Альдегиды превращаются в кислоты под действием. Свойства спиртов, альдегидов, кислот, сложных эфиров, фенола

АЛЬДЕГИДЫ И КЕТОНЫ

Альдегидами и кетонами называют производные углеводородов, содер­жащие карбонильную группу С=О. В молекуле альдегидов по крайней мере одна валентность карбонильной группы затрачивается на соедине­ние с атомом водорода, а другая - с радикалом (предельного ряда в пре­дельных альдегидах и непредельного - в непредельных альдегидах). Об­щая формула альдегидов:

причем R может быть равно Н.

В случае кетонов обе валентности карбонильной группы затрачиваются на соединение с радикалами. Общая формула кетонов:

Изомерия. Номенклатура.

Общая формула предельных альдегидов и кетонов С n Н 2 n O.

Изомерия альдегидов связана со строением радикалов. Так, например, известно четыре альдегида с формулой

(см. ниже).

Альдегиды называют или по кислотам, в которые они переходят при окислении (с тем же числом углеродных атомов), или по предельным угле­водородам с добавлением суффикса -аль (систематическая номенклатура).

муравьиный альдегид (формальдегид), метаналь (рис. 1а )
уксусный альдегид, этаналь (рис. 1б )
пропионовый альдегид, пропаналь
СН 3 -СН 2 -СН 2 -СНО масляный альдегид, бутаналь
изомасляный альдегид, 2-метилпропаналь
СН 3 -СН 2 -СН 2 -СН 2 -СНО валериановый альдегид, пентаналь
изовалернановый альдегид, 3-метилбутаналь
метилэтилуксусный альдегид, 2-метилбутаналь
триметилуксусный альдегид, 2,2-диметлпропаналь


Изомерия кетонов связана со строением радикалов и с положением карбонильной группы в углеродной цепи. Кетоны называют по наимено­ванию радикалов, связанных с карбонильной группой. По систематичес­кой номенклатуре к названию предельного углеводорода добавляется суф­фикс -он и указывается номер атома углерода, связанного с карбониль­ным кислородом:

Способы получения

Альдегиды и кетоны получают рядом общих методов.

1. Окислением или каталитическим дегидрированием первичных спир­тов получают альдегиды, вторичных - кетоны. Эти реакции уже приво­дились при рассмотрении химических свойств спиртов.

2. Альдегиды и кетоны удобно также получать пиролизом кислот и их смесей в виде паров над оксидами некоторых металлов (ThО 2 , МnО 2 , CaO, ZnO) при 400-450 °С:



R - СООН + Н-СООН→R-СНО + СО 2 + Н 2 0

2R-СООН→R -СО -R + C0 2 + Н 2 0

R-СООН + R" - СООН → R - СО-R’+С0 2 + Н 2 0

Во многих учебниках указывается, что альдегиды и кетоны могут быть получены пироли­зом Са- и Ва-солей карбоновых кислот. В действительности эта реакция дает очень низкие выходы. Однако некоторые метилкетоны все же могут быть получены пиролизом смесей ба­риевых или железных солей уксусной и какой-либо другой кислоты. Все эти реакции имеют радикальный механизм.

3. Гидролиз геминальных дигалогенопроизводных приводит к альдеги­дам, если оба галогена находятся у одного из крайних атомов углерода, и кетонам, если атомы галогена находятся у одного из средних атомов угле­рода. Эти реакции уже упоминались при изучении химических свойств дигалогенопроизводных углеводородов.

4. Гидратация ацетилена и его гомологов в условиях реакции Кучерова приводит соответственно к уксусному альдегиду или кетонам:

НС≡СН + Н 2 O→ СН 3 -СНО

5. Карбонильные соединения с высокими выходами (порядка 80%) образуются при окислении соответствующих спиртов смесями дпметилсульфоксида с уксусным ангидридом или безводной фосфорной кислотой.

RCH 2 OH + (CH 3) 2 SO→ RCH = О + (CH 3) 2 S

6. Превращение галогеналкилов в альдегиды с удлинением цепи на один атом углерода достигается обработкой их натрийтетракарбонилферратом в присутствии трифенилфосфина, а затем уксусной кислотой:

R - Hlg + Na 2 Fe(CO) 4 RCOFe(CO 3)P(C 6 H 5) 3 R–CH = О

Имеется несколько модификаций этого метода.

7. Кетоны с хорошими выходами получаются при взаимодействии хлорангидридов кис­лот с литийдиалкилкупратамн и кадмийалкилами:

R 2 CuLi + R"COCI→R - СО - R"+LiCI + R - Сu

8. В технике альдегиды получают прямым присоединением СО и H 2 к олефинам (оксосинтез) при 100-200 °С под давлением 10-20 МПа (100-200 атм) в присутствии кобальтового или никелевого катализато­ров (например, Со + ThO 2 + MgO, нанесенные на кизельгур):

Реакцию с этиленом и пропиленом проводят в газовой фазе, а с более сложными олефинамн (С 4 -С 20) - в жидкой фазе. Как видно из приведенной схемы, при оксосинтезе полу­чаются альдегиды, содержащие на один атом углерода больше, чем исходные олефины. Этот синтез имеет важное значение для получения высших первичных спиртов (каталитическим восстановлением альдегидов). Механизм оксосинтеза можно представить следующим образом:

2Со + 8СО→ Со 2 (СО) 8

Cо 2 (CO)8 + H 2 → 2НСо(СО) 4

R -СН=СН 2 + НСо(СО) 4 → R - СН 2 -СН 2 - Со(СО) 4

R - СН 2 -СН 2 -Со(СО) 4 +СО→ R-СН 2 -СН 2 -СО - Со(СО) 4

R-СН 2 -СН 2 -СО-Со(СО) 4 + НСо(СО) 4 →R-СН 2 -СН 2 -СНО + Со(СО) 8

Физические свойства

Муравьиный альдегид - газ с весьма резким запахом. Другие низшие альдегиды и кетоны - жидкости, легко растворимые в воде; низшие аль­дегиды обладают удушливым запахом, который при сильном разведении становится приятным (напоминает запах плодов). Кетоны пахнут доволь­но приятно.

При одном и том же составе, и строении углеродной цепи кетоны кипят при несколько более высоких температурах, чем альдегиды. Температуры кипения альдегидов и кетонов с нормальным строением цепи выше, чем у соединений изостроения. Например, валериановый альдегид кипит при 103,4 °С, а изовалериановый - при 92,5 °С. Альдегиды и кетоны кипят при температуре, значительно более низкой, чем спирты с тем же числом углеродных атомов, например у пропионового альдегида т. кип. 48,8 °С, у ацетона 65,1 °С, у н -пропилового спирта 97,8 °С. Это показывает, что альдегиды и кетоны в отличие от спиртов не являются сильно ассоцииро­ванными жидкостями. В то же время температуры кипения карбонильных соединений значительно выше температур кипения углеводородов с той же молекулярной массой, что связано с их высокой полярностью. Плот­ность альдегидов и кетонов ниже единицы.

В ИК-спектрах для СО-группы характерно интенсивное поглощение при 1720 см -1 . В спектре ЯМР сигнал водорода альдегидной группы на­ходится в очень слабом поле.

Химические свойства

Альдегиды и кетоны отличаются большой реакционной способностью. Большинство их реакций обусловлено присутствием активной карбониль­ной группы. Двойная связь карбонильной группы сходна по физической природе с двойной связью между двумя углеродными атомами (σ-связь + π-связь). Однако в то время как Е с=с <2Е с-с, энергия связи С=О (749,4 кДж/моль) больше, чем энергия двух простых С-О-связей (2х358 кДж/моль). С другой стороны, кислород является более электро­отрицательным элементом, чем углерод, и потому электронная плотность вблизи атома кислорода больше, чем вблизи атома уг­лерода. Дипольный момент карбонильной груп­пы - около 9 10 -30 Кл/м (2,7 D). Благодаря такой поляризации углеродный атом карбонильной группы обладает электрофильными свойствами и способен реагировать с нуклеофильными реагентами. Соответ­ственно атом кислорода является нуклеофильным. В реакциях присоединения отрицательно поляризо­ванная часть присоединяющейся молекулы всегда на­правляется к углеродному атому карбонильной груп­пы, в то время как ее положительно поляризованная часть направляется к кислородному атому.

Реакция присоединения нуклеофильных реагентов по месту карбо­нильной связи - ступенчатый процесс. Схематически реакцию присо­единения, например гидросульфита натрия к уксусному альдегиду, можно изобразить следующим образом:

Радикалы, способные увеличивать положительный заряд на атоме уг­лерода карбонильной группы, сильно повышают реакционную способ­ность альдегидов и кетонов; радикалы или атомы, уменьшающие положи­тельный заряд на этом углеродном атоме, оказывают противоположное действие.

Помимо реакций присоединения по карбонильной группе для альдеги­дов и кетонов характерны также реакции с участием соседних с карбо­нильной группой углеродных радикалов, обусловленные электроноакцеп­торным влиянием на них карбонильной группы. К ним относятся реакции окисления, галогенирования, конденсации.

А. Гидрирование. Присоединение водорода к альдегидам и кетонам происходит в присутствии катализаторов гидрирования (Ni, Со, Си, Pt, Pd и др.). При этом альдегиды переходят в первичные, а кетоны - во вто­ричные спирты. На этом основан один из методов получения спиртов.

В последнее время в качестве восстанавливающего агента часто применяют лнтийалюминийгидрид LiА1Н 4 . Реакция идет с переносом гидридного иона:

Преимуществом восстановления с помощью LiAlН 4 является то, что этот реагент не вос­станавливает двойные углерод-углеродные связи.

