Нанороботы примеры. Нанороботы внутри нас. Наноробот - морской гребешок

– рукотворные создания размером с молекулу, которые призваны выполнять важнейшие задачи в различных сферах жизни, от науки до медицины, от военных технологий до исследований космоса. Раньше нанотехнологии существовали только в фантастической литературе и кино, но в последние годы ведущие научные центры всех развитых государств мира уделяют этой теме первостепенное значение. Разработка полноценной технологии нанороботов коренным образом изменит мировую науку и приблизит нас к тому феерическому будущему, которого так ждали фантасты.

является давнее стремление человечества приспособить в работу даже самые мельчайшие частицы материи – атомы. Желание подчинить себе природу до последней капли привело в итоге к манипуляциям с отдельными атомами, которые вот уже двадцать лет. Многие современные материалы, ранее не существовавшие в природе, создавались именно так, из атомов различных элементов в химических лабораториях. Размер одного атома составляет не больше десятой доли нанометра, отсюда и название «нанотехнологии» .

Супер наука. Нанотехнологии. Южная Корея

История нанотехнологий

Первым шагом к созданию нанороботов стало изобретение электронного микроскопа, способного перемещать по электромагнитным полям отдельные атомы . Протестировали революционную технологию еще в восьмидесятые годы прошлого века, собрав из атомов углерода пару вращающихся шестеренок размеров в нанометр. Увидев, что зачатки нанотехнологий вполне жизнеспособны, ученые через несколько лет смогли создать и первый нанодвигатель, работающий на электрической тяге. В дальнейшем они надеются переработать микроскопический мотор в манипулятор, который сам будет переставлять местами атомы, облегчая работу в лабораториях. Таким образом, нанороботы смогут дать человечеству огромные перспективы изменения внутренней молекулярной структуры любой материи – и, фактически, власть над природой.

Нанотехнологии дают нам возможность создать уникальные материалы без лишних примесей, которые можно беспрепятственно применять в любом производстве – например, идеальные сверхтвердые алмазы из атомов углерода. При широком применении нанороботов больше не нужно будет строить огромные заводы: армия маленьких работников соберет из атомов любой продукт.

Нанотехнологии. Невидимая революция

Нанороботы в медицине

Наиболее полезной областью для применения нанороботов сегодня считается медицина . Медики планируют использовать эту технологию для экстренной доставки лекарств и полезных веществ прямо в клетки, а также для уничтожения инфекций и раковых клеток. нанороботы могут проникать внутрь тканей организма и уничтожать любую болезнь мгновенно, даже без применения специальных препаратов. Это позволит бороться и с генетическими нарушениями, ведь на уровне молекул и атомов можно исправить любые ошибки природы.

Другие медицинские нанороботы конструируются для точной диагностики заболеваний, сбора данных о человеческом организме. С началом активного применения этой технологии медицина будет развиваться ускоренными темпами, ведь это шанс заглянуть внутрь работающей клетки, изучить здоровые и поврежденные опухолями ткани, в конце концов, докопаться до ранее недоступных секретов нашего тела .

Сейчас в наномедицине приоритетными являются такие направления:

  1. Доставка лекарств напрямую в или систему на клеточном уровне .
  2. или же его ослабление для борьбы с аллергическими реакциями .
  3. Хирургия с микроскопическими разрезами, позволяющая ускорить период заживления постоперационных швов .
  4. Диагностика и лечение онкологических заболеваний .
  5. Безопасное распространение в организме компонентов вакцины .

Эти методы уже проверены на лабораторных животных, сейчас готовятся испытания на людях, которые навсегда изменят мировую медицину, если будут удачными. Возьмем, к примеру, нанороботов, которые доставляют лекарства в клетки. Благодаря им во много раз уменьшится не только расход лекарственного препарата, но и количество побочных эффектов от сильнодействующих лекарств, ведь они не будут затрагивать и системы, кроме непосредственно пораженных заболеванием. Лекарство будет доставляться через ее цитоплазму. Так же упростится и вакцинация, более того – непредсказуемые антитела можно будет сразу заменить нанороботами, которые будут бороться с любыми инфекциями, попадающими в организм извне.

На сегодняшний день уже реально зафиксировано использование нанотехнологий в медицине – в первую очередь, для борьбы с раком. Наночастицы, названные липосомами, доставляют химиотерапевтические вещества внутрь раковых опухолей. В первую очередь этот метод применяется для лечения ВИЧ саркомы Капоси, миелом и рака яичников.

