Атмосфера - газовая оболочка земли. Атмосфера земли улетучивается в космос

Атмосфера - это то, что обеспечивает возможность жизни на Земле. Самые первые сведения и факты об атмосфере мы получаем ещё в начальной школе. В старших классах мы уже подробнее знакомимся с этим понятием на уроках географии.

Понятие земной атмосферы

Атмосфера имеется не только у Земли, но и у других небесных тел. Так называют газовую оболочку, окружающую планеты. Состав этого газового слоя разных планет значительно отличается. Давайте рассмотрим основные сведения и факты об иначе называемой воздухом.

Самой важной её составляющей частью является кислород. Некоторые ошибочно думают, что земная атмосфера состоит полностью из кислорода, но на самом деле воздух - это смесь газов. В его составе 78% азота и 21% кислорода. Остальной один процент включает в себя озон, аргон, углекислый газ, водяные пары. Пусть процентное соотношение этих газов мало, но они выполняют важную функцию - поглощают значительную часть солнечной лучистой энергии, тем самым не дают светилу превратить всё живое на нашей планете в пепел. Свойства атмосферы изменяются в зависимости от высоты. Например, на высоте 65 км азот составляет 86%, а кислород - 19%.

Состав атмосферы Земли

  • Углекислый газ необходим для питания растений. В атмосфере он появляется в результате процесса дыхания живых организмов, гниения, горения. Отсутствие его в составе атмосферы сделало бы невозможным существование любых растений.
  • Кислород - жизненно важный для человека компонент атмосферы. Его наличие является условием для существования всех живых организмов. Он составляет около 20% от общего объёма атмосферных газов.
  • Озон - это естественный поглотитель солнечного ультрафиолетового излучения, которое пагубно влияет на живые организмы. Большая его часть формирует отдельный слой атмосферы - озоновый экран. В последнее время деятельность человека приводит к тому, что начинает постепенно разрушаться, но так как он имеет большую важность, то ведётся активная работа по его сохранению и восстановлению.
  • Водяной пар определяет влажность воздуха. Его содержание может быть разным в зависимости от различных факторов: температуры воздуха, территориального расположения, сезона. При низкой температуре водяного пара в воздухе совсем мало, может быть меньше одного процента, а при высокой его количество достигает 4%.
  • Кроме всего вышеперечисленного, в составе земной атмосферы всегда присутствует определённый процент твёрдых и жидких примесей . Это сажа, пепел, морская соль, пыль, капли воды, микроорганизмы. Попадать в воздух они могут как естественным, так и антропогенным путём.

Слои атмосферы

И температура, и плотность, и качественный состав воздуха неодинаковый на разной высоте. Из-за этого принято выделять разные слои атмосферы. Каждый из них имеет свою характеристику. Давайте узнаем, какие слои атмосферы различают:

  • Тропосфера - этот слой атмосферы находится ближе всего к поверхности Земли. Высота его - 8-10 км над полюсами и 16-18 км - в тропиках. Здесь находится 90% всего водяного пара, который имеется в атмосфере, поэтому происходит активное образование облаков. Также в этом слое наблюдаются такие процессы, как движение воздуха (ветра), турбулентность, конвекция. Температура колеблется от +45 градусов в полдень в тёплое время года в тропиках до -65 градусов на полюсах.
  • Стратосфера - второй по отдалённости от слой атмосферы. Находится на высоте от 11 до 50 км. В нижнем слое стратосферы температура приблизительно -55, в сторону удаления от Земли она повышается до +1˚С. Эта область называется инверсией и является границей стратосферы и мезосферы.
  • Мезосфера располагается на высоте от 50 до 90 км. Температура на её нижней границе - около 0, на верхней достигает -80...-90 ˚С. Метеориты, попадающие в атмосферу Земли, полностью сгорают в мезосфере, из-за этого здесь происходят свечения воздуха.
  • Термосфера имеет толщину приблизительно 700 км. В этом слое атмосферы возникают северные сияния. Появляются они за счёт под действием космического излучения и радиации, исходящей от Солнца.
  • Экзосфера - это зона рассеивания воздуха. Здесь концентрация газов небольшая и происходит их постепенный уход в межпланетное пространство.

Границей между земной атмосферой и космическими просторами принято считать рубеж в 100 км. Эту черту называют линией Кармана.

Давление атмосферы

Слушая прогноз погоды, мы часто слышим показатели атмосферного давления. Но что означает давление атмосферы, и как на нас это может повлиять?

Мы разобрались, что воздух состоит из газов и примесей. Каждая из этих составляющих имеет свой вес, а значит, и атмосфера не невесома, как считали до XVII века. Атмосферное давление - это сила, с которой все слои атмосферы давят на поверхность Земли и на все предметы.

Учёные провели сложные подсчёты и доказали, что на один квадратный метр площади атмосфера давит с силой 10 333 кг. Значит, человеческое тело подвержено давлению воздуха, вес которого равен 12-15 тонн. Почему же мы не ощущаем этого? Спасает нас своё внутреннее давление, которое и уравновешивает внешнее. Можно ощутить давление атмосферы, находясь в самолёте или высоко в горах, так как атмосферное давление на высоте значительно меньше. При этом возможен физический дискомфорт, закладывание ушей, головокружение.

Об атмосфере, окружающей можно сказать много всего. Мы знаем о ней множество интересных фактов, и некоторые из них могут казаться удивительными:

  • Вес земной атмосферы составляет 5 300 000 000 000 000 тонн.
  • Она способствует передаче звука. На высоте больше 100 км это свойство исчезает из-за изменения состава атмосферы.
  • Движение атмосферы спровоцировано неравномерным нагревом поверхности Земли.
  • Для определения температуры воздуха используют термометр, а для того, чтобы узнать силу давления атмосферы, - барометр.
  • Наличие атмосферы спасает нашу планету от 100 тонн метеоритов ежедневно.
  • Состав воздуха был фиксированным несколько сотен миллионов лет, но стал изменяться с началом бурной производственной деятельности.
  • Считается, что атмосфера простирается вверх на высоту 3000 км.

Значение атмосферы для человека

Физиологическая зона атмосферы составляет 5 км. На высоте 5000 м над уровнем моря у человека начинает проявляться кислородное голодание, что выражается в снижении его работоспособности и ухудшении самочувствия. Это показывает то, что человек не сможет выжить в пространстве, где нет этой удивительной смеси газов.

Все сведения и факты об атмосфере только подтверждают её важность для людей. Благодаря её наличию и появилась возможность развития жизни на Земле. Уже сегодня, оценив масштабы вреда, который человечество способно своими действиями наносить дающему жизнь воздуху, нам следует задуматься о дальнейших мерах сохранения и восстановления атмосферы.