При восстановлении альдегидов или кетонов водородом в момент выде­ления (с помощью щелочных металлов или амальгамированного магния) образуются наряду с соответствующими спиртами также гликоли:

пинакон

Соотношение между образующимися спиртом и гликолем зависит от природы карбонильного соединения и условий восстановления. При вос­становлении кетонов в продуктах реакции в апротонных растворителях преобладают пинаконы; в случае алифатических насыщенных альдегидов гликоли образуются в малых количествах.

Реакция протекает с промежу­точным образованием свободных радикалов:

Б. Реакции нуклеофильного присоединения.

1. Присоединение магнийгалогеналкилов подробно разобрано при описании методов получения спиртов.

2. Присоединение синильной кислоты приводит к образованию α-оксинитрилов, омылением которых получают α-гидроксикислоты:

нитрил α-гидроксипропионовой кислоты

Эта реакция начинается нуклеофильной атакой углеродного атома ионом CN - . Циани­стый водород присоединяется очень медленно. Добавление капли раствора цианистого калия значительно ускоряет реакцию, в то время как добавление минеральной кислоты уменьшает скорость реакции практически до нуля. Это показывает, что активным реагентом при обра­зовании циангидрина является ион CN - :

3. Присоединение гидросульфита натрия дает кристаллические веще­ства, обычно называемые гидросульфитными производными альдегидов или кетонов:

При нагревании с раствором соды или минеральных кислот гидросуль­фитные производные разлагаются с выделением свободного альдегида или кетона, например:

Реакция с гидросульфитом натрия используется для качественного определения альдегидов и кетонов, а также для их выделения и очистки. Следует, однако, заметить, что в реакцию с гидросульфитом натрия в жир­ном ряду вступают только метилкетоны, имеющие группировку СН 3 -СО- .

4. Взаимодействие с аммиаком позволяет различать альдегиды и кетоны. Альдегиды выделяют воду, образуя альдимины:

ацетальдимин, этаними н

которые легко полимеризуются (циклизуются в кристаллические тримеры - альдегидаммиаки:

альдегидаммиа к

При циклизации разрывается двойная связь C = N и три молекулы имина соединяются в шестичленный цикл с чередующимися атомами углерода и азота.

Кетоны с аммиаком подобных соединений не образуют. Они реагируют очень медленно и более сложно, например, так:

5. С гидроксиламином альдегиды и кетоны, выделяя воду, образуют оксимы (альдоксимы и кетоксимы):

ацетальдоксим

ацетоноксим

Эти реакции применяют для количественного определения карбониль­ных соединений.

Механизм реакции (R=H или Alk):

6. Особый интерес представляют реакции карбонильных соединений с гидразином и его замещенными. В зависимости от условий гидразин вступает в реакцию с альдегидами и кетонами в соотношении 1:1 или 1:2. В первом случае образуются гидразоны, а во втором - азины (альдазины и кетазины):

гидразон

альдазин

кетазин

Гидразоны кетонов и альдегидов при нагревании с твердым КОН выде­ляют азот и дают предельные углеводороды (реакция Кижнера):

В настоящее время эту реакцию проводят нагреванием карбонильного соединения с гид­разином в высококипящих полярных растворителях (ди- и триэтиленгликоли) в присутствии щелочи. Реакция может быть проведена и при комнатной температуре при действии трет-бутилкалия в диметлисульфоксиде.

Альдегиды и кетоны с замещенными гидразинами - с фенилгидразином C 6 H 5 -NH-NH 2 и семикарбазидом образуют соответственно фенилгидразоны и семикарбазоны. Это кристаллические вещества. Они служат для качественного и количественного определения карбонильных соединений, а также для их выделения и очистки.

Образование фенилгидразонов:

Семикарбазоны образуются по схеме:

Реакции альдегидов и кетонов с производными гидразина по механизму аналогичны их реакциям с аммиаком и гидроксиламином. Например, для ацетальдегида и фенилгидразина:

Для этих реакций характерен кислотный катализ.

7. Альдегиды и кетоны способны присоединять по карбонильной груп­пе воду с образованием гидратов - геминальных гликолей. Эти соедине­ния во многих случаях существуют только в растворах. Положение равно­весия зависит от строения карбонилсодержащего соединения:

Так, формальдегид при 20 °С существует в водном растворе на 99,99% в форме гидрата, ацетальдегид- на 58%; в случае ацетона содержание гидрата незначительно, а хлораль и трихлорацетон образуют стойкие кри­сталлические гидраты.

Альдегиды с более высокой молекулярной массой образуют с водой устойчи­вые при низких температурах твердые полугидраты:

8.

В присутствии следов минеральной кислоты образуются ацетали:

Ацетали - жидкости с приятным эфирным запахом. При нагревании с разбавленными минеральными кислотами (но не щелочами) они подвер­гаются гидролизу с образованием спиртов и выделением альдегидов:

Ацеталь, полученный из масляного альдегида и поливинилового спир­та, используется в качестве клея при изготовлении безосколочных стекол.

Ацетали кетонов получаются более сложно - действием на кетоны этиловых эфиров ортомуравьиной НС(ОС2Н 5)з или ортокремниевой кис­лоты:

9. При действии на альдегиды спиртов образуются полуацетали:

Альдегиды и кетоны при взаимодействии с PCI 5 обменивают атом кислорода на два атома хлора, что используется для получения геминаль- ных дихлоралканов:

Эта реакция в стадии, определяющей характер конечного продукта, также является реакцией нуклеофильного присоединения:

В. Реакции окисления. Окисление альдегидов идет значительно лег­че, чем кетонов. Кроме того, окисление альдегидов приводит к образова­нию кислот без изменения углеродного скелета, в то время как кетоны окисляются с образованием двух более простых кислот или кислоты и кетона.

Альдегиды окисляются кислородом воздуха до карбоновых кислот. Промежуточными продуктами являются гидропероксиды:

Аммиачный раствор гидроксида серебра OH при легком на­гревании с альдегидами (но не с кетонами) окисляет их в кислоты с обра­зованием свободного металлического серебра. Если пробирка, в которой идет реакция, была предварительно обезжирена изнутри, то серебро ло­жится тонким слоем на ее внутренней поверхности - образуется сереб­ряное зеркало:

Эта реакция, известная под названием реакции серебряного зеркала, служит для качественного определения альдегидов.

Для альдегидов характерна также реакция с так называемой фелинговой жидкостью. Последняя представляет собой водно-щелочной рас­твор комплексной соли, образовавшейся из гидроксида меди и натрийкалиевой соли винной кислоты. При нагревании альдегидов с фелинговой жидкостью медь (II) восстанавливается до меди (I), а альдегид окисляется до кислоты:

Красная окись меди Cu 2 О почти количественно выпадает в осадок. Ре­акция эта с кетонами не идет.

Альдегиды могут быть окислены в карбоновые кислоты с помощью многих обычных окислителей, таких, как дихромат калия, перманганат ка­лия, по ионному механизму, причем первой стадией процесса обычно яв­ляется присоединение окислителя по СО-группе.

Окисление кетонов протекает с разрывом углеродной цепочки в разных направлениях в зависимости от строения кетонов.

По продуктам окисления можно судить о строении кетонов, а так как кетоны образуются при окислении вторичных спиртов, то, следовательно, и о строении этих спиртов.

Г. Реакции полимеризации. Эти реакции характерны только для аль­дегидов. При действии на альдегиды кислот происходит их тримеризация (частично и тетрамеризация):

Механизм полимеризации может быть представлен в следующем виде:

Д. Галогенирование. Альдегиды и кетоны реагируют с бромом и иодом с одинаковой скоростью независимо от концентрации галогена. Ре­акции ускоряются как кислотами, так и основаниями.

Подробное изучение этих реакций привело к выводу, что они идут с предварительным превращением карбонильного соединения в енол:

Е. Реакции конденсации.

1. Альдегиды в слабоосновной среде (в при­сутствии ацетата, карбоната или сульфита калия) подвергаются альдольной конденсации (А.П. Бородин) с образованием альдегидосииртов (гидроксиальдегидов), сокращенно называемых альдолями. Альдоли об­разуются в результате присоединения альдегида к карбонильной группе другой молекулы альдегида с разрывом связи С-Н в α-положении к кар­бонилу, как это показано на примере уксусного альдегида:

альдоль

В случае альдолизацин других альдегидов, например пропионового, в реакцию вступает только группа, находящаяся в a-положении к карбо­нилу, так как только водородные атомы этой группы в достаточной степе­ни активируются карбонильной группой:

3-гидрокси-2-метилпентаналь

Если рядом с карбонилом находится четвертичный атом углерода, альдолизация невозможна. Например, триметилуксусный альдегид (СНз)зС-СНО не дает альдоля.

Механизм реакции альдольной конденсации, катализируемой основа­ниями, следующий. Альдегид проявляет свойства СН-кислоты. Гидроксильный ион (катализатор) обратимо отрывает протон от а-углеродного атома:

Альдоль при нагревании (без водоотнимающих веществ) отщепляет воду с образованием непредельного кротонового альдегида:

Поэтому переход от предельного альдегида к непредельному через аль­доль называется кротоновой конденсацией. Дегидратация происходит благодаря очень большой подвижности водородных атомов в α-положении по отношению к карбонильной группе (сверхсопряжение), причем разрывается, как и во многих других случаях, p-связь по отношению к карбонильной группе.

