvadratne jednadžbe postiže množenjem ili dijeljenjem obje strane određenim brojem. Na primjer, u prethodnom pasusu bilo je moguće pojednostaviti jednačinu 1100 x 2 −400 x −600=0 dijeljenjem obje strane sa 100.

Slična transformacija se provodi s kvadratnim jednadžbama čiji koeficijenti nisu . U ovom slučaju, obje strane jednadžbe se obično dijele apsolutnim vrijednostima njenih koeficijenata. Na primjer, uzmimo kvadratnu jednačinu 12 x 2 −42 x+48=0. apsolutne vrijednosti njegovih koeficijenata: GCD(12, 42, 48)= GCD(GCD(12, 42), 48)= GCD(6, 48)=6. Dijeljenjem obje strane originalne kvadratne jednadžbe sa 6, dolazimo do ekvivalentne kvadratne jednačine 2 x 2 −7 x+8=0.

A množenje obje strane kvadratne jednadžbe obično se radi kako bi se riješili razlomaka koeficijenata. U ovom slučaju, množenje se vrši nazivnicima njegovih koeficijenata. Na primjer, ako se obje strane kvadratne jednadžbe pomnože sa LCM(6, 3, 1)=6, tada će ona poprimiti jednostavniji oblik x 2 +4·x−18=0.

U zaključku ove tačke, napominjemo da se oni gotovo uvijek oslobađaju minusa na najvećem koeficijentu kvadratne jednačine promjenom predznaka svih članova, što odgovara množenju (ili dijeljenju) obje strane sa −1. Na primjer, obično se prelazi sa kvadratne jednadžbe −2 x 2 −3 x+7=0 na rješenje 2 x 2 +3 x−7=0 .

Odnos između korijena i koeficijenata kvadratne jednadžbe

Formula za korijene kvadratne jednadžbe izražava korijene jednadžbe kroz njene koeficijente. Na osnovu formule korijena, možete dobiti druge odnose između korijena i koeficijenata.

Najpoznatije i najprimenljivije formule iz Vietine teoreme su oblika i . Konkretno, za datu kvadratnu jednačinu, zbir korijena jednak je drugom koeficijentu suprotnog predznaka, a proizvod korijena jednak je slobodnom članu. Na primjer, gledajući oblik kvadratne jednadžbe 3 x 2 −7 x + 22 = 0, možemo odmah reći da je zbir njenih korijena jednak 7/3, a proizvod korijena jednak 22 /3.

Koristeći već napisane formule, možete dobiti niz drugih veza između korijena i koeficijenata kvadratne jednadžbe. Na primjer, možete izraziti zbir kvadrata korijena kvadratne jednadžbe kroz njene koeficijente: .

Bibliografija.

  • algebra: udžbenik za 8. razred. opšte obrazovanje institucije / [Yu. N. Makarychev, N. G. Mindyuk, K. I. Neshkov, S. B. Suvorova]; uređeno od S. A. Telyakovsky. - 16. ed. - M.: Obrazovanje, 2008. - 271 str. : ill. - ISBN 978-5-09-019243-9.
  • Mordkovich A. G. Algebra. 8. razred. U 2 sata. Dio 1. Udžbenik za učenike opšteobrazovnih ustanova / A. G. Mordkovich. - 11. izdanje, izbrisano. - M.: Mnemosyne, 2009. - 215 str.: ilustr. ISBN 978-5-346-01155-2.

“, odnosno jednačine prvog stepena. U ovoj lekciji ćemo pogledati ono što se zove kvadratna jednačina i kako to riješiti.

Šta je kvadratna jednačina?

Bitan!

Stepen jednačine je određen najvišim stepenom do kojeg stoji nepoznata.

Ako je maksimalna snaga u kojoj je nepoznata "2", onda imate kvadratnu jednačinu.