Атмосфера (от греч. atmos — пар и spharia — шар) — воздушная оболочка Земли, вращающаяся вместе с ней. Развитие атмосферы было тесно связано с геологическими и геохимическими процессами, протекающими на нашей планете, а также с деятельностью живых организмов.

Нижняя граница атмосферы совпадает с поверхностью Земли, так как воздух проникает в мельчайшие поры в почве и растворен даже в воде.

Верхняя граница на высоте 2000-3000 км постепенно переходит в космическое пространство.

Благодаря атмосфере, в которой содержится кислород, возможна жизнь на Земле. Атмосферный кислород используется в процессе дыхания человека, животными, растениями.

Если бы не было атмосферы, на Земле была бы такая же тишина, как на Луне. Ведь звук — это колебание частиц воздуха. Голубой цвет неба объясняется тем, что солнечные лучи, проходя сквозь атмосферу, как через линзу, разлагаются на составляющие цвета. При этом рассеиваются больше всего лучи голубого и синего цветов.

Атмосфера задерживает большую часть ультрафиолетового излучения Солнца, которое губительно действует на живые организмы. Также она удерживает у поверхности Земли тепло, не давая нашей планете охлаждаться.

Строение атмосферы

В атмосфере можно выделить несколько слоев, различающихся по и плотности (рис. 1).

Тропосфера

Тропосфера — самый нижний слой атмосферы, толщина которого над полюсами составляет 8-10 км, в умеренных широтах — 10-12 км, а над экватором — 16-18 км.

Рис. 1. Строение атмосферы Земли

Воздух в тропосфере нагревается от земной поверхности, т. е. от суши и воды. Поэтому температура воздуха в этом слое с высотой понижается в среднем на 0,6 °С на каждые 100 м. У верхней границы тропосферы она достигает -55 °С. При этом в районе экватора на верхней границе тропосферы температура воздуха составляет -70 °С, а в районе Северного полюса -65 °С.

В тропосфере сосредоточено около 80 % массы атмосферы, находится почти весь водяной пар, возникают грозы, бури, облака и осадки, а также происходит вертикальное (конвекция) и горизонтальное (ветер) перемещение воздуха.

Можно сказать, что погода в основном формируется в тропосфере.

Стратосфера

Стратосфера — слой атмосферы, расположенный над тропосферой на высоте от 8 до 50 км. Цвет неба в этом слое кажется фиолетовым, что объясняется разреженностью воздуха, из-за которой солнечные лучи почти не рассеиваются.

В стратосфере сосредоточено 20 % массы атмосферы. Воздух в этом слое разрежен, практически нет водяного пара, а потому почти не образуются облака и осадки. Однако в стратосфере наблюдаются устойчивые воздушные течения, скорость которых достигает 300 км/ч.

В этом слое сосредоточен озон (озоновый экран, озоносфера), слой, который поглощает ультрафиолетовые лучи, не пропуская их к Земле и тем самым защищая живые организмы на нашей планете. Благодаря озону температура воздуха на верхней границе стратосферы находится в пределах от -50 до 4-55 °С.

Между мезосферой и стратосферой расположена переходная зона — стратопауза.

Мезосфера

Мезосфера — слой атмосферы, расположенный на высоте 50-80 км. Плотность воздуха здесь в 200 раз меньше, чем у поверхности Земли. Цвет неба в мезосфере кажется черным, в течение дня видны звезды. Температура воздуха снижается до -75 (-90)°С.

На высоте 80 км начинается термосфера. Температура воздуха в этом слое резко повышается до высоты 250 м, а потом становится постоянной: на высоте 150 км она достигает 220-240 °С; на высоте 500-600 км превышает 1500 °С.

В мезосфере и термосфере под действием космических лучей молекулы газов распадаются на заряженные (ионизированные) частицы атомов, поэтому эта часть атмосферы получила название ионосфера — слой очень разреженного воздуха, расположенный на высоте от 50 до 1000 км, состоящий в основном из ионизированных атомов кислорода, молекул окиси азота и свободных электронов. Для этого слоя характерна высокая наэлектризован- ность, и от него, как от зеркала, отражаются длинные и средние радиоволны.

В ионосфере возникают полярные сияния — свечение разреженных газов под влиянием электрически заряженных летящих от Солнца частиц — и наблюдаются резкие колебания магнитного поля.

Экзосфера

Экзосфера — внешний слой атмосферы, расположенный выше 1000 км. Этот слой еще называют сферой рассеивания, так как частицы газов движутся здесь с большой скоростью и могут рассеиваться в космическое пространство.

Состав атмосферы

Атмосфера — это смесь газов, состоящая из азота (78,08 %), кислорода (20,95 %), углекислого газа (0,03 %), аргона (0,93 %), небольшого количества гелия, неона, ксенона, криптона (0,01 %), озона и других газов, но их содержание ничтожно (табл. 1). Современный состав воздуха Земли установился более сотни миллионов лет назад, однако резко возросшая производственная деятельность человека все же привела к его изменению. В настоящее время отмечается увеличение содержания СО 2 примерно на 10-12 %.

Входящие в состав атмосферы газы выполняют различные функциональные роли. Однако основное значение этих газов определяется прежде всего тем, что они очень сильно поглощают лучистую энергию и тем самым оказывают существенное влияние на температурный режим поверхности Земли и атмосферы.

Таблица 1. Химический состав сухого атмосферного воздуха у земной поверхности

Объемная концентрация. %

Молекулярная масса, ед.

Кислород

Углекислый газ

Закись азота

от 0 до 0,00001

Двуокись серы

от 0 до 0,000007 летом;

от 0 до 0,000002 зимой

От 0 ло 0,000002

46,0055/17,03061

Двуокись азога

Окись углерода

Азот, самый распространенный газ в атмосфере, химически мало активен.

Кислород , в отличие от азота, химически очень активный элемент. Специфическая функция кислорода — окисление органического вещества гетеротрофных организмов, горных пород и недоокисленных газов, выбрасываемых в атмосферу вулканами. Без кислорода не было бы разложения мертвого органического вещества.

Роль углекислого газа в атмосфере исключительно велика. Он поступает в атмосферу в результате процессов горения, дыхания живых организмов, гниения и представляет собой, прежде всего, основной строительный материал для создания органического вещества при фотосинтезе. Кроме этого, огромное значение имеет свойство углекислого газа пропускать коротковолновую солнечную радиацию и поглощать часть теплового длинноволнового излучения, что создаст так называемый парниковый эффект, о котором речь пойдет ниже.