При действии на альдегиды, способные к альдольной конденсации, сильных оснований (щелочей) в результате глубокой альдольной (или кротоновой) поликонденсации происходит осмоление. Альдегиды, не спо­собные к альдольной конденсации, в этих условиях вступают в реакцию Канниццаро:

2(СН 3) 3 С-СНО +КОН→(СН 3) 3 С-COOK +(СН 3) 3 С-СН 2 ОН.

Альдольная конденсация кетонов происходит в более жестких услови­ях - в присутствии оснований, например Ва(ОН) 2 . При этом образуются Р-кетоноспирты, легко теряющие молекулу воды:

В еще более жестких условиях, например при нагревании с концентри­рованной серной кислотой, кетоны подвергаются межмолекулярной де­гидратации с образованием непредельных кетонов:

окись мезитила

Окись мезитила может реагировать с новой молекулой ацетона:

форон

Возможна и конденсация между альдегидами и кетонами, например:

3-пентен-2-он

Во всех этих реакциях вначале идет альдольная конденсация, а затем де­гидратация образовавшегося гидроксикетона.

2. Сложноэфирная конденсация альдегидов проходит при действии на них алкгоголятов алюминия в неводной среде (В.Е. Тищенко).

уксусноэтиловый эфир

Ж. Декарбонилирование. Альдегиды при нагревании с трис(трифенилфосфин)родийхлоридом претерпевают декарбонилирование с образованием углеводородов:

R-СНО + [(C 6 H 5) 3 P] 3 PhCl→ R-Н + [(C 6 H 5) 3 P] 3 RhCOCl.

При изучении химических превращений альдегидов и кетонов необхо­димо обратить внимание на существенные различия между ними. Альде­гиды легко окисляются без изменения углеродной цепи (реакция серебря­ного зеркала), кетоны окисляются трудно с разрывом цепи. Альдегиды полимеризуются под влиянием кислот, образуют альдегидоаммиаки, со спиртами в присутствии кислот дают ацетали, вступают в сложноэфирную конденсацию, дают окрашивание с фуксинсернистой кислотой. Кетоны не способны к подобным превращениям.

Отдельные представители. Применение

Муравьиный альдегид (формальдегид) - бесцветный газ с резким специфическим запахом, т. кип. -21 °С. Он ядовит, действует раздражаю­ще на слизистые оболочки глаз и дыхательных путей. Хорошо растворим в воде, 40% -ный водный раствор формальдегида называется формалином. В промышленности формальдегид получают двумя методами - непол­ным окислением метана и его некоторых гомологов и каталитическим окислением или дегидрированием метанола (при 650-700 °С над сереб­ряным катализатором):

СН 3 ОН→ Н 2 +Н 2 СО.

Благодаря отсутствию алкильного радикала формальдегиду присущи некоторые особые свойства.

1. В щелочной среде он претерпевает реакцию окисления - восста­новления (реакция Канниццаро):

2. При легком нагревании формальдегида (формалина) с аммиаком получается гексаметилентетрамин (уротропин), синтезированный впер­вые А. М. Бутлеровым:

6Н 2 С=О + 4NH 3 → 6H 2 0 + (CH 2) 6 N 4

уротропин

Уротропин в больших количествах применяют в производстве фенолформальдегидных смол, взрывчатых веществ (гексогена, получаемого ни­трованием уротропина)

гексаген

в медицине (в качестве мочегонного средства, как составная часть антигриппозного препарата кальцекса, при лечении почечных заболеваний и др.).

3. В щелочной среде, например в присутствии известкового молока, как это впервые было показано А. М. Бутлеровым, формальдегид подвер­гается альдолизации с образованием оксиальдегидов вплоть до гексоз и еще более сложных сахаров, например:

гексоза

В присутствии щелочей формальдегид может конденсироваться и с дру­гими альдегидами, образуя многоатомные спирты. Так, конденсацией формальдегида с уксусным альдегидом получают четырехатомный спирт - пентаэритрит С(СН 2 ОН) 4

СН 3 СНО + 3Н 2 СО → (НОСН 2) 3 ССНО

(НОСН 2) 3 ССНО + Н 2 СО → (НОСН 2) 4 С + НСОО -

Пентаэритрит используется для получения смол и весьма сильного взрывчатого вещества - тетранитропентаэритрита (ТЭН) C(CH 2 ОNО 2) 4 .

4. Формальдегид способен к полимеризации с образованием циклических и линейных полимеров.

5. Формальдегид способен вступать в различные реакции конденсации с образованием синтетических смол, широко применяемых в промышленно­сти. Так, поликонденсацией формальдегида с фенолом получают фенолформальдегидные смолы, с мочевиной или меламином - карбамидные смолы.

6. Продуктом конденсации формальдегида с изобутиленом (в присут­ствии H 2 SO 4) является 4,4-диметил-1,3-диоксан, который при нагрева­нии до 200-240 °С в присутствии катализаторов (SiO 2 +Н 4 Р 2 О 7) разла­гается с образованием изопрена.

Формалин широко применяется в качестве дезинфицирующего веще­ства для дезинфекции зерно- и овощехранилищ, парников, теплиц, для протравливания семян и т. д.

Уксусный альдегид, ацетальдегид СН 3 СНО - жидкость с резким неприятным запахом. Т.кип. 21 °С. Пары ацетальдегида вызывают раздра­жение слизистых оболочек, удушье, головную боль. Ацетальдегид хорошо растворим в воде и во многих органических растворителях.

Промышленные методы получения ацетальдегида уже были рассмот­рены: гидратация ацетилена, дегидрирование этилового спирта, изомери­зация окиси этилена, каталитическое окисление воздухом предельных углеводородов.

В последнее время ацетальдегид получают окислением этилена кисло­родом воздуха в присутствии катализатора по схеме:

CH 2 =CH 2 +H 2 O +PdCl 2 →CH 3 -СНО + 2HCl + Pd

Pd + 2CuC1 2 → 2CuCl + PdCl 2

2CuCl + 2HCI + 1 / 2 O 2 → 2CuCI 2 + H 2 O

2CH 2 = CH 2 + O 2 →2CH 3 CHO

Другие 1-алкены образуют в этой реакции метилкетоны.

Из ацетальдегида в промышленных масштабах получают уксусную кис­лоту, уксусный ангидрид, этиловый спирт, альдоль, бутиловый спирт, ацетали, этилацетат, пентаэритрит и ряд других веществ.

Подобно формальдегиду, он конденсируется с фенолом, аминами и дру­гими веществами, образуя синтетические смолы, которые используются в производстве различных полимерных материалов.

Под действием небольшого количества серной кислоты ацетальдегид полимеризуется в паральдегид (С 2 Н 4 О 3) 3 и метальдегид (С 2 Н 4 О 3) 4 ; количе­ства последнего возрастают с понижением температуры (до -10 °С):

Паральдегид - жидкость с т. кип. 124,5 °С, метальдегид - кристал­лическое вещество. При нагревании со следами кислоты оба эти вещества деполимеризуются, образуя ацетальдегид. Из паральдегида и аммиака по­лучают 2-метил-5-винилпиридин, используемый при синтезе сополимеров - синтетических каучуков.

Трихлоруксусный альдегид, хлораль CCI 3 CHO, получают хлориро­ванием этилового спирта.

Хлораль - бесцветная жидкость с резким запахом; с водой образует кристаллический гидрат - хлоральгидрат. Устойчивость хлоральгидрата объясняется усилением электроноакцепторных свойств карбонильного углерода под влиянием сильного индукционного эффекта хлора:

Обладает снотворным действием. Конденсацией хлораля с хлорбензо­лом получают в промышленных масштабах инсектициды.

При действии на хлораль щелочей образуется хлороформ:

Ацетон СН 3 СОСН 3 - бесцветная жидкость с характерным запахом; Т.кип.=56,1 °С, Т.пл.=0,798. Хорошо растворим в воде и во многих органиче­ских растворителях.

Ацетон получают:

1) из изопропилового спирта - окислением или дегидрированием;

2) окислением изопропилбензола, получаемого алкилированием бен­зола, наряду с фенолом;

3) ацетон-бутанольным брожением углеводов.

Ацетон в качестве растворителя применяется в больших количе­ствах в лакокрасочной промышленности, в производствах ацетатного шелка, кинопленки, бездымного пороха (пироксилина), для растворения ацетилена (в баллонах) и т. д. Он служит исходным продуктом при произ­водстве небьющегося органического стекла, кетена и т. д.

Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3.


Лекция № 11

АЛЬДЕГИДЫ И КЕТОНЫ

План

1. Методы получения.

2. Химические свойства.

2.1. Реакции нуклеофильного
присоединения.

2.2. Реакции по a -углеродному атому.

2.3. Реакции окисления и восстановления.

Альдегиды и кетоны содержат карбонильную группу
С=О. Общая формула:

1. Методы получения.

2. Химические
свойства.

Альдегиды и кетоны – один из наиболее реакционноспособных классов
органических соединений. Их химические свойства определяются присутствием
карбонильной группы. Вследствие большого различия в электроотрицательностях
углерода и кислорода и высокой поляризуемости p -связи связь С=О обладает значительной полярностью
(
m С=О =2,5-2,8 D). Атом углерода карбонильной
группы несет эффективный положительный заряд и является объектом для атаки
нуклеофилов. Основной тип реакций альдегидов и кетонов – реакции
нуклеофильного присоединения Ad
N . Кроме того, карбонильная группа оказывает влияние на
реакционную способность связи С-Н в
a -положении, повышая ее кислотность.