Нанотехнологии для жизни

Нанороботы в третьей мировой войне

Человечество бы не было собой, если бы не нашло способа применить любые высокие технологии в военном деле. Нанороботы пока не используются в качестве оружия, но разработки в этой области ведутся чуть ли не так же активно, как в области медицины. Многие футурологи прогнозируют, что в будущем войны будут вестись вообще без участия живых солдат, а, например, между армиями нанороботов. Так, американский ученый российского происхождения Алекс Кушлеев уже тестирует несколько отрядов летающих нанороботов, способных координировать действия друг с другом и создавать сложные конструкции в воздухе. Более сотни таких маленьких беспилотников могут быть действительно грозным оружием, если их обеспечить достаточной огневой мощью.

По мнению Эдварда Теллера , изобретателя водородной бомбы, именно нанотехнологии станут решающим фактором в третьей мировой войне, если таковая случится. Тот, кто первым подчинит себе боевых наноботов, сможет завоевать мир. Кроме того, нанотехнологии могут стать причиной начала этой войны, если мировые лидеры начнут пытаться похитить друг у друга передовые разработки. Поскольку нанороботы способны к самовосстановлению и конструированию себе подобных из простейших атомов, эта война действительно может стать бесконечной и необычайно разрушительной. Даже в том случае, если сражения все еще будут вестись с участием человека, наноботов используют для доставки и ядов прямо в организм вражеских солдат.

Нанороботы являются одним из краеугольных камней современного фантастического кино и литературы

Создатели фильмов и сериалов видят будущее применение нанитов в пластической хирургии (один из героев фантастического детектива «Почти человек» похищал черты чужих лиц с помощью нанороботов и изменял свое ДНК, чтобы стать более привлекательным), или вообще делают их отдельной расой, отрицательно настроенной по отношению к людям (как в сериале «Звездные врата» и фильме «День, когда Земля остановилась»). Так или иначе, развитие нанотехнологий навсегда изменит нашу жизнь. И только от нас самих зависит, насколько разрушительными будут эти изменения.

Нанороботы в медицине

Нанороботы , за разработку которых дали Нобелевскую премию по химии 2016 года, в ближайшем будущем, без сомнения, совершат переворот в медицине . Совсем недавно я рассказывал о , и как результаты в ней изложенные могут помочь продлить жизнь и сохранить здоровье уже сейчас, а сегодня мой рассказ о еще более грандиозном открытии, которое возможно, откроет путь к избавлению от болезней даже неизлечимых сегодня - например, рака даже избавит от старения, как бы фантастично это не звучало.

Нобелевскую премию по химии за 2016 год получили 3 человека, Фрейзер Стоддарт из США, Жан-Пьер Соваж из Франции, и Бернард Феринг из Голландии, они разработали молекулярны машины (их размеры в 10 тыс. раз меньше размера человеческого волоса), которые могут выполнять по команде человека определённые действия. Особо стоит отметить наномотор: его можно сравнить с изобретением электродвигателя в 1830 году. По мнению членов нобелевского комитета по важности эти изобретения равнозначны - открытие электродвигателя перевернуло жизнь человечества, и скоро стоит ждать этого и от наномашин.

Разработчики первых нанороботов

Какие же возможности открываются для применения разработанных нанороботов в медицине? Пока нанороботы используются и тестируются, только на лабораторных животных, но Рей Курцвейл предсказывает скорое их развитие до уровня применения в человеческом организме.

Нанороботы в медицине: для точной доставки лекарств

Точное дозирование, и доставка лекарств и биологически активных веществ станет простейшей задачей для медицины, сейчас вам приходится принимать препарат для лечения болезни который действует на множество органов и систем сразу, на одни он действует положительно , а другие в это время повреждает. Недавно было выяснено в исследованиях, как сильные антиоксиданты совместно со своим положительным действием на организм незаметно повреждают молекулы ДНК в организме, нанося им вред - все это происходит именно из-за неизбирательного действия препаратов.

Нанороботы в медицине: для Борьбы с раком, болезнями и вирусами

Нанороботы можно будет также применить для, уничтожения раковых клеток, как при помощи простого механического разрушения так, и используя точечную доставку лекарственных препаратов. Фактически любые подобные задачи возможно решить с помощью нанороботов — избавить от диабета,аллергии, даже уничтожить вирус СПИДа всё это не должно быть проблемой, при достаточном развитии технологии.