Влияние на атмосферные процессы, особенно на тепловой режим стратосферы, оказывает и озон. Этот газ служит естественным поглотителем ультрафиолетового излучения Солнца, а поглощение солнечной радиации ведет к нагреванию воздуха. Средние месячные значения общего содержания озона в атмосфере изменяются в зависимости от широты местности и времени года в пределах 0,23-0,52 см (такова толщина слоя озона при наземных давлении и температуре). Наблюдается увеличение содержания озона от экватора к полюсам и годовой ход с минимумом осенью и максимумом весной.

Характерным свойством атмосферы можно назвать то, что содержание основных газов (азота, кислорода, аргона) с высотой изменяется незначительно: на высоте 65 км в атмосфере содержание азота — 86 %, кислорода — 19, аргона — 0,91, на высоте же 95 км — азота 77, кислорода — 21,3, аргона — 0,82 %. Постоянство состава атмосферного воздуха по вертикали и по горизонтали поддерживается его перемешиванием.

Кроме газов, в воздухе содержатся водяной пар и твердые частицы. Последние могут иметь как естественное, так и искусственное (антропогенное) происхождение. Это цветочная пыльца, крохотные кристаллики соли, дорожная пыль, аэрозольные примеси. Когда в окно проникают солнечные лучи, их можно увидеть невооруженным глазом.

Особенно много твердых частиц в воздухе городов и крупных промышленных центров, где к аэрозолям добавляются выбросы вредных газов, их примесей, образующихся при сжигании топлива.

Концентрация аэрозолей в атмосфере определяет прозрачность воздуха, что сказывается на солнечной радиации, достигающей поверхности Земли. Наиболее крупные аэрозоли — ядра конденсации (от лат.condensatio — уплотнение, сгущение) — способствуют превращению водяного пара в водяные капли.

Значение водяного пара определяется прежде всего тем, что он задерживает длинноволновое тепловое излучение земной поверхности; представляет основное звено больших и малых круговоротов влаги; повышает температуру воздуха при конденсации водяных наров.

Количество водяного пара в атмосфере изменяется во времени и пространстве. Так, концентрация водяного пара у земной поверхности колеблется от 3 % в тропиках до 2-10 (15) % в Антарктиде.

Среднее содержание водяного пара в вертикальном столбе атмосферы в умеренных широтах составляет около 1,6-1,7 см (такую толщину будет иметь слой сконденсированного водяного пара). Сведения относительно водяного пара в различных слоях атмосферы противоречивы. Предполагалось, например, что в диапазоне высот от 20 до 30 км удельная влажность сильно увеличивается с высотой. Однако последующие измерения указывают на большую сухость стратосферы. По-видимому, удельная влажность в стратосфере мало зависит от высоты и составляет 2-4 мг/кг.

Изменчивость содержания водяного пара в тропосфере определяется взаимодействием процессов испарения, конденсации и горизонтального переноса. В результате конденсации водяного пара образуются облака и выпадают атмосферные осадки в виде дождя, града и снега.

Процессы фазовых переходов воды протекают преимущественно в тропосфере, именно поэтому облака в стратосфере (на высотах 20-30 км) и мезосфере (вблизи мезопаузы), получившие название перламутровых и серебристых, наблюдаются сравнительно редко, тогда как тропосферные облака нередко закрывают около 50 % всей земной поверхности.

Количество водяного пара, которое может содержаться в воздухе, зависит от температуры воздуха.

В 1 м 3 воздуха при температуре -20 °С может содержаться не более 1 г воды; при 0 °С — не более 5 г; при +10 °С — не более 9 г; при +30 °С — не более 30 г воды.

Вывод: чем выше температура воздуха, тем больше водяного пара может в нем содержаться.

Воздух может быть насыщенным и не насыщенным водяным паром. Так, если при температуре +30 °С в 1 м 3 воздуха содержится 15 г водяного пара, воздух не насыщен водяным паром; если же 30 г — насыщен.

Абсолютная влажность — это количество водяного пара, содержащегося в 1 м 3 воздуха. Оно выражается в граммах. Например, если говорят «абсолютная влажность равна 15», то это значит, что в 1 м Л содержится 15 г водяного пара.

Относительная влажность воздуха — это отношение (в процентах) фактического содержания водяного пара в 1 м 3 воздуха к тому количеству водяного пара, которое может содержаться в 1 м Л при данной температуре. Например, если по радио во время передачи сводки погоды сообщили, что относительная влажность равна 70 %, это значит, что воздух содержит 70 % того водяного пара, которое он может вместить при данной температуре.

Чем больше относительная влажность воздуха, т. с. чем ближе воздух к состоянию насыщения, тем вероятнее выпадение осадков.

Всегда высокая (до 90 %) относительная влажность воздуха наблюдается в экваториальной зоне, так как там в течение всего года держится высокая температура воздуха и происходит большое испарение с поверхности океанов. Такая же высокая относительная влажность и в полярных районах, но уже потому, что при низких температурах даже небольшое количество водяного пара делает воздух насыщенным или близким к насыщению. В умеренных широтах относительная влажность меняется по сезонам — зимой она выше, летом — ниже.

Особенно низкая относительная влажность воздуха в пустынях: 1 м 1 воздуха там содержит в два-три раза меньше возможного при данной температуре количество водяного пара.

Для измерения относительной влажности пользуются гигрометром (от греч. hygros — влажный и metreco — измеряю).

При охлаждении насыщенный воздух не может удержать в себе прежнего количества водяного пара, он сгущается (конденсируется), превращаясь в капельки тумана. Туман можно наблюдать летом в ясную прохладную ночь.

Облака — это тог же туман, только образуется он не у земной поверхности, а на некоторой высоте. Поднимаясь вверх, воздух охлаждается, и находящийся в нем водяной пар конденсируется. Образовавшиеся мельчайшие капельки воды и составляют облака.

В образовании облаков участвуют и твердые частицы , находящиеся в тропосфере во взвешенном состоянии.

Облака могут иметь различную форму, которая зависит от условий их образования (табл. 14).

Самые низкие и тяжелые облака — слоистые. Они располагаются на высоте 2 км от земной поверхности. На высоте от 2 до8 км можно наблюдать более живописные кучевые облака. Самые высокие и легкие — перистые облака. Они располагаются на высоте от 8 до 18 км над земной поверхностью.