Primjeri kvadratnih jednadžbi

  • 5x 2 − 14x + 17 = 0
  • −x 2 + x +
    1
    3
    = 0
  • x 2 + 0,25x = 0
  • x 2 − 8 = 0

Bitan! Opšti oblik kvadratne jednadžbe izgleda ovako:

A x 2 + b x + c = 0

“a”, “b” i “c” su dati brojevi.
  • “a” je prvi ili najviši koeficijent;
  • “b” je drugi koeficijent;
  • “c” je slobodan termin.

Da biste pronašli “a”, “b” i “c” potrebno je da uporedite svoju jednačinu sa opštim oblikom kvadratne jednačine “ax 2 + bx + c = 0”.

Vježbajmo određivanje koeficijenata "a", "b" i "c" u kvadratnim jednačinama.

5x 2 − 14x + 17 = 0 −7x 2 − 13x + 8 = 0 −x 2 + x +
Jednačina Odds
  • a = 5
  • b = −14
  • c = 17
  • a = −7
  • b = −13
  • c = 8
1
3
= 0
  • a = −1
  • b = 1
  • c =
    1
    3
x 2 + 0,25x = 0
  • a = 1
  • b = 0,25
  • c = 0
x 2 − 8 = 0
  • a = 1
  • b = 0
  • c = −8

Kako riješiti kvadratne jednadžbe

Za razliku od linearnih jednadžbi, za rješavanje kvadratnih jednadžbi koristi se posebna metoda. formula za pronalaženje korijena.

Zapamtite!

Za rješavanje kvadratne jednadžbe potrebno je:

  • dovesti kvadratnu jednačinu u opšti oblik “ax 2 + bx + c = 0”. To jest, samo “0” treba da ostane na desnoj strani;
  • koristite formulu za korijenje:

Pogledajmo primjer kako koristiti formulu za pronalaženje korijena kvadratne jednadžbe. Rešimo kvadratnu jednačinu.

X 2 − 3x − 4 = 0


Jednačina “x 2 − 3x − 4 = 0” je već svedena na opći oblik “ax 2 + bx + c = 0” i ne zahtijeva dodatna pojednostavljenja. Da bismo to riješili, samo se trebamo prijaviti formula za pronalaženje korijena kvadratne jednadžbe.

Odredimo koeficijente “a”, “b” i “c” za ovu jednačinu.


x 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =

Može se koristiti za rješavanje bilo koje kvadratne jednadžbe.

U formuli “x 1;2 =” radikalni izraz se često zamjenjuje
“b 2 − 4ac” za slovo “D” i naziva se diskriminantnim. Koncept diskriminanta je detaljnije obrađen u lekciji „Šta je diskriminant“.

Pogledajmo još jedan primjer kvadratne jednadžbe.

x 2 + 9 + x = 7x

U ovom obliku prilično je teško odrediti koeficijente “a”, “b” i “c”. Hajde da prvo svedemo jednačinu na opšti oblik “ax 2 + bx + c = 0”.

X 2 + 9 + x = 7x
x 2 + 9 + x − 7x = 0
x 2 + 9 − 6x = 0
x 2 − 6x + 9 = 0

Sada možete koristiti formulu za korijene.

X 1;2 =
x 1;2 =
x 1;2 =
x 1;2 =
x =

6
2

x = 3
Odgovor: x = 3

Postoje slučajevi kada kvadratne jednadžbe nemaju korijen. Ova situacija se događa kada formula sadrži negativan broj ispod korijena.

Kvadratna jednadžba - lako riješiti! *U daljem tekstu “KU”. Prijatelji, čini se da u matematici ne može biti ništa jednostavnije od rješavanja takve jednačine. Ali nešto mi je govorilo da mnogi ljudi imaju problema s njim. Odlučio sam da vidim koliko utisaka na zahtjev Yandex daje mjesečno. Evo šta se desilo, pogledajte:


Šta to znači? To znači da oko 70.000 ljudi mjesečno traži ovu informaciju, a ovo je ljeto, a šta će biti tokom školske godine - zahtjeva će biti duplo više. To nije iznenađujuće, jer oni momci i djevojke koji su davno završili školu i spremaju se za Jedinstveni državni ispit traže ove informacije, a i školarci se trude da osvježe svoje pamćenje.