Таким образом, молекулы альдегидов и кетонов
содержат два основных реакционных центра – связь С=О и связь С-Н в a -положении:

2.1. Реакции нуклеофильного
присоединения.

Альдегиды и кетоны легко присоединяют нуклеофильные реагенты по С=О связи.
Процесс начинается с атаки нуклеофила по карбонильному атому углерода. Затем
образующийся на первой стадии тетраэдрический интермедиат присоединяет протон и
дает продукт присоединения:

Активность карбонильных соединений в
Ad N –реакциях зависит от величины
эффективного положительного заряда на карбонильном атоме углерода и объема
заместителей у карбонильной группы. Электронодонорные и объемистые заместители
затрудняют реакцию, электроноакцепторные заместители повышают реакционную
способность карбонильного соединения. Поэтому альдегиды в
Ad
N –реакциях активнее, чем
кетоны.

Активность карбонильных соединений повышается в
присутствии кислотных катализаторов, которые увеличивают положительный заряд на
карбонильном атоме углерода:

Альдегиды и кетоны присоединяют воду, спирты,
тиолы, синильную кислоту, гидросульфит натрия, соединения типа
NH 2 X. Все реакции присоединения
идут быстро, в мягких условиях, однако образующиеся продукты, как правило,
термодинамически не устойчивы. Поэтому реакции протекают обратимо, и содержание
продуктов присоединения в равновесной смеси может быть низким.

Присоединение воды.

Альдегиды и кетоны присоединяют воду с
образованием гидратов. Реакция протекает обратимо. Образующиеся гидраты
термодинамически не стабильны. Равновесие смещено в сторону продуктов
присоединения только в случае активных карбонильных соединений.

Продукт гидратации трихлоруксусного альдегида
хлоральгидрат – устойчивое кристаллическое соединение, которое используется в
медицине как успокаивающее и снотворное средство.

Присоединение спиртов и
тиолов.

Альдегиды присоединяют спирты с образованием полуацеталей . При избытке спирта и в присутствии кислотного катализатора
реакция идет дальше – до образования ацеталей

Реакция образования полуацеталя протекает как
нуклеофильное присоединение и ускоряется в присутствии кислот или
оснований.

Процесс образования ацеталя идет как
нуклеофильное замещение ОН группы в полуацетале и возможен только в условиях
кислотного катализа, когда группа ОН превращается в хорошую уходящую группу
(H 2 O).

Образование ацеталей – обратимый процесс. В
кислой среде полуацетали и ацетали легко гидролизуются. В щелочной среде
гидролиз не идет. Реакции образования и гидролиза ацеталей играют важную роль в
химии углеводов.

Кетоны в аналогичных условиях кеталей не
дают.

Тиолы как более сильные нуклеофилы, чем спирты,
образуют продукты присоединения и с альдегидами, и с кетонами.

Присоединение синильной
кислоты

Синильная кислота присоединяется к карбонильным соединением в условиях
основного катализа с образованием циангидринов.

Реакция имеет препаративное значение и
используется в синтезе a -гидрокси- и a -аминокислот (см. лек. № 14). Плоды некоторых растений
(например, горький миндаль) содержат циангидрины. Выделяющаяся при их
расщеплении синильная кислота оказывает отравляющее действие
.

Присоединение бисульфита
натрия.

Альдегиды и метилкетоны присоединяют бисульфит натрия NaHSO 3 c образованием бисульфитных производных.

Бисульфитные производные карбонильных соединений
– кристаллические вещества, не растворимые в избытке раствора бисульфита натрия.
Реакция используется выделения карбонильных соединений из смесей. Карбонильное
соединение может быть легко регенерировано обработкой бисульфитного производного
кислотой или щелочью.

Взаимодействие с соединениями общей
формулы NH
2 X.

Реакции протекают по общей схеме как процесс
присоединения-отщепления. Образующийся на первой стадии продукт присоединения не
устойчив и легко отщепляет воду.

По приведенной схеме с карбонильными
соединениями реагируют аммиак, первичные амины, гидразин, замещенные гидразины,
гидроксиламин.

Образующиеся производные представляют собой
кристаллические вещества, которые используют для выделения и идентификации
карбонильных соединений.

Имины (основания Шиффа) являются промежуточными
продуктами во многих ферментативных процессах (трансаминирование под действием
кофермента пиридоксальфосфата; восстановительное аминирование кетокислот при
участии кофермента НАД Н). При каталитическом гидрировании иминов образуются
амины. Процесс используется для синтеза аминов из альдегидов и кетонов и
называется восстановительным аминированием.

Восстановительное аминирование протекает in vivo
в ходе синтеза аминокислот (см. лек. № 16)

2.2. Реакции по a -углеродному атому.

Кето-енольная таутомерия.

Водород в a -положении к карбонильной группе обладает кислотными
свойствами, так как образующийся при его отщеплении анион стабилизируется за
счет резонанса.

Результатом протонной подвижности атома водорода
в a -положении
является способность карбонильных соединений к образованию енольных форм за счет
миграции протона из
a -положения к атому кислорода карбонильной группы.

Кетон и енол являются таутомерами .
Таутомеры – это изомеры, способные быстро и обратимо превращаться друг в друга
за счет миграции какой-либо группы (в данном случае – протона). Равновесие между
кетоном и енолом называют кето-енольной таутомерией.

Процесс енолизации катализируется кислотами и
основаниями. Енолизация под действием основания может быть представлена
следующей схемой:

Большинство карбонильных соединений существуют
преимущественно в кетонной форме. Содержание енольной формы возрастает с
увеличением кислотности карбонильного соединения, а также в случае
дополнительной стабилизации енольной формы за счет водородной связи или за счет
сопряжения.

Таблица 8. Содержание енольных форм и
кислотность карбонильных соединений

Например, в 1,3-дикарбонильных соединениях
подвижность протонов метиленовой группы резко увеличивается за счет
электроноакцепторного влияния двух карбонильных групп. Кроме того, енольная
форма стабилизируется за счет наличия в ней системы сопряженных p -связей и внутримолекулярной
водородной связи.

Если соединение в енольной форме представляет
собой сопряженную систему с высокой энергией стабилизации, то енольная форма
преобладает. Например, фенол существует только в енольной форме.

Енолизация и образование енолят-анионов являются
первыми стадиями реакций карбонильных соединений, протекающих по a -углеродному атому. Важнейшими
из них являются галогенирование и альдольно-кротоновая
конденсация
.

Галогенирование.

Альдегиды и кетоны легко вступают в реакцию с галогенами (Cl 2 ,
Br 2 , I 2 ) с образованием
исключительно
a -галогенпроизводных.

Реакция катализируется кислотами или
основаниями. Скорость реакции не зависит от концентрации и природы галогена.
Процесс протекает через образование енольной формы (медленная стадия), которая
затем реагирует с галогеном (быстрая стадия). Таким образом, галоген не
участвует в скорость —определяющей стадии
процесса.

Если карбонильное соединение содержит несколько a -водородных
атомов, то замещение каждого последующего происходит быстрее, чем предыдущего,
вследствие увеличения их кислотности под действием электроноакцепторного влияния
галогена. В щелочной среде ацетальдегид и метилкетоны дают
тригалогенпроизводные, которые затем расщеплятся под действием избытка щелочи с
образованием тригалогенметанов (галоформная реакция)
.

Расщепление трииодацетона протекает как реакция
нуклеофильного замещения. группы CI 3 — гидроксид-анионом, подобно S N -реакциям в карбоксильной группе (см. лек. №12).

Иодоформ выпадает из реакционной смеси в виде
бледно-желтого кристаллического осадка с характерным запахом. Иодоформную
реакцию используют в аналитических целях для обнаружения соединений типа
СH 3 -CO-R, в том числе в
клинических лабораториях для диагностики сахарного диабета.

Реакции конденсации.

В присутствии каталитических количеств кислот
или щелочей карбонильные соединения, содержащие a -водородные атомы,
претерпевают конденсацию с образованием
b -гидроксикарбонильных соединений.

В образовании связи С-С участвуют карбонильный
атом углерода одной молекулы (карбонильной компоненты ) и a -углеродный атом другой
молекулы (метиленовой компоненты ). Эта реакция носит название альдольной конденсации (по названию продукта конденсации ацетальдегида –
альдоля).

При нагревании реакционной смеси продукт легко
дегидратируется с образованием a ,b -непредельного карбонильного
соединения.

Такой тип конденсации носит название кротоновой (по названию продукта конденсации ацетальдегида – кротонового
альдегида).

Рассмотрим механизм альдольной конденсации в
щелочной среде. На первой стадии гидроксид-анион отрывает протон из a -положения карбонильного
соединения с образованием енолят-аниона. Затем енолят анион как нуклеофил
атакует карбонильный атом углерода другой молекулы карбонильного соединения.
Образующийся тетраэдрический интермедиат (алкоксид-анион) является сильным
основанием и отрывает далее протон от молекулы воды.

При альдольной конденсации двух различных
карбонильных соединений (перекрестная альдольная конденсация) возможно
образование 4-х разных продуктов. Однако этого можно избежать, если одно из
карбонильных соединений не содержит a -водородных атомов (например, ароматические альдегиды
или формальдегид) и не может выступать в качестве метиленовой компоненты.

В качестве метиленовой компоненты в реакциях
конденсации могут выступать не только карбонильные соединения, но и другие
С-Н-кислоты. Реакции конденсации имеют препаративное значение, так как позволяют
наращивать цепь углеродных атомов. По типу альдольной конденсации и
ретроальдольного распада (обратный процесс) протекают многие биохимические
процессы: гликолиз, синтез лимонной кислоты в цикле Кребса, синтез нейраминовой
кислоты.