Семейства

Роды облаков

Внешний облик

А. Облака верхнего яруса — выше 6 км

I. Перистые

Нитевидные, волокнистые, белые

II. Перисто-кучевые

Слои и гряды из мелких хлопьев и завитков, белые

III. Перисто-слоистые

Прозрачная белесая вуаль

Б. Облака среднего яруса — выше 2 км

IV. Высококучевые

Пласты и гряды белого и серою цвета

V. Высокослоистые

Ровная пелена молочно-серого цвета

В. Облака нижнего яруса — до 2 км

VI. Слоисто-дождевые

Сплошной бесформенный серый слой

VII. Слоисто-кучевые

Непросвечиваемые слои и гряды серого цвета

VIII. Слоистые

Непросвечиваемая пелена серого цвета

Г. Облака вертикального развития — от нижнего до верхнего яруса

IX. Кучевые

Клубы и купола ярко-бе- лого цвета, при ветре с разорванными краями

X. Кучево-дождевые

Мощные кучевообразные массы темно-свинцового цвета

Охрана атмосферы

Главным источником являются промышленные предприятия и автомобили. В больших городах проблема загазованности главных транспортных магистралей стоит очень остро. Именно поэтому во многих крупных городах мира, в том числе и в нашей стране, введен экологический контроль токсичности выхлопных газов автомобилей. Поданным специалистов, задымленность и запыленность воздуха может наполовину сократить поступление солнечной энергии к земной поверхности, что приведет к изменению природных условий.

Атмосфера Земли - это газовая оболочка нашей планеты, простирающаяся до тысячи километров ввысь над поверхностью планеты. Она характеризуется высокой динамичностью, физической неоднородностью и уязвимостью к биологическим факторам. На протяжении миллиардов лет истории атмосферы Земли, именно живые существа сильнее всего изменяли ее состав.

Атмосфера - это наш защитный купол от всяческого рода угроз из космоса. В ней сгорает большая часть метеоритов, которые падают на планету, а ее озоновый слой служит фильтром против ультрафиолетового излучения Солнца, энергия которого смертельна для живых существ. Кроме того, именно атмосфера поддерживает комфортную температуру у поверхности Земли - если бы не парниковый эффект, достигаемый за счет многократного отражения солнечных лучей от облаков, Земля была бы в среднем на 20-30 градусов холоднее. Кругооборот воды в атмосфере и движение воздушных масс не только уравновешивают температуру и влажность, но и создают земное разнообразие ландшафтных форм и минералов - такого богатства не встретить нигде в Солнечной системе.

Масса атмосферы составляет 5,2×1018 килограмм. Хотя газовые оболочки распространяются на многие тысячи километров от Земли, ее атмосферой считаются лишь те, которые вращаются вокруг оси со скоростью, равной скорости вращения планеты. Таким образом, высота атмосферы Земли составляет около 1000 километров, плавно переходя в космическое пространство в верхнем слое, экзосфере (от др. греческого «внешний шар»).

Хотя воздух и кажется однородным, он представляет собой смесь разнообразных газов. Если брать только те, которые занимают хотя бы тысячную долю объема атмосферы, их уже будет 12. Если же смотреть на общую картину, то в воздухе одновременно находится вся таблица Менделеева!

Однако добиться такого разнообразия Земле удалось не сразу. Только благодаря уникальным совпадениям химических элементов и наличию жизни атмосфера Земли стала столь сложной. Наша планета сохранила геологические следы этих процессов, что позволяет нам заглянуть на миллиарды лет назад.

Первыми газами, которые окутали молодую Землю 4,3 миллиарда лет назад, были водород и гелий - фундаментальные составляющие атмосферы газовых гигантов вроде Юпитера. Это самые элементарные вещества - из них состояли остатки туманности, родившей Солнце и окружающие его планеты, и они обильно оседали вокруг гравитационных центров-планет. Их концентрация была не очень высока, а низкая атомная масса позволяла им улетучиваться в космос, что они делают до сих пор. На сегодняшний день их общая удельная масса составляет 0,00052% от общей массы атмосферы Земли (0,00002% водорода и 0,0005% гелия), что совсем мало.
Однако внутри самой Земли крылась уйма веществ, которые стремились вырваться из раскаленных недр. Из вулканов было выброшено громадное количество газов - в первую очередь аммиак, метан и углекислый газ, а также сера. Аммиак и метан впоследствии разложились на азот, который ныне занимает львиную долю массы атмосферы Земли - 78%.

Но настоящая революция в составе атмосферы Земли произошла вместе с приходом кислорода. Он появлялся и естественным путем - раскаленная мантия молодой планеты активно избавлялась от газов, запертых под земной корой. Кроме того, водяные пары, извергаемые вулканами, расщеплялись под воздействием солнечного ультрафиолета на водород и кислород.

Однако такой кислород не мог долго задерживаться в атмосфере. Он вступал в реакции с угарным газом, свободным железом, серой и множеством других элементов на поверхности планеты - а высокие температуры и солнечное излучение катализировало химические процессы. Изменило эту ситуацию только появление живых организмов.

Во-первых, они начали выделять столько кислорода, что он не только окислил все вещества на поверхности, но и начал накапливаться - за пару миллиардов лет его количество выросло с ноля до 21% процента всей массы атмосферы.
Во-вторых, живые организмы активно использовали углерод атмосферы для построения собственных скелетов. В итоге их деятельности земная кора пополнилась целыми геологическими пластами органических материалов и ископаемых, а углекислого газа стало куда меньше

И, наконец, избыток кислорода сформировал озоновый слой, который стал защищать живые организмы от ультрафиолета. Жизнь стала эволюционировать активнее и приобретать новые, более сложные формы - среди бактерий и водорослей стали появляться высокоорганизованные существа. Сегодня в озон занимает всего 0,00001% всей массы Земли.

Вам уже наверняка известно, что синий цвет неба на Земле тоже создается кислородом - из всего радужного спектра Солнца он лучше всего рассеивает короткие волны света, отвечающие за синий цвет. Этот же эффект действует в космосе - на расстоянии Земля будто окутывается голубой дымкой, а издали и вовсе превращается в синюю точку.

Кроме того, в атмосфере в значительном количестве присутствуют благородные газы. Среди них больше всего аргона, доля которого в атмосфере составляет 0,9–1%. Его источник - ядерные процессы в глубинах Земли, а попадает на поверхность он через микротрещины в литосферных плитах и вулканические извержения (таким же образом появляется гелий в атмосфере). Из-за своих физических особенностей благородные газы поднимаются в верхние слои атмосферы, где улетучиваются в космическое пространство.

Как мы можем видеть, состав атмосферы Земли менялся уже не раз, и притом очень сильно - но на это понадобились миллионы лет. С другой стороны, жизненно важные явления очень устойчивы - озоновый слой будет существовать и функционировать, даже если на Земле будет в 100 раз меньше кислорода. На фоне общей истории планеты, деятельность человека не оставила серьезных следов. Однако в локальных масштабах цивилизация способна создавать проблемы - по крайней мере, для себя. Загрязнители воздуха уже сделали жизнь жителей китайского Пекина опасной - а громадные облака грязного тумана над большими городами видны даже из космоса.