Uprkos činjenici da postoji mnogo sajtova koji vam govore kako da rešite ovu jednačinu, odlučio sam da dam svoj doprinos i objavim materijal. Prvo, želim da posjetitelji dolaze na moju stranicu na osnovu ovog zahtjeva; drugo, u drugim člancima, kada se pojavi tema “KU”, dat ću link do ovog članka; treće, reći ću vam nešto više o njegovom rješenju nego što se obično navodi na drugim stranicama. Hajde da počnemo! Sadržaj članka:

Kvadratna jednačina je jednačina oblika:

gdje su koeficijenti a,bi c su proizvoljni brojevi, sa a≠0.

U školskom kursu gradivo se daje u sledećem obliku - jednačine su podeljene u tri razreda:

1. Imaju dva korijena.

2. *Imajte samo jedan korijen.

3. Nemaju korijene. Ovdje je posebno vrijedno napomenuti da oni nemaju prave korijene

Kako se izračunavaju korijeni? Samo!

Izračunavamo diskriminanta. Ispod ove "strašne" riječi krije se vrlo jednostavna formula:

Formule korijena su sljedeće:

*Ove formule morate znati napamet.

Možete odmah zapisati i riješiti:

primjer:


1. Ako je D > 0, onda jednačina ima dva korijena.

2. Ako je D = 0, onda jednačina ima jedan korijen.

3. Ako D< 0, то уравнение не имеет действительных корней.

Pogledajmo jednačinu:


S tim u vezi, kada je diskriminanta jednaka nuli, školski kurs kaže da se dobija jedan korijen, ovdje je jednak devet. Sve je tačno, tako je, ali...

Ova ideja je donekle netačna. U stvari, postoje dva korijena. Da, da, nemojte se iznenaditi, dobijate dva jednaka korijena, a da budemo matematički precizni, onda bi odgovor trebao pisati dva korijena:

x 1 = 3 x 2 = 3

Ali ovo je tako - mala digresija. U školi možete to zapisati i reći da postoji jedan korijen.

Sada sljedeći primjer:


Kao što znamo, korijen negativnog broja se ne može uzeti, tako da u ovom slučaju nema rješenja.

To je cijeli proces odlučivanja.

Kvadratna funkcija.

Ovo pokazuje kako rješenje izgleda geometrijski. Ovo je izuzetno važno razumjeti (u budućnosti ćemo u jednom od članaka detaljno analizirati rješenje kvadratne nejednakosti).

Ovo je funkcija oblika:

gdje su x i y varijable

a, b, c – dati brojevi, sa a ≠ 0

Grafikon je parabola:

Odnosno, ispada da rješavanjem kvadratne jednadžbe sa “y” jednakom nuli, nalazimo točke presjeka parabole sa x osom. Mogu postojati dvije od ovih tačaka (diskriminanta je pozitivna), jedna (diskriminanta je nula) i nijedna (diskriminanta je negativna). Detalji o kvadratnoj funkciji Možete pogledatičlanak Inna Feldman.

Pogledajmo primjere:

Primjer 1: Riješi 2x 2 +8 x–192=0

a=2 b=8 c= –192

D=b 2 –4ac = 8 2 –4∙2∙(–192) = 64+1536 = 1600

Odgovor: x 1 = 8 x 2 = –12

*Moguće je odmah podijeliti lijevu i desnu stranu jednačine sa 2, odnosno pojednostaviti je. Proračun će biti lakši.

Primjer 2: Odlučite se x 2–22 x+121 = 0

a=1 b=–22 c=121

D = b 2 –4ac =(–22) 2 –4∙1∙121 = 484–484 = 0

Otkrili smo da je x 1 = 11 i x 2 = 11

U odgovoru je dozvoljeno napisati x = 11.

Odgovor: x = 11

Primjer 3: Odlučite se x 2 –8x+72 = 0

a=1 b= –8 c=72

D = b 2 –4ac =(–8) 2 –4∙1∙72 = 64–288 = –224

Diskriminant je negativan, nema rješenja u realnim brojevima.

Odgovor: nema rješenja

Diskriminant je negativan. Postoji rješenje!