НАНОРОБОТЫ В МЕДИЦИНЕ: БЕССМЕРТИЕ возможно?

Могут ли нанороботы подарить нам бессмертие? Я могу ответить да — в будущем, возможно в достаточно отдаленном. Все механизмы старения не раскрыты до сих пор, а нанороботу необходимо будет дать команду для проведения изменений в организме, пока до конца не ясно, что менять говорить о полной победе над старением конечно рано, но отрадно, что работы в этом направлении признаны уже на таком высоком уровне как Нобелевская премия — скорая победа над болезнями и старением уже не за горами. Нанороботам можно поручить восстанавливать повреждения ДНК, которые накапливаются с возрастом, а также удалять клеточный мусор — что является одним из механизмов старения.

нанороботы в медицине: какие проблемы сейчас стоят перед учеными?

Основные проблемы которые мне видятся:

  • Проблема управления и точной доставки в нужное место - сейчас управляют нанороботами при помощи переменного магнитного поля, оно заставляет раскачиваться движущийся элемент - за счет чего и происходит движение. В идеале каждый наноробот должен быть управляем отдельно, при помощи команд — т , е иметь в своем составе подобие приемопередающего устройства, а также нанокомпьютер.
  • Проблема контроля положения в организме — нанороботы не могут никак сигнализировать о своём положении в организме, и о производимых изменениях. Предполагается использовать в будущем, для контроля за этим процессом приборы наподобие томографов.

Более подробно про разработки медицинских нанороботов, и наномедицину можно прочитать в википедии .

Небольшой, но очень интересный документальный фильм о наномедицине.

Конечно существуют и опасности связанные с использованием нанороботов, это так называемое их неконтролируемое самопроизводство, где в качестве топлива они начнут использовать, все что угодно — это гепотетическое явление получило название «серая слизь». Но я не хочу рассматривать негативные сценарии развития, все таки более оптимистичным хочется быть.

Эра нанороботов принадлежит к третьему мосту на пути к бессмертию, по теории Рея Курцвейла.

Первый мост : делать все, что возможно делать на сегодняшнем уровне медицины для продления жизни: физические упражнения, применение , диеты и , прием для того, что бы иметь возможность дожить до второго моста.

Второй мост : здесь в игру включаются новые технологии стоящие на передовом крае науки: генная терапия, стволовые клетки, замена изношенных органов клонированными органами тканями, цель дожить до возможностей третьего моста.

Третий мост : его основу составляют искусственный интеллект и нанотехнологии. Результатом применения технологий третьего моста должны стать специализированные нанороботы способные полностью перестраивать организм владельца.

Рей Курцвейл известнейший футуролог прогнозы которого обладают потрясающей точностью, и сбываемостью.

Вот цитата Била Гейтса про него:

Рэй Курцвейл является лучшим человеком, которого я знаю, в предсказании будущего искусственного интеллекта.

Похожих статей не найдено.

Кухарев В.Н.

Целью создания нанороботов является создание устройства, способного к манипулированию отдельными атомами. Таким образом, можно будет создавать структуры любой сложности с требуемыми свойствами. Нужно только писать соответствующие программы. Кроме того, запрограммировав одного наноробота на копирование самого себя, мы получим практически бесплатное производство. Эти роботы смогут складывать из атомов и уникальные изделия, и предметы повседневного пользования, и чинить поломки человеческого организма.

Однако, чтобы достичь всего этого, нужно ответить на множество вопросов. До сих пор неизвестен чертеж наноробота с детальной расстановкой всех его атомов. Неизвестно как сделать этот чертеж, чтобы атомы при сборке попросту не разлетелись. Общая схема ясна - робот должен иметь двигатель, располагать манипуляторами для перестановки атомов и иметь некоторый контейнер для переноски груза. Отдельные части этих конструкций уже созданы. Но как собрать их все вместе, да и создать недостающие элементы, пока непонятно - строгие методы проектирования не дают ответа, а экспериментальные требуют значительных финансовых затрат.