2.3. Реакции окисления и
восстановления

Восстановление

Карбонильные соединения восстанавливаются до
спиртов в результате каталитического гидрирования или под действием
восстановителей, которые являются донорами гидрид-анионов.

[H]: H 2 /кат., кат. – Ni, Pt,
Pd;

LiAlH 4 ; NaBH 4 .

Восстановление карбонильных соединений
комплексными гидридами металлов включает нуклеофильную атаку карбонильной группы
гидрид-анионом. При последующем гидролизе образуется спирт.

Аналогично происходит восстановление
карбонильной группы in vivo под действием кофермента НАД Н, который является
донором гидрид-иона (см. лек. №19).

Окисление

Альдегиды окисляются очень легко практически
любыми окислителями, даже такими слабыми, как кислород воздуха и соединения
серебра (I) и меди (II).

Две последние реакции используются как
качественные на альдегидную группу.

В присутствии щелочей альдегиды, не содержащие a -водородных атомов
диспропорционируют с образованием спирта и кислоты (реакция Канницаро).

2HCHO + NaOH ® HCOONa + CH 3 OH

Это является причиной того, что водный раствор
формальдегида (формалин) при длительном хранении приобретает кислую
реакцию.

Кетоны устойчивы к действию окислителей в
нейтральной среде. В кислой и щелочной средах под действием сильных
окислителей (KMnO 4 ) они
окисляются с разрывом связи С-С. Расщепление углеродного скелета происходит по
двойной углерод-углеродной связи енольных форм карбонильного соединения, подобно
окислению двойных связей в алкенах. При этом образуется смесь продуктов,
содержащая карбоновые кислоты или карбоновые кислоты и кетоны.

Альдегиды и кетоны характеризуются присутствием в молекуле карбонильной группы . В альдегидах карбонильная группа связана с одним атомом водорода и одним углеводородным радикалом. Все альдегйды содержат группу

называемую альдегидной группой.

Общая формула альдегидов:

Молекула альдегида содержит на два атома водорода меньше, чем молекула соответствующего спирта

т. е. альдегид - это дегидрированный (окисленный) спирт. Отсюда и произошло название «альдегид» - от соединения двух сокращенных латинских слов alcohol dehydrogenatus (дегидрированный спирт).

Предельные альдегиды и кетоны имеют одинаковую суммарную формулу

Номенклатура и изомерия. Названия альдегидов происходят от названий предельных кислот, в которые они превращаются при окислении. Это объясняется тем, что многие кислоты были открыты и получили название раньше, чем соответствующие им альдегиды.

Названия и формулы некоторых простейших альдегидов приведены ниже:

Для составления названий альдегидов по женевской номенклатуре прибавляют к названию углеводорода с таким же числом углеродных атомов окончание аль. В сложных случаях положение альдегидной группы обозначают цифрой, которая ставится после этого окончания:

Изомерия альдегидов обусловлена изомерией цепи углеродных атомов углеводородного радикала:

Названия кетонов по рациональной номенклатуре производят от названий радикалов, входящих в их молекулу, с добавлением окончания кетон, например:

Некоторые кетоны носят исторически сложившиеся названия, например диметилкетон называется ацетоном.

По женевской номенклатуре названия кетонов производят прибавляя к названию соответствующего углеводорода окончание он. В случае разветвленной цепи кетона нумерацию углеродных атомов начинают с того конца, к которому ближе находится разветвление (по правилам нумерации углеводородов). Место

занимаемое карбонильной группой, обозначается в названии дифрой, стоящей после окончания, например:

Физические свойства. Первый член гомологического ряда альдегидов - муравьиный альдегид - газ; средние представители жидкости; высшие альдегиды - твердые вещества. Низшие альдегиды обладают резким запахом, хорошр смешиваются с водой. Средние альдегиды растворимы в воде умеренно; высшие альдегиды - нерастворимы. Все альдегиды хорошо растворяются в спирте и эфире.

Низшие кетоны - жидкости с характерным запахом, легко смешивающиеся с водой. Высшие кетоны - твердые вещества. Все кетоны хорошо растворимы в спирте и эфире.

Химические реакции альдегидов и кетонов. Альдегиды и кетоны чрезвычайно реакционноспособные органические вещества. Многие их реакции протекают без нагревания и давления. Особенно характерны для альдегидов и кетонов реакции, которые протекают с участием карбонильной группы. Существуют, однако, некоторые различия в реакциях альдегидов и кетонов. Как правило, альдегиды более реакционноспособны по сравнению с кетонами.

Реакции присоединения: К карбонильной группе альдегидов и кетонов может присоединяться ряд различных веществ. При этом одна из связей, соединяющих атомы кислорода и углерода в карбонильной группе, разрывается, и к образовавшимся свободным валентностям присоединяются части реагирующего вещества. Если присоединяющееся вещество содержит водород, то последний всегда направляется к карбонильному кислороду; карбонильная группа при этом превращается в гидроксильную:

С электронной точки зрения эта" реакционная особенность карбонильного кислорода в альдегидах и кетонах объясняется тем, что электронные облака, образующие связь между атомами углерода и кислорода в карбонильной группе, сдвинуты к атому кислорода, так как последний сильнее притягивает электроны, чем атом углерода. В результате двойная связь оказывается сильно поляризованной:

К поляризованной двойной связи различные вещества присоединяются в определенйом направлении. Рассмотрим некоторые реакции присоединения, характерные для альдегидов и кетонов.

Присоединение синильной кислоты Связь в молекуле синильной кислоты также поляризована, и поэтому водород, имеющий некоторый положительный заряд, присоединяется к атому кислорода, а группа к атому углерода:

Получающиеся в этом случае срединения носят название циангиоринов (или оксинитрилов) и представляют" собой соединения со смешанными функциями (содержащие одновременно гидроксил и цианогруппу). Оксйнитрилы служат исходными веществами для синтеза различных органических соединений.

Присоединение бисульфита натрия (кислого сёрнистокислого натрия

Полученные соединения (бисульфитные соединения) - кристаллические вещества. Они используются в лабораторной практике для выделения альдегидов и кетонов в чистом состоянии из их смесей с другими веществами, так как легко разлагаются при

кипячении с содой или разбавленными кислотами с образованием исходных альдегидов и кетонов.

Присоединение металлоорганических, соединений к карбонильной группе альдегидов и кетонов рассмотрено на стр. 165.

Восстановление альдегидов и кетонов можно рассматривать как реакцию присоединения молекулы водорода к карбонильной группе. При восстановлении альдегидов образуются первичные спирты, а при восстановлении кетонов - вторичные:

Реакции замещения в ряду альдегидов и кетонов приводят к замене кислорода карбонильной группы на другие атомы или радикалы.

Действие пятигалоидного фосфора. При действии, например, пятихлористого фосфора происходит замещение карбонильного кислорода на два атома хлораи образуется дигалоидное про лзводное углеводорода:

Эти дигалоидные соединения, реагируя с водой, способны снова давать исходные альдегиды и кетоны.

Действие гидроксиламина. При действии гидроксиламина на альдегиды и кетоны образуются соответственно - альдоксимы и кетоксимы (гидроксиламин можно рассматривать как аммиак, у которого один атом водорода замещен на гидроксил):

Получающиеся в результате этой реакции оксимы в большинстве случаев представляют собой кристаллические вещества и служат для открытия и выделения альдегидов и кетонов в чистом виде.

Реакции окисления. Альдегиды легко окисляются различными окислителями, переходя в карбоновые кислоты:

Например, альдегиды легко отнимают кислород от окислов некоторых металлов. На этом свойстве основана так называемая реакция серебряного зеркала. Она заключается в том, что пр» нагревании альдегида с аммиачным раствором окиси серебра происходит окисление альдегида в кислоту и восстановление окиси серебра до металлического серебра:

Металлическое серебро оседает на стенках сосуда и образует блестящую зеркальную поверхность.

Кетоны окисляются значительно труднее. Лишь при очень энергичном окислении происходит разрыв их углеродной цепи образуются две кислоты, например:

Реакции с участием атома водорода в -положении относительно карбонильной группы.

Действие галоидов. Карбонильная группа вальдегидах и кетонах сильно влияет на подвижность водородных атомов, находящихся у углерода, стоящего рядом с карбонильной группой -положении). Так, например, при действии на альдегиды или кетоны брома или хлора они легко замещают атомы водорода в -положении:

Атомы галоида, вступившие в -положение к карбонильной группе альдегидов или кетонов, также обладают весьма большой реакционной способностью.

Реакции конденсации. Реакциями конденсации называются такие реакции уплотнения, при которых происходит образование новых углерод-углеродных связей. Реакции конденсации могут протекать без выделения простых молекул (воды, аммиака, хлористого водорода и т. п.) или же с выделением их.

Альдегиды легко вступают в реакции конденсации. Так, например, молекула уксусного альдегида под действием небольших количестб разбавленной щелочи на холоду конденсируется с другой молекулой того же альдегида:

Полученное соединение, содержащее альдегидную и спирто вую группы, получило название альдоля (сокращенное от альдегидоалкоголь), а приведенная выше реакция - альдольной конденсации. Как видно из уравнения реакции, альдольная конденсация идет за счет подвижного атома водорода в -положении к карбонильной группе.

