Размеры Вселенной: от Млечного пути до Метагалактики. Сопутствующее расстояние противоположно расстоянию углового диаметра

Наш мир, родившийся в процессе Большого взрыва, и поныне расширяется, а объем разделяющего галактики пространства стремительно увеличивается. Скопления галактик, удаляясь друг от друга, тем не менее остаются устойчивыми образованиями с определенными размерами и стабильной структурой. Да и атомы вовсе не набухают в процессе расширения Вселенной, в отличие от свободно летающих фотонов, увеличивающих свою длину волны в процессе перемещения по расширяющемуся пространству. Куда же ушла энергия реликтовых фотонов? Почему мы можем видеть квазары, удаляющиеся от нас со сверхсветовой скоростью? Что такое темная энергия? Почему доступная нам часть Вселенной все время сокращается? Это лишь часть вопросов, над которыми думают сегодня космологи, стараясь согласовать общую теорию относительности с картиной Мира, наблюдаемой астрономами.

Сфера Хаббла

Согласно закону Хаббла, описывающего расширение Вселенной, радиальные скорости галактик пропорциональны расстоянию до них с коэффициентом Н 0 , который сегодня называется постоянной Хаббла .

Значение Н 0 определяется по наблюдениям галактических объектов, расстояния до которых измерены, главным образом, по ярчайшим звёздам или цефеидам.

Большинство независимых оценок Н 0 дают для этого параметра в настоящее время значение приблизительно около 70 км/с на мегапарсек.

Это означает, что галактики, находящиеся на расстоянии 100 мегапарсек, удаляются от нас со скоростью примерно 7000 км/с.

В моделях расширяющейся Вселенной постоянная Хаббла изменяется со временем, но термин «постоянная» оправдан тем, что в каждый данный момент времени во всех точках Вселенной постоянная Хаббла одинакова.

Величина, обратная постоянной Хаббла, имеет смысл характерного времени расширения Вселенной на текущий момент. Для современного значения постоянной Хаббла, возраст Вселенной оценивается приблизительно в 13,8 млрд лет.

Относительно центра сферы Хаббла скорость расширения пространства внутри нее меньше световой, а вне ее – больше. На самой сфере Хаббла световые кванты как бы вморожены в пространство, которое расширяется там со световой скоростью, и поэтому она становится еще одним горизонтом – горизонтом фотонов .

Если расширение вселенной замедляется, то радиус сферы Хаббла возрастает, поскольку он обратно пропорционален уменьшающемуся хаббловскому параметру. В таком случае по мере старения вселенной эта сфера охватывает все новые и новые области пространства и впускает все новые и новые световые кванты. С течением времени наблюдатель увидит галактики и внутригалактические события, которые ранее находились вне его фотонного горизонта. Если же расширение вселенной ускоряется, то радиус хаббловской сферы, напротив, сокращается.

В космологии говорят о трех важных поверхностях: горизонте событий, горизонте частиц и сфере Хаббла. Две последние являются поверхностями в пространстве, а первая – в пространстве - времени. Со сферой Хаббла мы уже познакомились, поговорим теперь о горизонтах.

Горизонт частиц

Горизонт частиц отделяет наблюдаемые в настоящий момент объекты от ненаблюдаемых.

Из-за конечности скорости света наблюдатель видит небесные объекты такими, какими они были в более или менее отдаленном прошлом. За пределами горизонта частиц лежат галактики, которые в данный момент не наблюдаются ни на едином этапе их предшествующей эволюции. Это означает, что их мировые линии в пространстве-времени нигде не пересекают поверхность, по которой распространяется свет, приходящий к наблюдателю с момента рождения Вселенной. Внутри горизонта частиц расположены галактики, чьи мировые линии в прошлом пересеклись с этой поверхностью. Именно эти галактики и составляют часть Вселенной, в принципе доступную наблюдению в данный момент времени.

Для нерасширяющейся Вселенной размер горизонта частиц растет с возрастом, и рано или поздно все области Вселенной окажутся доступными для изучения. Но в расширяющейся Вселенной это не так. Более того, в зависимости от скорости расширения размер горизонта частиц может зависеть от времени, прошедшего с момента начала расширения, по более сложному закону, чем простая пропорциональность. В частности, в ускоренно расширяющейся Вселенной размер горизонта частиц может стремиться к постоянной величине. Это означает, что есть области принципиально ненаблюдаемые, есть процессы принципиально непознаваемые.