Современные методы проектирования нанороботов представляют собой либо набор итераций по экспоненциально сходящимся алгоритмам, которые имеют чрезмерно большую трудоемкость, иногда требующую миллионы лет расчетов, либо набор экспериментальных методов, требующих больших финансовых и временных затрат. А для создания проекта наноробота с минимальными временными и финансовыми затратами необходимо создание полиномиального по времени алгоритма с соответствующим программным обеспечением. Таким образом, оптимальное решение задачи необходимо определять на основе компромисса точных и вероятностных методов.

Рассмотрим классический метод определения координат атомов и сил, воздействующих на них, - метод молекулярной динамики. В нем определяется структурные, термодинамические, транспортные свойства и их взаимосвязи. Точность результатов определяется размерностью (числом частиц) моделируемой системы. Порядок увеличения эффективности использования вычислительных ресурсов будет возрастать с возрастанием количества частиц в модели. Насколько сейчас понятно для ассемблера нужна модель порядка 1 000 000 атомов и соответственно учета их взаимодействий.

Модель классической молекулярной динамики

В методе молекулярной динамики рассчитываются классические (ньютоновские) траектории движения атомов макромолекулы в силовом поле эмпирического атомного потенциала. Этому соответствует микроскопическая картина внутренней тепловой подвижности макромолекулы в субнаносекундных интервалах времен. Базу метода составляет численное решение классических уравнений Ньютона для системы взаимодействующих частиц:

где - радиус-вектор i-го атома, - его масса, суммарная сила, действующая на i-ый атом со стороны остальных частиц:

Здесь: -потенциальная энергия, зависящая от взаимного расположения всех атомов; n - число атомов.

Задав координаты и скорости всех частиц в начальный момент времени, числено решают уравнения движения, вычисляя на каждом шаге все силы и новые координаты и скорости частиц. Температура определяется как средняя кинетическая энергия, приходящаяся на одну степень свободы системы:

Здесь N - полное число степеней свободы молекулы, - постоянная Больцмана.

Данный метод, требует огромных вычислительных мощностей и соответственно значительного финансирования. Корпорация IBM, создавая грандиозный проект Blue Gene для моделирования процессов сворачивания белка (прототип проектирования нанороботов), намеревалась построить петафлопсный компьютер всего за пять лет, но не преуспела в этом, несмотря на солидные капиталовложения. Но, даже будучи построен, этот комплекс будет проделывать расчеты всего лишь по одному аналогу протеина не менее полугода. Причина - трудоемкость решения сложных систем дифференциальных и интегральных уравнений. Далее рассмотрим альтернативный вариант расчетов по данному проекту.

Общая схема проектирования наноробота на базе метода ветвей и границ.

Общая схема реализации алгоритма включает следующие этапы:

Определяется начальное множество G 0 , которое представляет собой множество всех решений. Для данной задачи в качестве оценки множества будет служить приближенная оценка стабильности всей молекулы, т.е. вероятностная характеристика на основе приближенного расчета всех сил на все атомы. В узлах производится оценка связей между атомами стандартными приближенными методами молекулярных расчетов (либо для еще большего ускорения работы алгоритма их модификациями, которые будут рассмотрены в будущих работах).


Рисунки вариантов начальных множеств (ISA: Engineering team working to create nanomotor).

Исходное множество G 0 делится на ряд непересекающихся между собой подмножеств. Принцип разбиения исходного множества на подмножества приведен далее.

Для нашего случая, когда необходимо добавить атом или группу атомов к текущей конструкции, количество подмножеств равно количеству возможных пространственных расположений этой добавляемой конструкции по отношению к текущей.

На каждом этапе ветвления формируется трехмерная вероятностная матрица, характеризующая приоритеты пространственного соединения к текущей конструкции нового потенциального фрагмента. Эта матрица формируется на основании дробления пространства вокруг потенциальной точки склейки фрагментов конструкции с некоторым шагом .

Фрагмент среза этой матрицы по оси z приведен далее:

Сама трехмерная матрица формируется аналогично путем добавления множества координат оси z.

Для случая, когда формируется не параллелепипед, а например сфера срез матрицы будет представлять:

Здесь - количество отрезков, на которые делится допустимый параллелепипед соответственно по осям , а для сферического варианта - это число фрагментов при делении диаметра на шаг квантования.

Количество формируемых подмножеств в общем случае, когда отсутствует информация о предпочтительности тех или иных координат составит , а в случае произвольной формы облака допустимых координат , где - скаляры допустимых точек по осям .