Ovdje ćemo govoriti o rješavanju jednadžbe u slučaju kada se dobije negativan diskriminant. Znate li išta o kompleksnim brojevima? Ovdje neću ulaziti u detalje zašto i gdje su nastali i koja je njihova specifična uloga i neophodnost u matematici; ovo je tema za veliki poseban članak.

Koncept kompleksnog broja.

Malo teorije.

Kompleksni broj z je broj oblika

z = a + bi

gdje su a i b realni brojevi, i je takozvana imaginarna jedinica.

a+bi – ovo je JEDAN BROJ, a ne dodatak.

Imaginarna jedinica jednaka je korijenu minus jedan:

Sada razmotrite jednačinu:


Dobijamo dva konjugirana korijena.

Nepotpuna kvadratna jednadžba.

Razmotrimo posebne slučajeve, to je kada je koeficijent “b” ili “c” jednak nuli (ili su oba jednaka nuli). Oni se mogu lako riješiti bez ikakvih diskriminanata.

Slučaj 1. Koeficijent b = 0.

Jednačina postaje:

transformirajmo:

primjer:

4x 2 –16 = 0 => 4x 2 =16 => x 2 = 4 => x 1 = 2 x 2 = –2

Slučaj 2. Koeficijent c = 0.

Jednačina postaje:

Hajde da transformišemo i faktorizujemo:

*Proizvod je jednak nuli kada je barem jedan od faktora jednak nuli.

primjer:

9x 2 –45x = 0 => 9x (x–5) =0 => x = 0 ili x–5 =0

x 1 = 0 x 2 = 5

Slučaj 3. Koeficijenti b = 0 i c = 0.

Ovdje je jasno da će rješenje jednadžbe uvijek biti x = 0.

Korisna svojstva i obrasci koeficijenata.

Postoje svojstva koja vam omogućavaju rješavanje jednadžbi s velikim koeficijentima.

Ax 2 + bx+ c=0 jednakost važi

a + b+ c = 0, To

- ako za koeficijente jednačine Ax 2 + bx+ c=0 jednakost važi

a+ c =b, To

Ova svojstva pomažu u rješavanju određene vrste jednadžbe.

Primjer 1: 5001 x 2 –4995 x – 6=0

Zbir kvota je 5001+( 4995)+( 6) = 0, što znači

Primjer 2: 2501 x 2 +2507 x+6=0

Jednakost važi a+ c =b, Sredstva

Pravilnosti koeficijenata.

1. Ako je u jednačini ax 2 + bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 +1)∙x+ a= 0 = > x 1 = –a x 2 = –1/a.

Primjer. Razmotrimo jednačinu 6x 2 + 37x + 6 = 0.

x 1 = –6 x 2 = –1/6.

2. Ako je u jednačini ax 2 – bx + c = 0 koeficijent “b” jednak (a 2 +1), a koeficijent “c” brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 +1)∙x+ a= 0 = > x 1 = a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 15x 2 –226x +15 = 0.

x 1 = 15 x 2 = 1/15.

3. Ako u jednadžbi ax 2 + bx – c = 0 koeficijent “b” je jednako (a 2 – 1), i koeficijent “c” je numerički jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 + (a 2 –1)∙x – a= 0 = > x 1 = – a x 2 = 1/a.

Primjer. Razmotrimo jednačinu 17x 2 +288x – 17 = 0.

x 1 = – 17 x 2 = 1/17.

4. Ako je u jednačini ax 2 – bx – c = 0 koeficijent “b” jednak (a 2 – 1), a koeficijent c brojčano jednak koeficijentu “a”, tada su njegovi korijeni jednaki

ax 2 – (a 2 –1)∙x – a= 0 = > x 1 = a x 2 = – 1/a.

Primjer. Razmotrimo jednačinu 10x 2 – 99x –10 = 0.

x 1 = 10 x 2 = – 1/10

Vietin teorem.

Vietina teorema je dobila ime po poznatom francuskom matematičaru Francois Vieti. Koristeći Vietin teorem, možemo izraziti zbir i proizvod korijena proizvoljnog KU u terminima njegovih koeficijenata.