Кроме того, размер горизонта частиц ограничивает размер причинно-связанных областей. Действительно, две пространственные точки, разделенные расстоянием больше размера горизонта, никогда не взаимодействовали в прошлом. Поскольку самое быстрое взаимодействие (обмен лучами света) еще не произошло, то и любое другое взаимодействие исключено. Поэтому никакое событие в одной точке не может иметь в качестве своей причины событие, произошедшее в другой точке. В случае, когда размер горизонта частиц стремится к постоянной величине, Вселенная разбивается на причинно-несвязанные области, эволюция в которых протекает независимо.

Таким образом, нам не дано знать, какова Вселенная за пределами нынешнего горизонта частиц. Некоторые теории ранней Вселенной утверждают, что очень далеко за этим горизонтом она совсем не похожа на то, что мы видим. Этот тезис вполне научен, поскольку он вытекает из вполне разумных вычислений, однако его нельзя ни опровергнуть, ни подтвердить с помощью астрономических наблюдений, доступных в наше время, Более того, если пространство и дальше будет расширяться с ускорением, его нельзя будет проверить и в сколь угодно отдаленном будущем.

Источники на горизонте частиц имеют бесконечное красное смещение. Это самые древние фотоны, которые хотя бы теоретически можно сейчас «увидеть». Они были излучены практически в момент Большого взрыва. Тогда размер видимой сегодня части Вселенной был крайне мал, а значит, с тех пор все расстояния очень сильно выросли. Отсюда и возникает бесконечное красное смещение. Конечно, на самом деле мы не можем увидеть фотоны с самого горизонта частиц. Вселенная в годы своей молодости была непрозрачной для излучения. Поэтому фотоны с красным смещением больше 1 000 не наблюдаются. Если в будущем астрономы научатся регистрировать реликтовые нейтрино, то это позволит заглянуть в первые минуты жизни Вселенной, соответствующие красному смещению – Зх10 7 . Еще большего прогресса можно будет достичь при детектировании реликтовых гравитационных волн, добравшись до «планковских времен» (10 -43 секунд с начала взрыва). С их помощью можно будет заглянуть в прошлое настолько далеко, насколько это в принципе возможно с помощью известных на сегодня законов природы. Вблизи начального момента большого взрыва общая теория относительности уже неприменима.

Горизонт событий

Горизонт событий – это поверхность в пространстве-времени . Такой горизонт возникает не во всякой космологической модели. Например, в замедляющейся Вселенной горизонта событий нет – любое событие из жизни удаленных галактик можно увидеть, если достаточно долго подождать. Смысл введения этого горизонта в том, что он отделяет события, которые могут повлиять на нас хотя бы в будущем, от тех, которые никак повлиять на нас не смогут. Если даже световой сигнал о событии не доходит до нас, то и само событие не может оказать на нас влияние. Почему такое возможно? Причин может быть несколько. Самая простая – модель с «концом света». Если будущее ограничено во времени, то ясно, что свет от каких-то далеких галактик дойти до нас просто не сумеет. Большинство современных моделей такой возможности не предусматривают. Есть, правда, версия грядущего Большого разрыва (Big Rip), но она не очень популярна в научных кругах. Зато есть другой вариант – расширение с ускорением.

Недавнее открытие того факта, что Вселенная сейчас расширяется с ускорением, буквально взбудоражило космологов. Причин такого необычного поведения нашего мира может быть две: либо основным «наполнителем» нашей Вселенной является не обычное вещество, а неведомая материя с необычными свойствами (так называемая темная энергия), либо (еще страшнее подумать!) нужно изменять уравнения общей теории относительности. Да еще почему-то человечеству довелось жить в тот краткий по космологическим масштабам период, когда замедленное расширение только-только сменилось ускоренным. Все эти вопросы еще очень далеки от своего разрешения, но уже сегодня можно обсудить то, как ускоренное расширение (если оно будет продолжаться вечно) изменит нашу Вселенную и создаст горизонт событий . Оказывается, что жизнь далеких галактик, начиная с того момента, как они наберут достаточно большую скорость убегания, для нас остановится и их будущее станет нам неизвестно – свет от целого ряда событий просто никогда до нас не дойдет. Со временем, в достаточно далеком будущем, все галактики, не входящие в наше локальное сверхскопление размером 100 мегапарсек, скроются за горизонтом событий.