Для оценки каждого из узлов применяется вектор интегралов вероятностей для всех электронов. Вначале рассчитывается вектор из волновых функций для всех электронов , где - текущее суммарное количество электронов в текущей модели наноробота для узла . А далее рассчитывается непосредственная оценка узла дерева решений на основе вероятности нахождения электрона в некотором микрообъеме на расстоянии r от ядра

Помимо данной оценки возможны другие, аналогичные данной, которые могли бы учесть критичность наличия прочных связей между отдельными наиболее "важными" атомами конструкции, или просто интегральную оценку , где - вектор критических значений связей между атомами.

На этом этапе осуществляется расчет оценок для всех подмножеств. В качестве перспективного из всех конкурирующих подмножеств, выбирается подмножество, имеющее минимальную нижнюю оценку.

В качестве конкурирующих множеств на этом этапе рассматриваются как вновь образованные подмножества, так и подмножества, отброшенные ввиду неперспективности на предыдущем этапе. Все конкурирующие подмножества переобозначаются. В качестве верхнего индекса используется цифра 2, а нижний индекс определяется порядковым номером этого подмножества среди конкурирующих.

Для каждого из конкурирующих подмножеств рассчитываются нижние оценки либо учитываются ранее рассчитанные оценки, и в качестве перспективного выбирается подмножество, имеющее минимальную нижнюю оценку.

Процесс ветвления продолжается до тех пор, пока не будет выполнено условие оптимальности. Это условие предполагает завершение добавления всех необходимых фрагментов общей конструкции при соблюдении условия на общую жесткость системы (все вероятности нахождения электронов в нужных областях пространства равны 1).

Физическая трактовка ветвления

На некотором текущем этапе в нашей конструкции есть некоторое текущее множество атомов (в самом начале нет ни одного атома или некоторые априорные жесткие конструкции, которые необходимо нарастить, например, углеродные нанотрубки, или набор шестеренок для манипуляторов наноробота, двигатель).

Текущее множество атомов на текущем этапе в общем случае не обязано быть стабильным само по себе (в этом случае его целостность в реальности должно поддерживаться искусственно, что потребует применения спецаппаратуры или путем временной склейки текущей структуры с каким-нибудь хим. элементами, с последующим удалением всего лишнего). В целом же для более быстрой сборки конструкции более привлекательно (но менее реально) выглядят структуры, которые стабильны и без отдельных частей (к таким структурам в основном относятся полимеры).

На этапе ветвления есть некоторое множество атомов (не меньше одного в общем случае, но возможны и попытки приклеить к текущей конструкции некоторые заранее известные своей пользой "хорошие" элементы - например те же шестеренки, лифты электронов и т.п.).

Сам процесс принятия решения о попытке добавления в текущую структуру новых элементов (с соответствующим ветвлением дерева решений и затратами на расчеты) представляет собой отражение априорных взглядов проектировщика на общую схему будущего наноробота (например, двигатель, пара наноманипуляторов, капсула с лекарством)

Однако даже приведенный алгоритм, несмотря на предварительно показанное улучшение сходимости, нуждается в создании новой сети распределенных вычислений. Это связано с тем, что даже полиномиально сходящийся алгоритм требует времени для создания базы данных молекулярных структур (фрагментов нанороботов). А пока подобные базы и технологии остаются доступными в основном западным организациям. Также нужно, к сожалению, констатировать, что российские проекты таких распределенных сетей остаются пока только проектами.

ЛИТЕРАТУРА

  1. Глущенко С. Нанороботы и суперкомпьютеры http://itc.ua/article.phtml?ID=17200&IDw=53
  2. К.В. Шайтан, К.Б. Терёшкина. МОЛЕКУЛЯРНАЯ ДИНАМИКА БЕЛКОВ И ПЕПТИДОВ

Хотя многие технологии могут быть в будущем использованы для оживления криопациентов, возможно, начинать ознакомление с технологиями будущего оживления криопациентов надо с чтения FAQ (часто задаваемых вопросов) по наномедицине. Ведь нанотехнологии кажутся наиболее совершенным инструментом для клеточного ремонта и понимание их развития дает наиболее полную картину будущего восстановления криопациентов к жизни. Об этом еще в 1986 году писал отец современных нанотехнологий Эрик Дрекслер в своей научно-популярной книге "Машины созидания". К тому же, это направление интенсивно развивается по всему миру.