В несколько других условиях конденсация может протекать с образованием новой двойной углерод-углеродной связи:

Полученное соединение называется кротоновым альдегидом, а реакция - кротоновой конденсацией.

Кетоньг также способны к реакциям конденсации, которые протекают несколько сложнее, чем для альдегидов.

Характерные реакции альдегидов. Для альдегидов, как соединений более реакционноспособных, чем кетоны, характерны еще следующие реакции:

Образование сложных эфиров. Если к альдегиду прибавить небольшое количество алкоголята алюминия, то протекает энергичная реакция, при которой как бы происходит окисление одной молекулы альдегида за счет восстановления другой молекулы альдегида, и образуется сложный эфир:

Эта реакция иосит название реакции Тищенко, по имени открывшего ее русского ученого.

Образование ацеталей. При нагревании альдегидов со спиртами в присутствии небольших количеств минеральных кислот происходит реакция:

Полученное соединение носит название ацеталя и представляет собой как бы простой эфир неустойчивого двухатомного спирта:

Реакция образования ацеталей обратима. При гидролизе в присутствии кислот ацетали легко распадаются с образованием исходных альдегидов и спиртов. 4

Полимеризация. Альдегиды могут образовывать линейные или циклические полимеры, причем в обоих случаях остатки молекул альдегидов связываются между собой через атом

В качестве веществ, ускоряющих процесс полимеризации альдегидов, применяются минеральные, кислоты. Циклические полимеры при нагревании расщепляются на молекулы исходных альдегидов.

Способы получения. Окисление спиртов. Как мы уже знаем, при окислении первичных спиртов образуются альдегиды, при окислении вторичных - кетоны. Окисление можно проводить с помощью различных окислителей, например бихроматом калия в кислой среде или кислородом воздуха в присутствии катализаторов - платины, меди и др. В обоих случаях реакции протекают по схеме:

Получение из дигалоидпроиззодных углеводородов. Если оба атома галоида находятся у одного и того же углеродного атома, то при нагревании таких галоидпроизводных с водой или лучше со щелочью происходит образование альдегидов или кетонов:

Действие воды на ацетиленовые углеводороды (реакция Кучерова). При действии воды на ацетилен в присутствии солей двухвалентной ртути получается уксусный альдегид:

Гомологи ацетилена в этих условиях образуют кетоны:

Оксосинтез. Оксосинтезом называется способ получения кислородсодержащих органических соединений путем взаимодействия непредельных углеводородов с окисью углерода и водородом при повышенной температуре, в присутствии кобальтового катализатора и при давлении . В результате этого процесса образуются альдегиды, содержащие на один атом углерода больше, чем исходный олефин:

Муравьиный альдегид (формальдегид) Бесцветный газ с резким специфическим запахом; хорошо растворим в воде. Водный раствор формальдегида, содержащий формальдегида в раствора, носит название формалина. При выпаривании раствора формальдегид полимеризуется с образованием твердой смеси низкомолекулярных полиоксиметиленов (параформальдегид), под действием кислот вновь дающей формальдегид.

Формальдегид - первый член гомологического ряда альдегидов. В общей формуле

у формальдегида вместо алкильного радикала находится атом водорода. Поэтому некоторые химические свойства формальдегида резко отличаются от свойств других альдегидов этого ряда. Так, найример, при действии щелочей формальдегид в отличие других альдегидов жирного ряда, осмоляющихся щёлочами, образует метиловый спирт и соль муравьиной кислоты;

При этой реакции одна молекула формальдегида восстанавливается до спирта, а другая окисляется до кислоты.

Формальдегид в громадных количествах применяется для производства фенолоформальдегидных, карбамидных и других синтетических полимеров. Исключительно ценными свойствами обладает высокомолекулярный полимер формальдегида - полиформальдегид (стр. 327).

Значительное количество формальдегида идет на приготовление изопрена (2-метилбутадиена-1,3)-исходного вещества для получения синтетического каучука.

Процесс получения изопрена из формальдегида и изобутилена протекает в две стадии по схеме:

Вторая стадия процесса протекает при 200-220 °С в присутствии производных фосфорной кислоты в качестве катализатора.

Формальдегид служит исходным веществом для производства красителей, фармацевтических препаратов, синтетического каучука, взрывчатых веществ и многих других органических соединений. Формальдегид ядовит и даже в небольших концентрациях действует раздражающе на слизистые оболочки.

Формалин (водный раствор формальдегида) довольно широко применяется в качестве антисептика (обеззараживающего средства). Интересно, что консервирующее действие дыма при копчении продуктов питания (рыба, мясо) объясняют сильным антисептическим действием формальдегида, образующегося в результате неполного сгоранйя топлива и содержащегося в дыме в небольшом количестве.

Промышленным методом получения формальдегида является каталитическое окисление метанола. Метанол окисляют в газовой фазе кислородом воздуха при 500-600 °С:

В качестве катализаторов, применяются металлические медь или серебро, осажденные на инертном пористом носителе, или в виде металлической сетки. (В последнее время стали применять, более эффективный железоокисномолибденовый

катализатор.) Для понижения температуры процесса, что благоприятствует реакции окисления и увеличению выхода формальдегида, к метанолу добавляют 10-12% воды.

На рис. 15 приведена принципиальная схема получения формальдегида путем окисления Метанола.

В испаритель 2 поступают метанол из мерника 1 и очищенный воздух через воздуходувку 4. В испарителе жидкий метанол испаряется и смешивается с воздухом, в результате чего образуется паровоздушная смесь с содержанием метанола на смеси. Нагретая до 100 °С паровоздушная смесь поступает в контактный аппарат 6, в котором и происходит окисление метанола при

Рис. 15. Схема производства формальдегида окислением метанола: 1 - мерник; 2 - испаритель; 3 - фильтр; 4 - воздуходувка; 5 - подогреватель; 6 - контактный аппарат; 7 - холодильник; 8, 10 - абсорберы; 9 - промежуточный холодильник.

Продукты реакции направляются в холодильник 7, где они охлаждаются до 100-130 °С. Затем они поступают в абсорберы 8 и 10, в которых поглощается образовавшийся формальдегид.. Абсорбер 8 орошается разбавленным раствором формальдегида, поступающим из абсорбера 10, орошаемого водой. Таким образом, полученный формальдегид выходит из абсорбера в виде водного раствора, содержащего 37,6% формальдегида и около 10% метанола. Выход формальдегида около 80%. Отоходящие из абсорбера 10 газы содержат азот (около 70%), водород (около 20%) и небольшие количества метана, кислорода, окиси и двуокиси углерода.

В последнее время получил промышленное применение способ синтеза формальдегида путем неполногб окисления концентрированного метана кислородом воздуха:

Катализатором служат окислы азота. (Окисление проводят., при температуре около 600 °С.

Уксусный альдегид (ацетальдегид) СН3-СНО. Бесцветная жидкость с резким запахом, хорошо растворимая в воде; темп. кип. +21°С. Под действием кислот он легко полимеризуется в циклические полимеры - паральдегид (жидкость), и метальдегид (твердое вещество).

Уксусный альдегид является важнейшим исходным соединением для получения уксусной кислоты, синтетических полимеров, лекарственных соединений и многих других веществ.

В промышленности имеют наибольшее распространение следующие методы получения ацетальдегида:

1. Прямая гидратация ацетилена водяным паром в присутствии жидких ртутных катализаторов (по реакции Кучерова).

3. Прямое окисление этилена кислородом воздуха в присутствии жидких палладиевых катализаторов.

Гидратация ацетилена в присутствии ртутных катализаторов проводит путем пропускания ацетилена, смешанного с водяным паром при 90-100°С, в гидрататор, заполненный катализатором, так называемой «контактной» кислотой (раствор сернокислой ртути в серной кислоте). В гидрататор также поступает непрерывно или периодически) металлическая ртуть, образующая с серной кислотой сернокислую ртуть. Смесь ацетилена с водяным паром барботирует через кислотный слой; при этом происходит гидратация ацетилена и образование ацетальдегида. Парогазовую смесь, выходящую из гидрататора, конденсируют и выделенный ацетальдегид отделяют от примесей. Выход ацетальдегида (считая на ацетилен) достигает 95%.

При гидратации ацетилена в присутствии нертутных катализаторов ацетилен разбавляют азотом, смешивают с водяным паром и полученную парогазовую смесь пропускают при высокой температуре над нертутным катализатором, например окислами цинка, кобальта, хрома или других металлов. Продолжительность контакта парогазовой смеси с катализатором составляет доли секунды, вследствие этого отсутствуют побочные реакцииг что приводит к увеличению выхода ацетальдегида и получению более чистопб продукта.

Весьма перспективным промышленным методом получения ацетальдегида является прямое окисление этилена кислородом воздуха в присутствии жидких палладиевых катализаторов:

Реакция протекает по значительно более сложной схеме, чем это изображено выше, причем образуется целый ряд побочных продуктов. Процесс проводят в трубчатых реакторах при температуре около 120 °С и давлении .

Ацетон (диметилкетон) Бесцветная жидкость с характерным запахом, хорошо растворимая в воде, темп. кип. 56,1 °С.

Ацетон является прекрасным растворителем многих органических веществ, и поэтому широко применяется в различных отраслях промышленности (производство искусственного волокна, лекарственных препаратов и др.). Ацетон используютлгакже Для синтеза различных органических соединений.

Из ацетона и ацетилена А. Е. Фаворским был получен изопрен. Реакция протекает в три стадии:

Основным промышленным методом получения ацетона является получение его из изопропилбензола одновременно с фенолом (стр. 234).