Прошлое и будущее

«Над проблемами горизонта я задумался еще в аспирантуре, причем даже не по собственной инициативе, - рассказывает профессор Вольфганг Риндлер, который до сих пор преподает физику в Техасском университете в Далласе. - Тогда была в большой моде теория Вселенной, известная как космология стабильного состояния - Steady State Cosmology. Мой научный руководитель ввязался в ожесточенный спор с авторами этой теории и предложил мне разобраться в существе разногласий. Я не стал отказываться от предложенной задачи, и в результате появилась моя работа о космологических горизонтах.

По словам профессора Риндлера, существует очень понятная интерпретация обоих горизонтов нашего мира: «Горизонт событий образован световым фронтом, который в пределе сойдется на нашей Галактике, когда возраст Вселенной возрастет до бесконечности. Напротив, горизонт частиц соответствует световому фронту, испущенному в момент Большого взрыва. Фигурально выражаясь, горизонт событий очерчивается самым последним из световых фронтов, достигающих нашей Галактики, а горизонт частиц - самым первым. Из такого определения становится понятным, что

горизонт частиц задает максимальное расстояние, с которого в нашу нынешнюю эпоху можно наблюдать произошедшее в прошлом. Горизонт событий, напротив, фиксирует максимальную дистанцию, откуда можно получить информацию о бесконечно отдаленном будущем.

Это действительно два разных горизонта, которые необходимы для полного описания эволюции мироздания».

В Солнечной системе не насчитывается и десяти планет и есть одно солнце. Галактика - это скопление солнечных систем. В галактике около двухсот миллиардов звезд. Во Вселенной миллиарды галактик. Понимаете, что такое Вселенная? Мы и сами не знаем, что это, и вряд ли узнаем в ближайший миллиард лет. И чем больше множатся наши знания о вселенной - о том, что нас окружает и вмещает все это в себя - тем больше вопросов возникает у людей.

Когда мы смотрим на Вселенную, на все ее планеты и звезды, галактики и скопления, газ, пыль, плазму, мы видим всюду одни и те же сигнатуры. Мы видим линии атомной абсорбции и эмиссии, видим, что материя взаимодействует с другими формами материи, видим звездообразование и смерть звезд, столкновения, рентгеновское излучение и многое другое. Есть очевидный вопрос, который требует объяснения: почему мы видим все это? Если законы физики диктуют симметрию между материей и антиматерией, которую мы наблюдаем, не должна существовать.

Портал сайт – это информационный ресурс, на котором Вы сможете получить много полезных и интересных знаний, связанных с Космосом. В первую очередь речь пойдет о нашей и других Вселенных, о небесных телах, черных дырах и явлениях в недрах космического пространства.

Совокупность всего существующего, материи, отдельных частиц и пространства между этими частицами называют Вселенной. По представлениям ученых и астрологов, возраст Вселенной составляет примерно 14 миллиардов лет. По размерам видимая часть Вселенной занимает около 14 млрд световых лет. А некоторые утверждают, что Вселенная простирается на 90 миллиардов световых лет. Для большего удобства в подсчетах подобных расстояний принято применять величину парсек. Один парсек равен 3,2616 световых лет, то есть парсек – это расстояние, по которому средний радиус орбиты Земли просматривается под углом одной угловой секунды.

Вооружившись данными показателями, можно подсчитать космическое расстояние от одного объекта к другому. К примеру, расстояние от нашей планеты до Луны составляет 300000 км, или 1 световая секунда. Следовательно, до Солнца это расстояние увеличивается до 8,31 световых минут.

Всю свою историю люди пытались разгадать загадки, связанные с Космосом и Вселенной. В статьях портала сайт Вы сможете узнать не только о Вселенной, но и о современных научных подходах к ее изучению. Весь материал опирается на самые передовые теории и факты.