45 = 1∙45 45 = 3∙15 45 = 5∙9.

Ukupno, broj 14 daje samo 5 i 9. Ovo su korijeni. Uz određenu vještinu, koristeći prikazanu teoremu, možete odmah usmeno riješiti mnoge kvadratne jednadžbe.

Osim toga, Vietin teorem. Pogodno je po tome što se nakon rješavanja kvadratne jednadžbe na uobičajen način (preko diskriminanta) mogu provjeriti rezultirajući korijeni. Preporučujem da to radite uvijek.

NAČIN TRANSPORTA

Ovom metodom koeficijent “a” se množi slobodnim pojmom, kao da mu je “bačen”, zbog čega se naziva metoda "transfera". Ova metoda se koristi kada se korijeni jednadžbe mogu lako pronaći pomoću Vietine teoreme i, što je najvažnije, kada je diskriminanta tačan kvadrat.

Ako A± b+c≠ 0, tada se koristi tehnika prijenosa, na primjer:

2X 2 – 11x+ 5 = 0 (1) => X 2 – 11x+ 10 = 0 (2)

Koristeći Vietinu teoremu u jednačini (2), lako je odrediti da je x 1 = 10 x 2 = 1

Rezultirajući korijeni jednadžbe moraju se podijeliti sa 2 (budući da su dva "izbačena" iz x 2), dobijamo

x 1 = 5 x 2 = 0,5.

Šta je obrazloženje? Pogledaj šta se dešava.

Diskriminante jednačina (1) i (2) su jednake:

Ako pogledate korijene jednadžbi, dobit ćete samo različite nazivnike, a rezultat ovisi upravo o koeficijentu x 2:


Drugi (modificirani) ima korijene koji su 2 puta veći.

Stoga, rezultat dijelimo sa 2.

*Ako prebacimo trojku, rezultat ćemo podijeliti sa 3, itd.

Odgovor: x 1 = 5 x 2 = 0,5

Sq. ur-ie i Jedinstveni državni ispit.

Reći ću vam ukratko o njegovoj važnosti - MORATE MOĆI DA ODLUČITE brzo i bez razmišljanja, morate znati formule korijena i diskriminanata napamet. Mnogi problemi uključeni u zadatke Jedinstvenog državnog ispita svode se na rješavanje kvadratne jednačine (uključujući i geometrijske).

Nešto vredno pažnje!

1. Oblik pisanja jednačine može biti „implicitan“. Na primjer, moguć je sljedeći unos:

15+ 9x 2 - 45x = 0 ili 15x+42+9x 2 - 45x=0 ili 15 -5x+10x 2 = 0.

Morate ga dovesti u standardni oblik (da se ne zbunite prilikom rješavanja).

2. Zapamtite da je x nepoznata veličina i može se označiti bilo kojim drugim slovom - t, q, p, h i drugim.

Ova tema se u početku može činiti komplikovanom zbog mnogih ne tako jednostavnih formula. Ne samo da kvadratne jednadžbe imaju duge oznake, već se i korijeni nalaze preko diskriminanta. Ukupno su dobijene tri nove formule. Nije lako zapamtiti. To je moguće samo nakon čestog rješavanja ovakvih jednačina. Tada će se sve formule pamtiti same.

Opšti pogled na kvadratnu jednačinu

Ovdje predlažemo njihovo eksplicitno bilježenje, kada se prvo upiše najveći stepen, a zatim u opadajućem redoslijedu. Često postoje situacije kada su termini nedosljedni. Tada je bolje prepisati jednačinu u opadajućem redosledu stepena varijable.

Hajde da uvedemo neke oznake. Oni su predstavljeni u tabeli ispod.

Ako prihvatimo ove oznake, sve kvadratne jednadžbe se svode na sljedeću notaciju.

Štaviše, koeficijent a ≠ 0. Neka ova formula bude označena brojem jedan.