FAQ по наномедицине:

1. Из каких химических элементов будут состоять медицинские нанороботы?

Типичное медицинское наноустройство будет представлять собой робота микронного (мкм, 1 мкм = 10 -6 м) размера, собранного из наночастей. Эти части по размеру будут варьироваться от 1 до 100 нм (1 нм = 10 -9 м) и должны будут совокупно составлять работоспособную машину размером около 0.5-3 мкм в диаметре. При этом, три микрона - максимальный размер для медицинских нанороботов кровотока, т.к. это минимальный размер капилляров.

Углерод будет основным элементом, составляющим основу медицинских нанороботов, возможно в форме алмаза или алмазоидных нанокомпозитов - из-за огромной прочности алмазоида и его химической инертности. Многие другие элементы, такие как водород, сера, кислород, азот, фтор, кремний и др., будут использоваться для специального применения в нанометрических редукторах и других компонентах нанороботов (наноботов).

2. Могут ли жидкости, находящиеся в человеческом теле, проникать в нанороботов?

С медицинской точки зрения имело бы смысл определить наноробота как устройство, имеющее два пространства - внутреннее и внешнее. И это правда, что внешнее пространство наноробота будет соприкасаться с внешним окружением - биохимической машиной человека. Но внутреннее пространство наноробота полностью искусственно организовано (вероятнее всего, внутри нанороботов будет вакуум), и при нормальной работе устройства в него не попадают посторонние жидкости, кроме тех, с которыми работает наноробот. Конечно, в процессе работы наноробот может пропускать внутрь себя жидкости для химического анализа или для других целей. Но важно, что это устройство будет водо- и воздухонепроницаемым. Жидкости, находящиеся в теле человека не смогут проникнуть внутрь наноробота, кроме жидкостей, специально нагнетаемых механизмом.

3. Каким будет физическое самочувствие человека, которому ввели внутрь медицинских нанороботов?

В большинстве случаев пациент, проходящий наномедицинскую обработку, выглядит точно так же, как и другой такой же больной человек. Типичная наномедицинская обработка (например, очистка от бактериальной или вирусной инфекции) будет состоять из инъекции нескольких кубических сантиметров нанороботов микронного размера, растворенных в жидкости (возможно в воде или в солевом растворе). Типичная терапевтическая доза может включать от 1 до 10 триллионов (1 триллион = 10 12) отдельных нанороботов. Естественно, что в зависимости от заболевания можно ограничиться несколькими миллионами или несколькими миллиардами механизмов. Каждый наноробот будет размерами от 0.5 мкм до 3 мкм в диаметре. Размеры зависят от вида и назначения наноробота.

Тело взрослого человека имеет объем около 100 000 см 3 и объем крови ~5400 см 3 , поэтому добавление дозы нанороботов объема ~3 см 3 практически несущественно. Нанороботы будут делать только то, что скажет врач, ничего более (таким образом исключена возможность неисправностей). Таким образом, изменится только физическое состояние пациента - он будет очень быстро поправляться. Большинство болезней типа простуды или лихорадки имеют симптомы, обусловленные биохимически. Их можно будет устранить, вводя дозу соответствующих нанороботов. Восстановление нормального состояния кожи при высыпаниях на ней или ее повреждение (как это случается при кори), будет происходить медленнее, так как в этом случае необходимо будет полностью восстановить кожный покров.

4. Как будет выглядеть типичный наноробот?

Невозможно сказать сейчас, как будет выглядеть универсальный наноробот. Нанороботы, предназначенные для путешествий внутри человеческого кровотока, возможно, будут иметь размер 500-3000 нм. Нанороботы, находящиеся в тканях, могут быть размерами от 50 до 100 мкм. А наноустройства, функционирующие в бронхах, могут быть еще больше. Каждый тип медицинского наноробота будет разработан под необходимые условия, и, поэтому, возможны разные их размеры и формы. Ни один наноробот еще не сконструирован, наконец. Многие, теоретически правильные на бумаге разработки нанороботов, в будущем будут уточняться после соответствующих исследований.

5. Можете ли вы дать пример простого медицинского наноробота?