Следует заметить, что во Вселенную входит большое число известных людям различных объектов. Самые широко известные среди них – это планеты, звезды, спутники, черные дыры, астероиды и кометы. О планетах на данный момент понятно больше всего, поскольку на одной из них мы живем. У некоторых планет есть собственные спутники. Так, у Земли есть свой спутник – Луна. Помимо нашей планеты, есть еще 8, которые вращаются вокруг Солнца.

В Космосе много звезд, но каждая из них не похожа друг на друга. Они имеют разные температуры, размеры и яркость. Поскольку все звезды разнятся, их классифицируют следующим образом:

Белые карлики;

Гиганты;

Сверхгиганты;

Нейтронные звезды;

Квазары;

Пульсары.

Самое плотное известное нам вещество – это свинец. В некоторых планетах плотность их же вещества может в тысячи раз превосходить плотность свинца, что ставит перед учеными много вопросов.

Все планеты вращаются вокруг Солнца, но оно также не стоит на месте. Звезды могут собираться в скопления, которые, в свою очередь, также вращаются вокруг пока не известного нам центра. Эти скопления называются галактиками. Наша галактика называется Млечный путь. Все проведенные исследования на данный момент говорят, что большая часть материи, которую создают галактики, пока что для человека невидима. Из-за этого ее назвали темной материей.

Самыми интересными считаются центры галактик. Некоторые астрономы считают, что возможным центром галактики является Черная дыра. Это уникальное явление, образовавшееся в результате эволюции звезды. Но пока все это лишь теории. Проведение экспериментов или исследование подобных явлений пока что невозможно.

Помимо галактик, во Вселенной присутствуют туманности (состоящие из газа, пыли и плазмы межзвездные облака), реликтовое излучение, которые пронизывают все пространство Вселенной, и многие другие малоизвестные и даже неизвестные вообще объекты.

Кругооборот эфира Вселенной

Симметрия и равновесие материальных явлений – это главный принцип структурной организации и взаимодействия в природе. Причем во всех формах: звездной плазмы и вещества, мирового и высвобожденного эфиров. Вся суть таких явлений состоит в их взаимодействиях и превращениях, большинство из которых представлены невидимым эфиром. Его еще именуют реликтовым излучением. Это микроволновое космическое фоновое излучение, имеющее температуру 2,7 К. Бытует мнение, что именно этот колеблющийся эфир и является первоосновой для всего наполняющего Вселенную. Анизотропия распределения эфира связана с направлениями и интенсивностью его перемещения в разных областях невидимого и видимого пространства. Вся трудность изучения и исследования вполне сопоставима с трудностями изучения турбулентных процессов в газах, плазмах и жидкостях материй.

Почему многие ученые считают, что Вселенная многомерная?

После проведения экспериментов в лабораториях и в самом Космосе были получены данные, из которых можно предположить, что мы живем во Вселенной, в которой размещение любого объекта можно охарактеризовать временем и тремя пространственными координатами. Из-за этого возникает предположение, что Вселенная четырехмерная. Однако некоторые ученые, разрабатывая теории элементарных частиц и квантовой гравитации, возможно, придут к мнению, что существование большого количества измерений просто необходимо. Некоторые модели Вселенной не исключают такого их количества, как 11 измерений.

Следует учесть, что существование многомерной Вселенной возможно при высокоэнергетических явлениях – черные дыры, большой взрыв, барстеры. По крайней мере, это одна из идей ведущих космологов.

Модель расширяющейся Вселенной базируется на общей теории относительности. Ее предложили для адекватного объяснения структуры красного смещения. Расширение началось в одно время с Большим взрывом. Ее состояние иллюстрирует поверхность надутого резинового шарика, на который нанесли точки – внегалактические объекты. Когда такой шарик надувается, все его точки удаляются друг от друга независимо от положения. По теории Вселенная может либо расширяться бесконечно, либо сжаться.