Kada je data jednadžba, nije jasno koliko će korijena biti u odgovoru. Jer jedna od tri opcije je uvijek moguća:

  • rješenje će imati dva korijena;
  • odgovor će biti jedan broj;
  • jednadžba uopće neće imati korijene.

I dok se odluka ne donese, teško je razumjeti koja će se opcija pojaviti u konkretnom slučaju.

Vrste zapisa kvadratnih jednačina

U zadacima mogu biti različiti unosi. One neće uvijek izgledati kao opšta formula kvadratne jednačine. Ponekad će mu nedostajati neki termini. Ono što je gore napisano je kompletna jednačina. Ako izbacite drugi ili treći termin u njemu, dobijate nešto drugo. Ovi zapisi se nazivaju i kvadratne jednačine, samo nepotpune.

Štaviše, samo članovi sa koeficijentima “b” i “c” mogu nestati. Broj "a" ne može biti jednak nuli ni pod kojim okolnostima. Jer se u ovom slučaju formula pretvara u linearnu jednačinu. Formule za nepotpuni oblik jednadžbi će biti sljedeće:

Dakle, postoje samo dvije vrste; osim potpunih, postoje i nepotpune kvadratne jednadžbe. Neka prva formula bude broj dva, a druga - tri.

Diskriminanta i zavisnost broja korijena od njegove vrijednosti

Morate znati ovaj broj da biste izračunali korijene jednadžbe. Uvijek se može izračunati, bez obzira koja je formula kvadratne jednačine. Da biste izračunali diskriminanta, trebate koristiti jednakost napisanu ispod, koja će imati broj četiri.

Nakon zamjene vrijednosti koeficijenta u ovu formulu, možete dobiti brojeve s različitim predznacima. Ako je odgovor da, onda će odgovor na jednadžbu biti dva različita korijena. Ako je broj negativan, neće biti korijena kvadratne jednadžbe. Ako je jednako nuli, biće samo jedan odgovor.

Kako riješiti kompletnu kvadratnu jednačinu?

Zapravo, razmatranje ovog pitanja je već počelo. Jer prvo morate pronaći diskriminanta. Nakon što se utvrdi da postoje korijeni kvadratne jednadžbe i njihov broj je poznat, potrebno je koristiti formule za varijable. Ako postoje dva korijena, onda morate primijeniti sljedeću formulu.

Pošto sadrži znak „±“, biće dva značenja. Izraz pod znakom kvadratnog korijena je diskriminanta. Stoga se formula može prepisati drugačije.

Formula broj pet. Iz istog zapisa je jasno da ako je diskriminanta jednaka nuli, tada će oba korijena imati iste vrijednosti.

Ako rješavanje kvadratnih jednadžbi još nije razrađeno, onda je bolje zapisati vrijednosti svih koeficijenata prije primjene diskriminantnih i varijabilnih formula. Kasnije ovaj trenutak neće uzrokovati poteškoće. Ali na samom početku dolazi do zabune.

Kako riješiti nepotpunu kvadratnu jednačinu?

Ovdje je sve mnogo jednostavnije. Nema čak ni potrebe za dodatnim formulama. A oni koji su već zapisani za diskriminatorno i nepoznato neće biti potrebni.

Prvo, pogledajmo nepotpunu jednačinu broj dva. U ovoj jednakosti potrebno je nepoznatu količinu izvaditi iz zagrada i riješiti linearnu jednačinu koja će ostati u zagradama. Odgovor će imati dva korijena. Prvi je nužno jednak nuli, jer postoji množitelj koji se sastoji od same varijable. Drugi će se dobiti rješavanjem linearne jednadžbe.

Nepotpuna jednačina broj tri rješava se pomicanjem broja s lijeve strane jednakosti na desnu. Zatim trebate podijeliti sa koeficijentom okrenutim prema nepoznatom. Ostaje samo da izvučete kvadratni korijen i zapamtite da ga dvaput zapišete sa suprotnim predznacima.