Структура атмосферы

Однако экзосфера - это не единственный особый слой нашей атмосферы. Их существует немало, и каждый из них обладает своими уникальными характеристиками. Давайте рассмотрим несколько основных.

Тропосфера

Самый нижний и наиболее плотный слой атмосферы называется тропосферой. Читатель статьи сейчас находится именно в его «придонной» части - если, конечно, он не является одним из 500 тысяч человек, которые летят прямо сейчас в самолете. Верхний предел тропосферы зависит от широты (помните о центробежной силе вращения Земли, из-за которой планета шире на экваторе?) и колеблется от 7 километров на полюсах до 20 километров на экваторе. Также размеры тропосферы зависит от сезона - чем теплее воздух, тем выше поднимается верхний предел.

Название «тропосфера» происходит от древнегреческого слова «tropos», которое переводится как «поворот, изменение». Это достаточно точно отображает свойства слоя атмосферы - он наиболее динамичный и продуктивный. Именно в тропосфере собираются облака и циркулирует вода, создаются циклоны и антициклоны и генерируются ветра - происходят все те процессы, которые мы называем «погода» и «климат». Кроме того, это самый массивный и плотный слой - на него приходится 80% массы атмосферы и почти все содержание воды в ней. Тут же обитает большая часть живых организмов.

Всем известно, что чем выше подниматься, тем холоднее становится. Это действительно так - каждые 100 метров вверх температура воздуха падает на 0,5-0,7 градуса. Тем не менее принцип работает только в тропосфере - дальше температура с ростом высоты начинает повышаться. Зона между тропосферой и стратосферой, где температура остается неизменной, называется тропопаузой. А еще с высотой убыстряется течение ветра - на 2–3 км/с на километр ввысь. Поэтому пара- и дельтапланеристы предпочитают для полетов возвышенные плато и горы - там всегда удастся «поймать волну».

Уже упомянутое воздушное дно, где атмосфера контактирует с литосферой, называется приземным пограничным слоем. Его роль в циркуляции атмосферы невероятно велика - отдача тепла и излучения от поверхности создает ветры и перепады давления, а горы и другие неровности рельефа направляют и разделяют их. Тут же происходит водообмен - за 8–12 дней вся вода, взятая из океанов и поверхности, возвращается обратно, превращая тропосферу в своеобразный водный фильтр.

Интересный факт - на водообмене с атмосферой завязан важный процесс в жизнедеятельности растений - транспирация. С ее помощью флора планеты активно влияет на климат - так, большие зеленые массивы смягчают погоду и перепады температуры. Растения в насыщенных водой местах испаряют 99% воды, взятой из почвы. К примеру, гектар пшеницы за лето выбрасывает в атмосферу 2–3 тысячи тонн воды - это значительно больше, чем могла бы отдать безжизненная почва.

Нормальное давление у поверхности Земли - около 1000 миллибар. Эталоном считается давление в 1013 мБар, которое составляет одну «атмосферу» - с этой единицей измерения вы уже наверняка сталкивались. С ростом высоты давление стремительно падает: у границ тропосферы (на высоте 12 километров) оно составляет уже 200 мБар, а на высоте 45 километров и вовсе падает до 1 мБар. Поэтому не странно, что именно в насыщенной тропосфере собрано 80% все массы атмосферы Земли.

Стратосфера

Слой атмосферы, располагающийся в диапазоне между 8 км высоты (на полюсе) и 50 км (на экваторе), называется стратосферой. Название происходит от др. греческого слова «stratos», которое значит «настил, слой». Это крайне разреженная зона атмосферы Земли, в которой почти нет водного пара. Давление воздуха в нижней части стратосферы в 10 раз меньше приповерхностного, а в верхней части - в 100 раз.

В разговоре о тропосферу мы уже узнали, что температура в ней понижается в зависимости от высоты. В стратосфере все происходит с точностью до наоборот - с набором высоты температура вырастает от –56°C до 0–1°С. Прекращается нагрев в стратопаузе, границе между страто- и мезосферами.

Пассажирские лайнеры и сверхзвуковые самолеты обычно летают в нижних слоях стратосферы - это не только защищает их от нестабильности воздушных потоков тропосферы, но и упрощает их движение за счет малого аэродинамического сопротивления. А низкие температуры и разреженность воздуха позволяют оптимизировать потребление топлива, что особенно важно для дальних перелетов.

Однако существует технический предел высоты для самолета - приток воздуха, которого в стратосфере так мало, необходим для работы реактивных двигателей. Соответственно, для достижения нужного давления воздуха в турбине самолету приходится двигаться быстрее скорости звука. Поэтому высоко в стратосфере (на высоте 18–30 километров) могут передвигаться только боевые машины и сверхзвуковые самолеты вроде «Конкордов». Так что основными «обитателями» стратосферы являются метеорологические зонды, прикрепленные к воздушным шарам - там они могут оставаться длительное время, собирая информацию о динамике нижележащей тропосферы.

Вплоть до самого озонового слоя в атмосфере встречаются микроорганизмы - так называемый аэропланктон. Однако не одни бактерии способны выживать в стратосфере. Так, однажды в двигатель самолета на высоте 11,5 тысячи километров попал африканский сип - особая разновидность грифа. А некоторые утки во время миграций спокойно пролетают над Эверестом.

Но самым большим существом, побывавшим в стратосфере, остается человек. Текущий рекорд по высоте был установлен Аланом Юстасом - вице-президентом компании Google. В день прыжка ему было 57 лет! На специальном воздушном шаре он поднялся на высоту 41 километр над уровнем моря, а затем спрыгнул вниз с парашютом. Скорость, которую он развил в пиковый момент падения, составила 1342 км/ч - больше скорости звука! Одновременно Юстас стал первым человеком, самостоятельно преодолевшим звуковой порог скорости (не считая скафандра для поддержки жизнедеятельности и парашютов для приземления в целом виде).

Интересный факт - для того чтобы отсоединиться от воздушного шара, Юстасу понадобилось взрывное устройство - вроде того, что используется космическими ракетами при отсоединении ступеней.

А еще на границе между стратосферой и мезоферой находится знаменитый озоновый слой. Он защищает поверхность Земли от воздействия ультрафиолетовых лучей, а заодно служит верхней границей распространения жизни на планете - выше него температура, давление и космическое излучение быстро положат конец даже самым стойким бактериям.

Откуда же взялся этот щит? Ответ невероятен - он был создан живыми организмами, точнее - кислородом, которые разнообразные бактерии, водоросли и растения выделяли с незапамятных времен. Поднимаясь высоко по атмосфере, кислород контактирует с ультрафиолетовым излучением и вступает в фотохимическую реакцию. В итоге из обычного кислорода, которым мы дышим, O2, получается озон - O3.