Барионная асимметрия Вселенной

Наблюдаемое во Вселенной значительное увеличение количества элементарных частиц над всем числом античастиц называется барионной асимметрией. К барионам относят нейтроны, протоны и еще некоторые короткоживущие элементарные частицы. Данная диспропорция получилась в эру аннигиляции, а именно через три секунды после Большого взрыва. До этого момента количество барионов и антибарионов соответствовало друг другу. Во время массовой аннигиляции элементарных античастиц и частиц большая их часть объединилась в пары и исчезла, тем самым породив электромагнитное излучение.

Возраст Вселенной на портале сайт

Ученые современности считают, что нашей Вселенной примерно 16 миллиардов лет. По подсчетам минимальный возраст может быть 12-15 миллиардов лет. Минимум отталкивается от самых старых в нашей Галактике звезд. Реальный ее возраст определить можно, только лишь при помощи закона Хаббла, но реальный не значит точный.

Горизонт видимости

Сфера с равным расстоянию радиусом, которое свет проходит за все время существования Вселенной, называется его горизонтом видимости. Существование горизонта прямо пропорционально связано с расширением и сжатием Вселенной. Согласно космологической модели Фридмана, расширяться Вселенная начала от сингулярного расстояния примерно 15-20 миллиардов лет назад. За все время свет проходит в расширяющейся Вселенной остаточное расстояние, а именно 109 световых лет. Из-за этого каждый наблюдатель момента t0 после начала процесса расширения может обозревать лишь небольшую часть, ограниченную сферой, имеющую именно в этот момент радиус I. Те тела и объекты, которые в этот момент находятся за этой границей, в принципе, не наблюдаемы. Отбиваемый от них свет попросту не успевает добраться до наблюдателя. Это невозможно, даже если свет вышел в момент начала процесса расширения.

Из-за поглощения и рассеивания в ранней Вселенной, с учетом большой плотности, фотоны не могли распространяться в свободном направлении. Поэтому наблюдатель способен зафиксировать только то излучение, которое появилось в эпоху прозрачной для излучения Вселенной. Данная эпоха определяется временем т»300 000 лет, плотностью вещества r»10-20 г/см3 и моментом рекомбинации водорода. Из всего вышесказанного следует, что чем ближе в галактике находится источник, тем большим для него будет значение красного смещения.

Большой взрыв

Момент возникновения Вселенной называют Большим взрывом. Данная концепция стоит на том, что изначально была точка (точка сингулярности), в которой присутствовала вся энергия и все вещество. Основой характеристики принято считать большую плотность материи. Что было до этой сингулярности – неизвестно.

Относительно событий и условий, которые происходили к наступлению момента 5*10-44 секунды (момент окончания 1-го кванта времени), никакой точной информации нет. В физическом отношении той эры можно лишь предположить, что тогда температура составляла примерно 1,3*1032 градуса с плотностью материи примерно 1096 кг/м 3 . Эти значения предельны для применения существующих идей. Они появляются благодаря соотношению гравитационной постоянной, скорости света, постоянных Больцмана и Планка и именуются как «планковские».

Те события, которые связаны с 5*10-44 по 10-36 секунды, отражают модель «инфляционной Вселенной». Момент 10-36 секунды относят к модели «горячей Вселенной».

В период с 1-3 по 100-120 секунд образовались ядра гелия и небольшое количество ядер остальных легких химических элементов. С этого момента в газе начало устанавливаться соотношение – водорода 78%, гелия 22%. До одного миллиона лет температура во Вселенной начала понижаться до 3000-45000 К, началась эра рекомбинации. Прежде свободные электроны начали объединяться с легкими протонами и атомными ядрами. Начали появляться атомы гелия, водорода и малое количество атомов лития. Стало прозрачным вещество, а излучение, которое наблюдается до сих пор, отсоединилось от него.

Следующий миллиард лет существования Вселенной отметился понижением температуры от 3000-45000 К до показателя в 300 К. Этот период для Вселенной ученые назвали «Темным возрастом» из-за того, что еще не появилось никаких источников электромагнитного излучения. В этот же период неоднородности смеси первоначальных газов уплотнялись благодаря воздействию гравитационных сил. Смоделировав на компьютере эти процессы, астрономы увидели, что это необратимо приводило к появлению звезд-гигантов, превышающих массу Солнца в миллионы раз. По причине такой большой массы эти звезды нагревались до немыслимо высоких температур и эволюционировали за период десятков миллионов лет, после чего они взрывались как сверхновые. Нагреваясь до больших температур, поверхности таких звезд создавали сильные потоки ультрафиолетового излучения. Таким образом, наступил период переионизации. Плазма, которая образовалась в результате таких явлений, начинала сильно рассеивать электромагнитное излучение в его спектральных коротковолновых диапазонах. В некотором смысле Вселенная начала погружаться в густой туман.