Очень простой наноробот, которого я (Роберт Фрайтас, прим. перев.) разработал несколько лет назад - искусственная красная кровеносная клетка, названная "респироцитом". Размер респироцита - 1 микрон в диаметре и он просто протекает в кровотоке. Это сферический наноробот, изготовленный из 18миллиардов атомов. Эти атомы, в основном, - углерод, с кристаллической решеткой алмаза, образующие сферическую оболочку механизма.

Респироцит, по сути дела, - гидропневмоаккамулятор, который может нагнетать внутрь себя 9 биллионов молекул кислорода (O 2) и молекул диоксида углерода (CO 2). Позже, эти газы выпускаются из респироцита под контролем бортового компьютера. Газы сохраняются под давлением около 1000 атмосфер. (Респироциты могут быть изготовлены невоспламеняющимися благодаря оболочке из сапфира, негорючего и материала со свойствами, близкими к алмазоиду).

Поверхность каждого респироцита на 37% покрыта 29160 молекулярными сортирующими роторами ("Nanosystems", стр. 374), которые могут нагнетать и выпускать газы во внутренний резервуар. Когда наноробот проплывает в альвеолярных капиллярах, парциальное давление O 2 выше, чем CO 2 , поэтому бортовой компьютер говорит сортирующим роторам нагнетать в резервуары кислород, выпуская CO 2 . Когда устройство определит свое местоположение в тканях, бедных кислородом, произойдет обратная процедура: так как парциальное давление CO 2 относительно высокое, а парциальное давление O 2 низкое, то роторы будут нагнетать CO 2 , выпуская O 2 .

Респироциты подражают естественным функциям эритроцитов, наполненных гемоглобином. Но респироцит может переносить в 236 раз больше кислорода, чем естественная красная клетка. Этот наноробот намного более эффективен естественного, благодаря исключительной прочности алмазоида, позволяющего поддерживать внутри устройства высокое давление. Рабочее давление красной кровяной клетки - 0.51 атм, при этом только 0.13 атм доставляется тканям. Таким образом, инъекция 5 см 3 дозы 50% раствора респироцитов в кровоток сможет заменить несущую способность 5400 см 3 крови пациента (то есть ее всю)!

Респироциты будут иметь сенсоры для приема акустического сигнала от врача, который будет использовать ультразвуковой передатчик для подачи команд роботам, чтобы изменить их поведение, пока они находятся в пациенте. Например, врач может дать команду респироцитам прекратить нагнетание кислорода и остановиться. Позже, врач может дать команду о включении. Что будет, если добавить 1 литр респироцитов в ваш кровоток (это максимально безопасная доза)? Вы теперь можете задерживать дыхание на 4 часа, спокойно находясь при этом под водой. Или, если вы спринтер, и бежите на предельной скорости, то можете задержать дыхание на 15 минут до следующего вдоха!

Описанное "простое" устройство имеет очень полезные возможности, даже при его использовании в малых дозах. Другие, более сложные устройства, будут иметь больший набор возможностей. Некоторые устройства должны быть мобильными и способными плавать в крови, либо переползать внутри тканей. Естественно, что они будут иметь различные цвета, формы, в зависимости от выполняемых ими функций. Они будут иметь различные виды манипуляторов роботов, различные наборы сенсоров и т.д. Каждый медицинский наноробот будет спроектирован на определенный тип работы, и будет иметь уникальную форму и поведение.

6. Могут ли "устаревшие нанороботы", содержащиеся в человеческом теле, создавать проблемы, если они в конечном счете откажут?

После наномедицинской обработки, нанодоктора 21 столетия захотят удалить терапевтических нанороботов из тела пациента тогда, когда механизмы завершат свою работу. Поэтому опасность того, что "устаревшие нанороботы", оставшиеся в теле пациента, будут работать неверно, очень мала.

Также нанороботы будут спроектированы с высоким уровнем статической неопределимости для того, чтобы избежать сбоев в работе устройства, и устранить тем самым медицинский риск.

7. Как нанороботы будут удалены из тела?