Парадоксально, но созданный излучением Солнца озон защищает нас от этого же излучения! А еще озон не отражает, а поглощает ультрафиолет - тем самым он нагревает атмосферу вокруг себя.

Мезосфера

Мы уже упоминали, что над стратосферой - точнее, над стратопаузой, пограничной прослойкой стабильной температуры - находится мезосфера. Этот относительно небольшой слой располагается между 40–45 и 90 километров высоты и является самым холодным местом в нашей планете - в мезопаузе, верхнем слое мезосферы, воздух охлаждается до –143°C.

Мезосфера является наименее изученной частью атмосферы Земли. Экстремально малое давление газов, которое от тысячи до десяти тысяч раз ниже поверхностного, ограничивает движение воздушных шаров - их подъемная сила доходит до нуля, и они попросту зависают на месте. То же происходит с реактивными самолетами - аэродинамика крыла и корпуса самолета теряют свой смысл. Поэтому летать в мезосфере могут либо ракеты, либо самолеты с ракетными двигателями - ракетопланы. К таким относится ракетоплан X-15, который удерживает позицию самого быстрого самолета в мире: он достиг высоты в 108 километров и скорости 7200 км/ч - в 6,72 раза больше скорости звука.

Однако рекордный полет X-15 составил всего 15 минут. Это символизирует общую проблему движущихся в мезосфере аппаратов - они слишком быстры, чтобы провести какие-либо основательные исследования, и находятся на заданной высоте недолго, улетая выше или падая вниз. Также мезосферу нельзя исследовать при помощи спутников или суборбитальных зондов - пусть давление в этом слое атмосферы и низкое, оно тормозит (а порой и сжигает) космические аппараты. Из-за этих сложностей ученые часто называют мезосферу «незнайкосферой» (от англ. «ignorosphere», где «ignorance» - невежество, незнание).

А еще именно в мезосфере сгорает большинство метеоров, падающих на Землю - именно там вспыхивает метеоритный поток Персеиды, известный как «августовский звездопад». Световой эффект происходит тогда, когда космическое тело входит в атмосферу Земли под острым углом со скоростью больше 11 км/ч - от силы трения метеорит загорается.

Растеряв свою массу в мезосфере, остатки «пришельцев» оседают на Землю в виде космической пыли - каждый день на планету попадает от 100 до 10 тысяч тонн метеоритного вещества. Поскольку отдельные пылинки очень легкие, на путь к поверхности Земли у них уходит до одного месяца! Попадая в тучи, они утяжеляют их и даже иногда вызывают дожди - как вызывает их вулканический пепел или частицы от ядерных взрывов. Однако сила влияния космической пыли на дождеобразование считается небольшой - даже 10 тысяч тонн маловато, чтобы серьезно изменить естественную циркуляцию атмосферы Земли.

Термосфера. Шаттл на линии Кармана. На фото отчетливо видны все слои атмосферы.

Над мезосферой, на высоте 100 километров над уровнем моря, проходит линия Кармана - условная граница между Землей и космосом. Хотя там и присутствуют газы, которые вращаются вместе с Землей и технически входят в атмосферу, их количество выше линии Кармана незримо мало. Поэтому любой полет, который выходит за высоту 100 километров, уже считается космическим.

С линией Кармана совпадает нижняя граница самого протяженного слоя атмосферы - термосферы. Она поднимается до высоты 800 километров и отличается чрезвычайно высокой температурой - на высоте 400 километров она достигает максимума в 1800°C!

Горячо, не правда ли? При температуре в 1538°C начинает плавиться железо - как же тогда космические аппараты остаются целыми в термосфере? Все дело в чрезвычайно низкой концентрации газов в верхней атмосфере - давление посередине термосферы в 1000000 меньше концентрации воздуха у поверхности Земли! Энергия отдельно взятых частиц высока, но расстояние между ними огромное, и космические аппараты фактически находятся в вакууме. Это, впрочем, не помогает им избавляться от тепла, которое выделяют механизмы - для тепловыделения все космические аппараты оснащены радиаторами, которые излучают избыточную энергию.

На заметку. Когда речь идет о высоких температурах, всегда стоит учитывать плотность раскаленной материи - так, ученые на Андронном Коллайдере действительно могут нагреть вещество до температуры Солнца. Но очевидно, что это будут отдельные молекулы - одного грамма вещества звезды хватило бы для мощнейшего взрыва. Поэтому не стоит верить желтой прессе, которая обещает нам скорый конец света от «рук» Коллайдера, как и не стоит бояться жара в термосфере.

Термосфера фактически является открытым космосом - именно в ее пределах пролегала орбита первого советского «Спутника». Там же был апоцентр - наивысшая точка над Землей - полета корабля «Восток-1» с Юрием Гагариным на борту. Многие искусственные спутники для изучения поверхности Земли, океана и атмосферы, вроде спутников Google Maps, тоже запускаются на эту высоту. Поэтому если речь идет о НОО (Низкой Опорной Орбите, расхожий термин в космонавтике), в 99% случаев она находится в термосфере.

Орбитальные полеты людей и животных не просто так происходят в термосфере. Дело в том, что в ее верхней части, на высоте от 500 километров, простираются радиационные пояса Земли. Именно там заряженные частицы солнечного ветра ловятся и накапливаются магнитосферой. Длительное нахождение в радиационных поясах приносит непоправимый вред живым организмам и даже электронике - поэтому все высокоорбитальные аппараты обладают защитой от радиации.

Полярные сияния

В полярных широтах часто появляется зрелищное и грандиозное зрелище - полярные сияния. Они выглядят как длинные светящиеся дуги разнообразных цветов и форм, которые переливаются в небе. Их появлению Земля обязана своей магнитосферой - а, точнее, прорехами в ней возле полюсов. Заряженные частицы солнечного ветра прорываются внутрь, заставляя атмосферу светиться. Полюбоваться на самые зрелищные сияния и узнать подробнее их происхождение можно тут.

Сейчас сияния являются обыденностью для жителей приполярных стран, таких как Канада или Норвегия, а также обязательным пунктом в программе любого туриста - однако раньше им приписывались сверхъестественные свойства. В разноцветных огнях людям древности виделись врата в рай, мифические существа и костры духов, а их поведение считали прорицаниями. И наших предков можно понять - даже образование и вера в собственный разум порой не могут сдержать благоговения перед силами природы.