Некоторое количество ацетона получается окислительным дегидрированием или дегидрированием изопропилового спирта.

Окислительное дегидрирование изопропилового спирта может быть проведено над серебряным катализатором при 450-500 °C:

В качестве побочных продуктов образуются двуокись углерода, пропилен и уксусная кислота. Этот процесс может проводиться также в жидкой фазе при атмосферном давлении и температуре около 150 °С:

Образующаяся перекись водорода используется для различных синтезов, например для получения глицерина из акролеина (стр. 96).

Дегидрирование изопропилового спирта проводят в паровой фазе при 350-400 °С в присутствии медного катализатора:

Альдегидами называются органические соединения, в которых карбонильная группа (С-О) связана с водородом и радикалом R (остатки алифатических, ароматических и гетероциклических соединений):

Полярность карбонильной группы обеспечивает полярность молекулы в целом, поэтому альдегиды имеют более высокие температуры кипения, чем неполярные соединения сравнимой молекулярной массы.

Поскольку атомы водорода в альдегидах связаны только с атомом углерода (близкие относительные электроотрицательности), межмолекулярные водородные связи не образуются. Поэтому температуры кипения альдегидов ниже, чем у соответствующих спиртов или карбоновых кислот. В качестве примера можно сравнить температуры кипения метанола (Т^ 65 °С), муравьиной кислоты (Гкип 101 °С) и формальдегида (7^, -21 °С).

Низшие альдегиды растворимы в воде, вероятно, вследствие образования водородных связей между молекулами растворенного вещества и растворителя. Высшие альдегиды хорошо растворяются в большинстве обычных органических растворителей (спирты, эфиры). Низшие альдегиды имеют резкий запах, у альдегидов с С3-С6 весьма неприятный запах, в то время как высшие альдегиды обладают цветочными запахами и применяются в парфюмерии.

В химическом отношении альдегиды - весьма реакционноспособные соединения. Наиболее характерны для альдегидов реакции нуклеофильного присоединения, что обусловлено присутствием в молекуле электрофильного центра - карбонильного атома углерода группы С=0.

Многие из этих реакций, например, образование оксимов, семикарбазонов и других соединений, используются в качественном и количественном анализе ЛС из группы альдегидов потому, что продукты присоединения альдегидов характеризуются определенной для каждого альдегида температурой плавления. Так, альдегиды при встряхивании с насыщенным раствором гидросульфита натрия легко вступают в реакцию присоединения:

Продукты присоединения представляют собой соли, имеющие определенную температуру плавления, хорошо растворимы в воде, но не растворимы в органических растворителях.

При нагревании с разбавленными кислотами гидросульфитные производные гидролизуются до исходных соединений.

Способностью альдегидов образовывать гидросульфитные производные пользуются как для определения подлинности препарата с альдегидной группой в молекуле, так и для очистки альдегидов и выделения их из смесей с другими веществами, не реагирующими с гидросульфитом натрия.


Альдегиды также легко присоединяют аммиак и другие азотсодержащие нуклеофилы. Продукты присоединения обычно малоустойчивы и легко подвергаются дегидратации и полимеризации. Образующиеся в результате полимеризации циклические соединения при нагревании с разбавленными кислотами легко разлагаются, вновь освобождая альдегид:
r-ch-nh2 г з -NH R-СС
-зн2о "
он

Альдегиды легко окисляются. Оксид серебра(І) и другие окислители с невысоким значением окислительного потенциала способны окислять альдегиды. Например, для альдегидов характерна реакция образования серебряного зеркала, которая протекает с аммиачным раствором AgN03:

AgN03 + 3NH3 - OH + NH4N03

Реактив Толленса

При этом на стенках пробирки образуется зеркальный налет металлического серебра:

2OH + RCOH 2Agi + RCOOH + 4NH3T + Н20

Аналогично альдегиды могут восстанавливать медь(П) до меди(1). Для проведения реакции к раствору альдегида добавляют реактив Фелинга (щелочной раствор тартратного комплекса меди(П)) и нагревают. Сначала образуется желтый осадок гидроксида меди(1) - СиОН, а затем красный - оксида меди(1) - Си20:

2KNa + RCOH + 3NaOH + 2КОН -

2CuOHi + RCOONa + 4KNaC4H406 + 2H20 2CuOH - Cu20 + H20

К окислительно-восстановительным относится также реакция взаимодействия альдегидов с реактивом Несслера в щелочной среде; при этом выпадает темный осадок восстановленной ртути:

K2 + RCOH + ЗКОН - RCOOK + 4KI + Hgl + 2Н20

Следует иметь в виду, что реакция с реактивом Несслера более чувствительна, поэтому ее используют для обнаружения примесей альдегидов в ЛС. Подлинность лекарственных средств, содержащих альдегидную группу, подтверждают менее чувствительными реакциями: серебряного зеркала или с реактивом Фелинга. Некоторые другие соединения, например полифенолы, также окисляются соединениями Ag(I) и Си(П), т.е. реакция не является специфической.


Формальдегид и уксусный альдегид склонны к полимеризации. Формальдегид полимеризуется, образуя циклические тримеры, тетрамеры или линейные полимеры. Реакция полимеризации протекает в результате нуклеофильной атаки кислорода одной молекулы карбонильного атома углерода другой:

Так, из 40 % водного раствора формальдегида (формалина) образуется линейный полимер - параформ (и = 8 - 12), тример и тетрамер.

Для альдегидов характерны наркотические и дезинфицирующие свойства. По сравнению со спиртами альдегидная группа усиливает токсичность вещества. Введение галогена в молекулу альдегида повышает его наркотические свойства. Например, наркотические свойства хлораля более выражены, чем у уксусного альдегида:

с!3с-сС

Получение. Альдегиды могут быть получены окислением первичных спиртов хромовой кислотой (Na2Cr04, H2S04) при кипячении или перманганатом калия в щелочной среде:

Дегидрирование первичных спиртов осуществляют над медным катализатором (Си, Сг203) при 300-400 °С.

Промышленное производство метаналя основано на парофазном окислении метанола с железомолибденовым катализатором:

2СН3ОН + 02 500 ~600 2СН2=0 + Н20

Раствор формальдегида (формалин)

Получение. Формалин - это водный раствор формальдегида (40 %), стабилизированный метанолом (6-10 %). Европейская Фармакопея содержит ФС «Формальдегида раствор (35 %)» (см. табл. 9.1). В лабораторных условиях формальдегид может быть получен дегидрированием метанола над медью или деполимеризацией параформа.

Определение подлинности. Фармакопейный способ - реакция серебряного зеркала.

Поскольку формальдегид легко вступает в реакции конденсации, например, с гидроксилсодержащими ароматическими соединениями с образованием окрашенных соединений, ГФ рекомендует также использовать для его идентификации реакцию с салициловой кислотой, в результате которой появляется красное окрашивание:

H2S04
НО
соон

Аналогично протекает реакция с хромотроповой кислотой с образованием синефиолетовых и красно-фиолетовых продуктов (ЕФ).

Для определения подлинности фармальдегида могут быть использованы реакции с азотсодержащими нуклеофилами, например первичными аминами:

H-Ctf° + H2N-R - н-с^^К + Н20

Образующиеся N-замещенные имины (основания Шиффа) малорастворимы, некоторые из них окрашены, другие дают окрашенные соединения с ионами тяжелых металлов. ЕФ предлагает реакцию с фенилгидразином. В присутствии калия феррици- анида в кислой среде образуются продукты реакции интенсивно красного цвета.

Испытания на чистоту. Контроль примеси муравьиной кислоты осуществляют, определяя кислотность. Согласно ГФ, концентрация муравьиной кислоты в препарате не должна превышать 0,2 %; устанавливают содержание муравьиной кислоты методом нейтрализации (ГФ). Согласно ЕФ, метанол определяют методом газовой хроматографии (9-15 % об.). Сульфатная зола - не более 0,1 % в навеске 1,0 г.

I2 + 2NaOH - Nal + NaOI + Н20

Гипойодит окисляет формальдегид до муравьиной кислоты. Непрореагировавший гипойодит при подкислении раствора избытком серной кислоты превращается в йод, который оттитровывают тиосульфатом натрия:

НСОН + NaOI + NaOH - HCOONa + Nal + H20 NaOI + Nal + H2S04 -*■ I2 + Na2S04 + H20 I2 + 2Na2S203 - Na2S406 + 2NaI

Возможно использование и других титрующих агентов при определении формальдегида: водорода пероксида в щелочном растворе, церия(ІУ) сульфата, натрия сульфита.

Препарат можно рассматривать как пролекарство, так как физиологическое действие оказывает не сам гексаметилентетрамин, а формальдегид, выделяющийся при разложении препарата в кислой среде. Именно этим объясняется включение его в настоящий раздел (см. табл. 9.1).

Получение. Уротропин (тетраазаадамантан) получают конденсацией метаналя и аммиака из водных растворов. Промежуточный продукт реакции - гексагидро-1,3,5- триазин:

ll

Гексагидро- Уротропин

1,3,5-трназин


Определение подлинности. При нагревании смеси препарата с разведенной серной кислотой образуется аммонийная соль, из которой при добавлении избытка щелочи выделяется аммиак:

(CH2)6N4 + 2H2S04 + 6Н20 - 6НСОН + 2(NH4)2S04 (NH4)2S04 + 2NaOH - 2NH3t + Na2S04 + 2H20

Гексаметилентетрамин можно обнаружить также по красному окрашиванию раствора при добавлении салициловой кислоты после предварительного нагревания с серной кислотой (см. определение подлинности формальдегида).