Ispod su neki koraci koji će vam pomoći da naučite kako riješiti sve vrste jednakosti koje se pretvaraju u kvadratne jednadžbe. Oni će pomoći učeniku da izbjegne greške zbog nepažnje. Ovi nedostaci mogu uzrokovati slabe ocjene pri proučavanju opsežne teme „Kvadratne jednačine (8. razred).“ Nakon toga, ove radnje neće trebati stalno izvoditi. Jer će se pojaviti stabilna vještina.

  • Prvo morate napisati jednačinu u standardnom obliku. Odnosno, prvo izraz sa najvećim stepenom varijable, a zatim - bez stepena, i poslednji - samo broj.
  • Ako se ispred koeficijenta "a" pojavi minus, to može zakomplikovati posao početniku koji proučava kvadratne jednadžbe. Bolje je da ga se otarasimo. U tu svrhu, sve jednakosti se moraju pomnožiti sa “-1”. To znači da će svi pojmovi promijeniti predznak u suprotan.
  • Preporučuje se da se na isti način riješite frakcija. Jednostavno pomnožite jednačinu odgovarajućim faktorom tako da se imenioci ponište.

Primjeri

Potrebno je riješiti sljedeće kvadratne jednadžbe:

x 2 − 7x = 0;

15 − 2x − x 2 = 0;

x 2 + 8 + 3x = 0;

12x + x 2 + 36 = 0;

(x+1) 2 + x + 1 = (x+1)(x+2).

Prva jednačina: x 2 − 7x = 0. Nepotpuna je, stoga se rješava kao što je opisano za formulu broj dva.

Nakon vađenja iz zagrada, ispada: x (x - 7) = 0.

Prvi korijen ima vrijednost: x 1 = 0. Drugi će se naći iz linearne jednačine: x - 7 = 0. Lako je vidjeti da je x 2 = 7.

Druga jednadžba: 5x 2 + 30 = 0. Opet nepotpuna. Samo se to rješava kao što je opisano za treću formulu.

Nakon pomjeranja 30 na desnu stranu jednačine: 5x 2 = 30. Sada trebate podijeliti sa 5. Ispada: x 2 = 6. Odgovori će biti brojevi: x 1 = √6, x 2 = - √6.

Treća jednačina: 15 − 2x − x 2 = 0. U nastavku će rješavanje kvadratnih jednadžbi početi tako što ćemo ih prepisati u standardnom obliku: − x 2 − 2x + 15 = 0. Sada je vrijeme da iskoristimo drugi korisni savjet i sve pomnožimo sa minus jedan. Ispada x 2 + 2x - 15 = 0. Koristeći četvrtu formulu, morate izračunati diskriminanta: D = 2 2 - 4 * (- 15) = 4 + 60 = 64. To je pozitivan broj. Iz onoga što je gore rečeno, ispada da jednačina ima dva korijena. Treba ih izračunati koristeći petu formulu. Ispada da je x = (-2 ± √64) / 2 = (-2 ± 8) / 2. Tada je x 1 = 3, x 2 = - 5.

Četvrta jednačina x 2 + 8 + 3x = 0 pretvara se u ovu: x 2 + 3x + 8 = 0. Njen diskriminanta je jednaka ovoj vrijednosti: -23. Budući da je ovaj broj negativan, odgovor na ovaj zadatak bit će sljedeći unos: "Nema korijena."

Petu jednačinu 12x + x 2 + 36 = 0 treba prepisati na sljedeći način: x 2 + 12x + 36 = 0. Nakon primjene formule za diskriminanta, dobija se broj nula. To znači da će imati jedan korijen, odnosno: x = -12/ (2 * 1) = -6.

Šesta jednačina (x+1) 2 + x + 1 = (x+1)(x+2) zahtijeva transformacije, koje se sastoje u tome da treba donijeti slične članove, prvo otvarajući zagrade. Umjesto prvog bit će sljedeći izraz: x 2 + 2x + 1. Nakon jednakosti pojavit će se ovaj unos: x 2 + 3x + 2. Nakon što se prebroje slični članovi, jednačina će dobiti oblik: x 2 - x = 0. Postalo je nepotpuno. Nešto slično ovome je već bilo govora malo više. Korijeni ovoga će biti brojevi 0 i 1.