Экзосфера

Последний слой атмосферы Земли, нижняя граница которого проходит на высоте 700 километров - это экзосфера (от др. греческого коря «экзо» - вне, снаружи). Она невероятно рассеянная и состоит преимущественно из атомов легчайшего элемента - водорода; также попадаются отдельные атомы кислорода и азота, которые сильно ионизированы всепроникающим излучением Солнца.

Размеры экзосферы Земли невероятно велики - она перерастает в корону Земли, геокорону, которая растянута до 100 тысяч километров от планеты. Она очень разрежена - концентрация частиц в миллионы раз меньше плотности обычного воздуха. Но если Луна заслонит Землю для отдаленного космического корабля, то корона нашей планеты будет видна, как видна нам корона Солнца при его затмении. Однако наблюдать это явление пока не удавалось.

А еще именно в экзосфере происходит выветривание атмосферы Земли - из-за большого расстояния от гравитационного центра планеты частички легко отрываются от общей газовой массы и выходят на собственные орбиты. Это явление называется диссипацией атмосферы. Наша планета ежесекундно теряет 3 килограмма водорода и 50 грамм гелия из атмосферы. Только эти частицы достаточно легки, чтобы покинуть общую газовую массу.

Несложные расчеты показывают, что Земля ежегодно теряет около 110 тысяч тонн массы атмосферы. Опасно ли это? На самом деле нет - мощности нашей планеты по «производству» водорода и гелия превышают темпы потерь. Кроме того, часть потерянного вещества со временем возвращается обратно в атмосферу. А важные газы вроде кислорода или углекислого газа попросту слишком тяжелы, чтобы массово покидать Землю - поэтому не стоит бояться, что атмосфера нашей Земли улетучится.

Интересный факт - «пророки» конца света часто говорят, что если ядро Земли перестанет вращаться, атмосфера быстро выветрится под напором солнечного ветра. Однако наш читатель знает, что удерживают атмосферу возле Земли силы гравитации, которые будут действовать вне зависимости от вращения ядра. Ярким доказательством этого служит Венера, у которой неподвижное ядро и слабое магнитное поле, но зато атмосфера в 93 раза плотнее и тяжелее земной. Однако это не значит, что прекращение динамики земного ядра безопасно - тогда исчезнет магнитное поле планеты. Его роль важна не столько в сдерживании атмосферы, сколько в защите от заряженных частиц солнечного ветра, которые легко превратят нашу планету в радиоактивную пустыню.

Атмосфера Земли в астрономии

Цвет атмосферы других планет открывает нам тайны ее состава. Атмосфера Марса имеет такой же красный оттенок, как и его поверхность. Это связано с тем, что доминирующий газ на Марсе - это углекислый газ. То же самое касается экзопланет. Анализируя их цветовой спектр, мы можем узнать о составе атмосферы - даже не представляя, как планета выглядит.

А состав атмосферы, как мы знаем, может многое рассказать нам о планете. Если много углекислого газа - значит, на планете бушуют вулканы и происходят активные геологические процессы. Водные пары в атмосфере не гарантируют океанов на поверхности, но зато являются источником кислорода. А существующий избыток кислорода является почти стопроцентной гарантией наличие жизни. Ведь мы с вами уже знаем, что кислород из неживых источников сразу же тратится на химические реакции, и для его накапливания требуется биотический источник.

Кроме того, все газы и жидкости циркулируют по схожим химическим законам. Хотя вода и является уникальным по свойствам веществом, она не является незаменимым компонентом атмосферы. На Титане, спутнике Сатурна, существует газовая оболочка, схожая по строению с земной. В ней формируются все те же классы облаков, так же циркулирует жидкость в атмосфере - но ее температура на сотню градусов ниже, а вместо воды фигурирует метан!

А еще атмосфера оставляет ярко выраженные следы на поверхности Земли. Признаки ветровой эрозии остаются даже после того, как космический объект потеряет свою атмосферу. Сравнивая инопланетные и Земные ландшафты, можно с точностью определить их историю - так, теоретические изыскания, сделанные по спутниковым снимкам рельефа Марса, нашли свое подтверждение во время работы марсоходов.

Атмосфера – это газовая оболочка Земли, обеспечивающая защиту от жестких воздействий космоса и необходимая для существования жизни на нашей планете. Эта оболочка участвует в суточном вращении Земли и влияет на геологические процессы на земном шаре. Точный перевод с греческого языка слова «атмосфера»: «атмос» - «пар» и «сфера» - «шар». Атмосфера тесно взаимодействует с литосферой, гидросферой, обмениваясь теплом, влагой и химическими элементами.

Толщина данной оболочки Земли, в среднем, составляет несколько тысяч километров. По мере убывания плотности воздуха атмосфера без четкой границы переходит в космическое пространство. Верхняя граница атмосферы проходит на уровне примерно 20 тысяч километров. Нижняя ее граница проходит по уровню земной поверхности. 95% массы всей атмосферы расположено до отметки 25 км высоты, так как удерживается силой земного притяжения. Нижний слой атмосферы, состоящий из смеси газов называется воздухом. Атмосферный воздух, твердые частицы во взвешенном состоянии и водяной пар формируют атмосферу.

В процентном соотношении в смеси газов атмосферы выделяют около 78% азота, 20% кислорода, до 1% углекислого газа, аргона, водорода, некоторых других газов и водяных паров. В атмосферном воздухе азота содержится 78% - значительно больше, чем других газов. Его концентрация повышена вследствие жизнедеятельности микроорганизмов. Азот участвует в природном круговороте веществ и обеспечивает регуляцию содержания кислорода, препятствуя его избыточному накоплению. На втором месте по объемному соотношению занимает кислород (20%) . Именно благодаря наличию этого газа, в атмосфере могут осуществляться процессы горения, гниения, дыхания. Почти весь свободный кислород в атмосфере является продуктом фотосинтеза растительных организмов. Углекислый газ составляет всего 0,03% объема воздуха и образуется за счет расщепления органических веществ, при дыхании живых организмов, сгорании веществ, брожении. Он выполняет функцию обогревателя, так как этот газ пропускает энергию Солнца к земной поверхности и не пропускает тепло от Земли. Содержание других газов в атмосферном воздухе минимально.