Испытания на чистоту. В препарате не допускается присутствие примесей органических соединений, параформа, солей аммония. ГФ указывает допустимые пределы содержания примесей хлоридов, сульфатов, тяжелых металлов.

Количественное определение. Для количественного определения гексаметилентетрамина ГФ предлагает использовать метод нейтрализации. Для этого навеску препарата нагревают с избытком 0,1М раствора серной кислоты. Избыток кислоты оттитровы- вают раствором щелочи концентрацией 0,1 моль/л (индикатор метиловый красный).

На способности гексаметилентетрамина давать с йодом тетрайодиды основан йодометрический метод количественного определения.

ОПРЕДЕЛЕНИЕ

Альдегиды – органические вещества, относящиеся к классу карбонильных соединений, содержащих в своем составе функциональную группу –СН = О, которая называется карбонильной.

Общая формула предельных альдегидов и кетонов C n H 2 n O. В названии альдегидов присутствует суффикс –аль.

Простейшие представители альдегидов – формальдегид (муравьиный альдегид) –СН 2 = О, ацетальдегид (уксусный альдегид) – СН 3 -СН = О. Существуют циклические альдегиды, например, циклогексан-карбальдегид; ароматические альдегиды имеют тривиальные названия – бензальдегид, ванилин.

Атом углерода в карбонильной группе находится в состоянии sp 2 -гибридизации и образует 3σ-связи (две связи С-Н и одну связь С-О). π-связь образована р-электронами атомов углерода и кислорода. Двойная связь С = О является сочетанием σ- и π-связей. Электронная плотность смещена в сторону атома кислорода.

Для альдегидов характерна изомерия углеродного скелета, а также межклассовая изомерия с кетонами:

СН 3 -СН 2 -СН 2 -СН = О (бутаналь);

СН 3 -СН(СН 3)-СН = О (2-метилпентаналь);

СН 3 -С(СН 2 -СН 3) = О (метилэтилкетон).

Химические свойства альдегидов

В молекулах альдегидов имеется несколько реакционных центров: электрофильный центр (карбонильный атом углерода), участвующий в реакциях нуклеофильного присоединения; основный центр – атом кислорода с неподеленными электронными парами; α-СН кислотный центр, отвечающий за реакции конденсации; связь С-Н, разрывающаяся в реакциях окисления.

1. Реакции присоединения:

— воды с образованием гем-диолов

R-CH = O + H 2 O ↔ R-CH(OH)-OH;

— спиртов с образованием полуацеталей

CH 3 -CH = O + C 2 H 5 OH ↔CH 3 -CH(OH)-O-C 2 H 5 ;

— тиолов с образованием дитиоацеталей (в кислой среде)

CH 3 -CH = O + C 2 H 5 SH ↔ CH 3 -CH(SC 2 H 5)-SC 2 H 5 + H 2 O;

— гидросульфита натрия с образованием α-гидроксисульфонатов натрия

C 2 H 5 -CH = O + NaHSO 3 ↔ C 2 H 5 -CH(OH)-SO 3 Na;

— аминов с образованием N-замещенных иминов (основания Шиффа)

C 6 H 5 CH = O + H 2 NC 6 H 5 ↔ C 6 H 5 CH = NC 6 H 5 + H 2 O;

— гидразинов с образованием гидразонов

CH 3 -CH = O + 2 HN-NH 2 ↔ CH 3 -CH = N-NH 2 + H 2 O;

— циановодородной кислоты с образованием нитрилов

CH 3 -CH = O + HCN ↔ CH 3 -CH(N)-OH;

— восстановление. При взаимодействии альдегидов с водородом получаются первичные спирты:

R-CH = O + H 2 → R-CH 2 -OH;

2. Окисление

— реакция «серебряного зеркала» — окисление альдегидов аммиачным раствором оксида серебра

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓;

— окисление альдегидов гидроксидом меди (II), в результате которого выпадает осадок оксида меди (I) красного цвета

CH 3 -CH = O + 2Cu(OH) 2 → CH 3 -COOH + Cu 2 O↓ + 2H 2 O;

Эти реакции являются качественными реакциями на альдегиды.

Физические свойства альдегидов

Первый представитель гомологического ряда альдегидов – формальдегид (муравьиный альдегид) – газообразное вещество (н.у.), альдегиды неразветвленного строения и состава С 2 -С 12 – жидкости, С 13 и длиннее – твердые вещества. Чем больше атомов углерода входит в состав неразветвленного альдегида, тем выше его температура кипения. С увеличением молекулярной массы альдегидов увеличиваются значения величин их вязкости, плотности и показателя преломления. Формальдегид и ацетальдегид способны смешиваться с водой в неограниченных количествах, однако, с ростом углеводородной цепи эта способность альдегидов снижается. Низшие альдегиды обладают резким запахом.

Получение альдегидов

Основные способы получения альдегидов:

— гидроформилирование алкенов. Эта реакция заключается в присоединении СО и водорода к алкену в присутствии карбонилов некоторых металлов VIII группы, например, октакарбонилдикобальта (Cо 2 (СО) 8) Реакция проводится при нагревании до 130С и давлении 300 атм

СН 3 -СН = СН 2 + СО +Н 2 →СН 3 -СН 2 -СН 2 -СН = О + (СН 3) 2 СНСН = О;

— гидратация алкинов. Взаимодействие алкинов с водой происходит в присутствии солей ртути (II) и в кислой среде:

НС≡СН + Н 2 О → СН 3 -СН = О;

— окисление первичных спиртов (реакция протекает при нагревании)

СН 3 -СН 2 -ОН + CuO → CH 3 -CH = O + Cu + H 2 O.

Применение альдегидов

Альдегиды нашли широкое применение в качестве сырья для синтеза различных продуктов. Так, из формальдегида (крупнотоннажное производство) получают различные смолы (фенол-формальдегидные и т.д.), лекарственные препараты (уротропин); ацетальдегид — сырье для синтеза уксусной кислоты, этанола, различных производных пиридина и т.д. Многие альдегиды (масляный, коричный и др.) используют в качестве ингредиентов в парфюмерии.

Примеры решения задач

ПРИМЕР 1

Задание Бромированием С n H 2 n +2 получили 9,5 г монобромида, который при обработке разбавленным раствором NaOH превратился в кислородсодержащее соединение. Пары его с воздухом пропущены над раскаленной медной сеткой. При обработке образовавшегося при этом нового газообразного вещества избытком аммиачного раствора Ag 2 O выделилось 43,2 г осадка. Какой углеводород был взят и в каком количестве, если выход на стадии бромирования 50%, остальные реакции протекают количественно.
Решение Запишем уравнения всех протекающих реакций:

C n H 2n+2 + Br 2 = C n H 2n+1 Br + HBr;

C n H 2n+1 Br + NaOH = C n H 2n+1 OH + NaBr;

C n H 2n+1 OH → R-CH = O;

R-CH = O + Ag 2 O → R-CO-OH + 2Ag↓.

Осадок выделившийся в последней реакции – это серебро, следовательно, можно найти количество вещества выделившегося серебра:

M(Ag) = 108 г/моль;

v(Ag) = m/M = 43,2/108 = 0,4 моль.

По условию задачи, после пропускания вещества полученного в реакции 2 над раскаленной металлической сеткой образовался газ, а единственный газ –альдегид – это метаналь, следовательно, исходное вещество – это метан.

CH 4 + Br 2 = CH 3 Br + HBr.

Количество вещества бромметана:

v(CH 3 Br) = m/M = 9,5/95 = 0,1 моль.

Тогда, количество вещества метана, необходимое для 50% выхода бромметана – 0,2 моль. М(CH 4) = 16 г/моль. Следовательно масса и объем метана:

m(CH 4) = 0,2×16 = 3,2 г;

V(CH 4) = 0,2×22,4 = 4,48 л.

Ответ Масса метана — масса 3,2 г, объем метана-4,48 л

ПРИМЕР 2

Задание Напишите уравнения реакций, с помощью которых можно осуществить следующие превращения: бутен-1 → 1-бромбутан + NaOH → А – Н 2 → В + OH → С + HCl → D.
Решение Для получения 1-бромбутана из бутена-1 необходимо провести реакцию гидробромирования в присутствии пероксидных соединений R 2 O 2 (реакция протекает против правила Марковникова):

CH 3 -CH 2 -CH = CH 2 + HBr → CH 3 -CH 2 -CH 2 -CH 2 Br.

При взаимодействии с водным раствором щелочи 1-бромбутан подвергается гидролизу с образованием бутанола-1 (А):

CH 3 -CH 2 -CH 2 -CH 2 Br + NaOH → CH 3 -CH 2 -CH 2 -CH 2 OH + NaBr.

Бутанол-1 при дегидрировании образует альдегид – бутаналь (В):

CH 3 -CH 2 -CH 2 -CH 2 OH → CH 3 -CH 2 -CH 2 -CH = О.

Аммиачный раствор оксида серебра окисляет бутаналь до аммонийной соли – бутирата аммония (С):

CH 3 -CH 2 -CH 2 -CH = О + OH →CH 3 -CH 2 -CH 2 -COONH 4 + 3NH 3 + 2Ag↓ +H 2 O.

Бутират аммония при взаимодействии с соляной кислотой образует масляную (бутановую) кислоту (D):

CH 3 -CH 2 -CH 2 -COONH 4 + HCl → CH 3 -CH 2 -CH 2 -COOH + NH 4 Cl.