Эти огромные звезды стали первыми во Вселенной источниками химических элементов, которые намного тяжелее за литий. Начали формироваться космические объекты 2-го поколения, в которых содержались ядра этих атомов. Эти звезды начали создаваться из смесей тяжелых атомов. Произошла повторного типа рекомбинация большей части атомов межгалактического и межзвездного газов, что, в свою очередь, привело к новой прозрачности пространства для электромагнитного излучения. Вселенная стала именно такой, которую мы можем наблюдать сейчас.

Наблюдаемая структура Вселенной на портале сайт

Наблюдаемая часть пространственно неоднородна. Большинство скоплений галактик и отдельных галактик формируют ее ячеистую или сотовую структуру. Они конструируют стенки ячеек, которые имеют толщину в пару мегапарсек. Эти ячейки называют «войдами». Они характеризуются большим размером, в десятки мегапарсек, и при этом в них нет вещества с электромагнитным излучением. На долю «войд» припадает около 50% всего объема Вселенной.

Если бы наша Вселенная не расширялась, и скорость света стремилась к бесконечности, вопросы «видим ли мы всю Вселенную?» или «как далеко мы можем видеть Вселенную?» не имели бы смысла. Мы бы «в прямом эфире» видели бы все, что происходит в любом уголке космического пространства.

Но, как известно, скорость света конечна, а наша Вселенная расширяется, причем делает это с ускорением. Если скорость расширения постоянно возрастает, то существуют области, убегающие от нас со сверхсветовой скоростью, которые, согласно логике, видеть мы не можем. Но как такое возможно? Неужели это не противоречит Теории Относительности? В данном случае нет: ведь расширяется само пространство, а у объектов внутри него остаются досветовые скорости. Для наглядности можно представить себе нашу Вселенную в виде воздушного шарика, а пуговица, приклеенная к шарику, будет играть роль галактики. Попробуйте надуть шарик: галактика-пуговица начнет удаляться от вас вместе с расширением пространства шарика-Вселенной, хотя собственная скорость галактики-пуговицы останется нулевой.

Получается, должна существовать область, внутри которой находятся объекты, убегающие от нас со скоростью меньшей скорости света, и излучение которых мы можем фиксировать в свои телескопы. Эта область называется Сферой Хаббла . Она заканчивается границей, где скорость удаления далеких галактик будет совпадать со скоростью движения их фотонов, которые летят в нашем направлении (т.е. скоростью света). Эта граница получила название Горизонт Частиц . Очевидно, что объекты, находящиеся за Горизонтом Частиц, будут иметь скорость выше скорости света и их излучение не может нас достигнуть. Или все-таки может?

Давайте представим, что галактика Х находилась в Сфере Хаббла и испускала свет, который без проблем доходил до Земли. Но из-за ускоряющегося расширения Вселенной, галактика Х вышла за Горизонт Частиц, и уже удаляется от нас со скоростью выше скорости света. Но её фотоны, испущенные в момент нахождения в Сфере Хаббла, все ещё летят в направлении нашей планеты, и мы продолжаем их фиксировать, т.е. наблюдаем объект, который в данный момент удаляется от нас со скоростью, превышающей скорость света.

Но что, если галактика Y никогда не находилась в Сфере Хаббла и в момент начала излучения сразу же имела сверхсветовую скорость? Получается, ни один её фотон за все время существования не побывал в нашей части Вселенной. Но это не означает, что этого не произойдет в будущем! Нельзя забывать, что Сфера Хаббла тоже расширяется (вместе со всей Вселенной), и её расширение больше скорости, с которой от нас удаляется фотон галактики Y (мы нашли скорость удаления фотона галактики Y, вычтя из скорости убегания галактики Y скорость света). При выполнении данного условия когда-нибудь Сфера Хаббла догонит данные фотоны, и мы сможем засечь галактику Y. Наглядно данный процесс продемонстрирован на схеме внизу.