Строение атмосферы

Атмосфера имеет слоистое строение, что определяется особенностями вертикального распределения плотности входящих в состав атмосферы газов и температуры. Таким образом, атмосфера состоит из таких концентрических оболочек: тропосфера, стратосфера, мезосфера, термосфера, экзосфера, ионосфера. До озонового экрана нижележащая атмосфера входит в состав биосферы. Тропосфера является нижним этажом атмосферы. Этот плотный и влажный слой содержит пыль, водяные пары, в нем происходят все атмосферные явления, определяется погода. Верхняя граница тропосферы непостоянна: над экватором она составляет около 18 км, а над полюсами – до 8 км. Большая часть человеческой деятельности происходит именно в тропосфере. Второй слой – стратосфера – лежит над тропосферой и простирается на высоте примерно от 10 км до 55 км. В стратосфере практически нет облаков, так как содержание водяных паров низкое, этот слой более прозрачный и холодный. В нем имеется озоновый экран – поглотитель жесткого ультрафиолетового излучения. Выше стратосферы до уровня 90 км находится мезосфера, где под действием солнечных лучей протекают различные химические реакции. Температура до верхнего уровня мезосферы постепенно понижается до -80 градусов. Термосфера находится на уровне от 80 км до 400 км. В этом слое формируются такие явления, как полярные сияния, подсвеченные ночью облака. Верхние слои атмосферы плавно переходят в космическое пространство.

Загрязнение атмосферы в последние столетия происходит из-за хозяйственной деятельности человека. Изменяется нормальный газовый состав атмосферы, загрязняется воздушное пространство. При сжигании углеводородного топлива в атмосфере накапливается углекислый газ. Также в процессе хозяйственной деятельности человека в атмосфере увеличивается содержание окидов азота, метана и некоторых других газов, что обусловливает развитие парникового эффекта, разрушение озонового слоя, появление смога и кислотных дождей.

Похожие материалы:

Атмосфера является одной из самых важных составляющих нашей планеты. Именно она "укрывает" людей от суровых условий космического пространства, таких как солнечная радиация и космический мусор. При этом многие факты об атмосфере неизвестны большинству людей.

Настоящий цвет неба

Хотя в это трудно поверить, небо на самом деле фиолетовое. Когда свет попадает в атмосферу, воздух и вода частицы поглощают свет, рассеивая его. При этом более всего рассеивается фиолетовый цвет, поэтому люди и видят голубое небо.

Эксклюзивный элемент в атмосфере Земли

Как многие помнят из школы, атмосфера Земли состоит из приблизительно 78% азота, 21% кислорода и небольших примесей аргона, углекислого газа и других газов. Но мало кто знает, что наша атмосфера является единственной, на данный момент обнаруженной учеными (помимо кометы 67P), которая имеет свободный кислород. Поскольку кислород является очень химически активным газом, он часто вступает в реакцию с другими химическими веществами в космосе. Его чистая форма на Земле делает планету пригодной для жизни.

Белая полоса на небе

Наверняка, некоторые иногда задумывались, почему за реактивным самолетом на небе остается белая полоса. Эти белые следы, известные как инверсионные, образуются, когда горячие и влажные выхлопные газы из двигателя самолета смешиваются с более холодным наружным воздухом. Водяной пар из выхлопных газов замерзает и становится видимым.

Основные слои атмосферы

Атмосфера Земли состоит из пяти основных слоев, которые и делают возможной жизнь на планете. Первый из них, тропосфера, простирается от уровня моря до высоты примерно в 17 км до на экваторе. Большая часть погодных явлений происходит именно в нем.

Озоновый слой

Следующий слой атмосферы, стратосфера достигает высоты примерно 50 км на экваторе. В ней находится озоновый слой, который защищает людей от опасных ультрафиолетовых лучей. Несмотря на то, что этот слой находится выше тропосферы, он может быть на самом деле теплее из-за поглощаемой энергии солнечных лучей. В стратосфере летают большинство реактивных самолетов и метеозондов. Самолеты могут летать в ней быстрее, поскольку здесь на них меньше влияют сила тяжести и трения. Метеозонды же могут получить лучшее представление о штормах, большинство из которых происходят ниже в тропосфере.

Мезосфера

Мезосфера - средний слой, простирающийся до высоты 85 км над поверхностью планеты. Температура в нем колеблется около -120 ° C. Большинство метеоров, которые входят в атмосферу Земли, сгорают в мезосфере. Последними двумя слоями, переходящими в космос, являются термосфера и экзосфера.

Исчезновение атмосферы

Земля, скорее всего, теряла свою атмосферу несколько раз. Когда планета была покрыта океанами магмы, в нее врезались массивные межзвездные объекты. Эти воздействия, из-за которых также образовалась Луна, возможно, впервые образовали атмосферу планеты.

Если бы не было атмосферных газов...

Без различных газов в атмосфере Земля была бы слишком холодной для существования людей. Водяной пар, углекислый газ и другие атмосферные газы поглощают тепло от солнца и «распределяют» его по поверхности планеты, помогая создать климат, пригодный для обитания.

Образование озонового слоя

Пресловутый (и важно необходимый) озоновый слой был создан, когда атомы кислорода вступили в реакцию с ультрафиолетовым светом солнца, образовав озон. Именно озон поглощает большинство вредного излучения Солнца. Несмотря на свою важность, озоновый слой был образован сравнительно недавно после того, как в океанах возникло достаточно жизни, чтобы выделять в атмосферу количество кислорода, необходимое для создания минимальной концентрации озона.

Ионосфера

Ионосфера называется так, потому что высокоэнергетические частицы из космоса и от Солнца помогают сформировать ионы, создавая «электрический слой» вокруг планеты. Когда не существовало спутников, этот слой помогал отражать радиоволны.

Кислотные дожди

Кислотный дождь, который разрушает целые леса и опустошает водные экосистемы, формируется в атмосфере, когда диоксид серы или частицы оксида азота перемешиваются с водяным паром и выпадают на землю в виде дождя. Эти химические соединения встречаются и в природе: диоксид серы вырабатывается при вулканических извержениях, а оксид азота — при ударах молний.

Мощность молний

Молнии обладают такой мощью, что всего один разряд может нагреть окружающий воздух до 30 000 ° C. Быстрый нагрев вызывает взрывное расширение близлежащего воздуха, который слышно в виде звуковой волны, называемой громом.

Полярное сияние

Aurora Borealis и Aurora Australis (северное и южное полярные сияния) вызваны реакциями ионов, происходящими в четвертом уровне атмосферы, термосфере. Когда высоко заряженные частицы солнечного ветра сталкиваются с молекулами воздуха над магнитными полюсами планеты, они светятся и создают великолепные световые шоу.

Закаты

Закаты часто выглядят как горящее небо, поскольку небольшие атмосферные частицы рассеивают свет, отражая его в оранжевых и желтых оттенках. Тот же принцип лежит в основе формирования радуг.

Обитатели верхних слоёв атмосферы

В 2013 году ученые обнаружили, что крошечные микробы способны выживать на высоте в много километров над поверхностью Земли. На высоте 8-15 км над планетой были обнаружены микробы, разрушающие органические химические вещества, которые плавают в атмосфере, «питаясь» ими.