Пространство, включающее в себя Сферу Хаббла и Горизонт частиц , называется Метагалактикой или Видимой Вселенной .

Но есть ли что-нибудь, находящееся за Метагалактикой? Некоторые космические теории предполагают наличие так называемого Горизонта Событий . Возможно, вы уже слышали это название из описания черных дыр. Принцип его действия остается таким же: мы никогда не увидим то, что находится за пределами Горизонта Событий, так как находящиеся за Горизонтом Событий объекты будут иметь скорость убегания фотонов большую, чем скорость расширения Сферы Хаббла, поэтому их свет будет всегда убегать от нас.

Но чтобы Горизонт Событий существовал, Вселенная должна расширяться с ускорением (что согласуется с современными представлениями о мироустройстве). В конце концов, за Горизонт Событий уйдут все окружающие нас галактики. Это будет выглядеть так, будто время в них остановилось. Мы увидим, как они бесконечно уходят за пределы видимости, но так никогда и не увидим их полностью скрывшимися.

Это интересно: если бы вместо галактик мы наблюдали в телескоп большие часы с циферблатом, а уход за Горизонт Событий обозначал бы положение стрелок на 12:00, то они бы бесконечно долго замедлялись на 11:59:59, а изображение становилось бы более нечетким, т.к. до нас долетало бы всё меньше фотонов.

Но если ученые ошибаются, и в будущем расширение Вселенной начнет замедляться, то это сразу же отменяет существование Горизонта Событий, так как излучение любого объекта рано или поздно превысит скорость его убегания. Нужно будет только подождать сотни миллиардов лет…

Иллюстрация: depositphotos| JohanSwanepoel

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Инструкция

«Открылась бездна, звезд полна; звездам числа нет, бездне – дна», - писал в одном из стихотворений гениальный российский ученый Михаил Васильевич Ломоносов. Это и есть поэтическое утверждение бесконечности Вселенной.

Возраст «бытия» обозримой Вселенной - около 13,7 миллиардов земных лет. Свет, который приходит от далеких галактик «с края мира», идет до Земли более 14 миллиардов лет. Получается, диаметральные размеры Вселенной можно вычислить, если примерно 13,7 умножить на два, то есть 27,4 миллиарда световых лет. Радиальный размер сферической модели - примерно 78 млрд световых лет, а диаметр – 156 млрд световых лет. Это - одна из последних версий американских ученых, результат многолетних астрономических наблюдений и расчетов.

В обозримой вселенной 170 миллиардов галактик, подобных нашей. Наша как бы находится в центре гигантского шара. От самых дальних космических объектов виден реликтовый свет – фантастически древний с точки зрения человечества. Если проникнуть очень глубоко в систему пространство-время, можно увидеть юность планеты Земля.

Существует конечный предел возраста наблюдаемых с Земли светящихся космических объектов. Вычислив предельный возраст, зная время, которое понадобилось свету для того, чтобы пройти расстояние от них до поверхности Земли, и зная константу, скорость света, по известной со школы формуле S=Vxt (путь = скорость, умноженная на время) ученые и определили вероятные размеры наблюдаемой Вселенной.

Представлять Вселенную в форме трехмерного шара – не единственный путь построения модели Вселенной. Есть гипотезы, предполагающие, что Вселенная имеет не три, а бесконечное число измерений. Есть версии, что она, подобно матрешке, состоит из бесконечного множества вложенных друг в друга и отстоящих друг от друга шарообразных образований.

Есть предположение, что Вселенной неисчерпаема по различным критериям и разным осям координат. Люди считали мельчайшей частицей материи «корпускулу», потом «молекулу», потом «атом», потом «протоны и электроны», потом заговорили об элементарных частицах, которые оказались совсем не элементарными, о квантах, нейтрино и кварках… И никто не даст гарантию, что внутри очередной супермикроминичастицы материи не находится очередная Вселенная. И наоборот – что видимая Вселенная не представляет собой только микрочастицу материи Супер-Мега-Вселенной, размеры которой никому не дано даже вообразить и подсчитать, настолько они велики.