Некоторые наноустройства способны к самоудалению из организма путем естественных человеческих экскреторных каналов. Другие будут спроектированы таким образом, чтобы позволить их удаление медицинским персоналом, используя выводяще-подобные процессы (обычно называемые нановыводом или наноаперезисом) или активные фагоцитозные системы. Это зависит от устройства данного наноробота. Для респироцитов, ранее рассмотренных, процедура выведения их из тела пациента проста:

"Как только терапевтическое применение закончено, было бы желательно вывести искусственные устройства из кровотока. Бортовой резервуар с балластом (водой) полезен при отделении искусственных клеток от крови. Кровь, нуждающаяся в очистке поступает в специально сконструированную центрифугу, где респироцитам дают команду ультразвуком очистить их балластные резервуары от воды и, таким образом, установить нулевую плавучесть. Ни один твердый компонент крови не обладает нулевой плавучестью, поэтому остальные компоненты будут отделены от респироцитов с помощью аккуратного центрифугирования. После этого, плазма, содержащая респироциты, пропускается через фильтр с зернистостью 1 мкм, отделяя респироциты от плазмы. Отфильтрованная плазма смешивается с твердыми телами, полученными в течении центрифугирования и кровь неповрежденной возвращается к пациенту. Скорость отделения респироцитов может варьироваться с помощью команд, изменяя плотность респироцита заполнением балластного резервуара. Так можно добиться у респироцитов 66% плотности плазмы крови, или, командой от врача, выпустить 5 микронный пузырек кислорода, присоединяясь к нему благодаря силе поверхностного натяжения, всплывать с постоянным ускорением наверх." (Роберт А. Фрайтас, "Exploratory Design in Medical Nanotechnology: A Mechanical Artificial Red Cell.")

8. Будут ли нанороботы, находящиеся внутри человеческого тела, атакованы иммунной системой?

Иммунная система, в основном, реагирует на "чужеродные" поверхности. Размер наноробота также играет важную роль при этом, так же как и мобильность устройства, шероховатость поверхности и ее подвижность. Вообще же, проблема биосовместимости, в принципе, не сложнее проблемы совместимости биоимплантантов. В некоторых случаях эта проблема оказывается проще, чем ее привыкли представлять, так как многие типы медицинских нанороботов будут временно находиться в человеческом теле. Даже на сегодняшний день, применение иммунноподавляющих агентов на период наномедицинского лечения, помогут иммунно незащищенным роботам находиться в теле человека и выполнять там свою работу без проблем.

Конечно, идеальный выход из данной проблемы - конструирование роботов из алмазоидных материалов. Ряд проделанных экспериментов подтвердил, что гладкие алмазоидные структуры вызывают меньшую активность лейкоцитов и меньше адсорбируют фибриноген. Поэтому кажется разумным надеяться, что такое алмазоидное покрытие ("организованное", т.е. нанесенное атом-за-атомом, с нанометровой гладкостью), будет иметь очень низкую биологическую активность. Благодаря очень высокой поверхностной энергии алмазоидной поверхности и сильной ее гидрофобности, внешняя оболочка роботов будет полностью химически инертна.

Однако, даже организованные поверхности не будут обеспечивать достаточной биоинактивности, и только активное управление поверхностью робота может обеспечить полную биосовместимость всего устройства.

9. Как быстро нанороботы смогут реплицироваться внутри человеческого тела?

Это очень распространенная ошибка. Медицинские нанороботы не нуждаются в репликации вообще. В действительности FDA, или ее будущий эквивалент, никогда не разрешит использовать наноустройства, способные к репликации in vivo (то есть в живом организме). Даже вообразив себе самые неожиданные обстоятельства, никто не хотел бы иметь внутри собственного тела что-либо, способное к репликации. Репликация бактерий уже доставляет нам много проблем.

Репликация - основная возможность претворения в жизнь молекулярного производства (молекулярной нанотехнологии). Но, несмотря на наиболее необходимые применения самореплицирующихся систем, просто нет смысла рисковать, изготавливая "жизнеспособные" нанороботы внутри организма, в то время как "нежизнеспособные" нанороботы могут изготовляться очень быстро и дешево вне человеческого тела, не причиняя ему опасности. Репликаторы будут всегда под строжайшим контролем со стороны правительств всего мира.

10. Могут ли медицинские нанороботы обладать искусственным интеллектом, похожим на человеческий?

Это другая широко распространенная ошибка. Многие медицинские нанороботы будут иметь очень простые бортовые компьютеры. Респироциты, например, будут иметь нанокомпьютер, выполняющий всего 1000 операций в секунду, что намного меньше вычислительной мощности компьютера Apple II.

Большинство нанороботов, исправляющих клетки, не нуждаются в компьютерах с производительностью более ~10 6 -10 9 операций в секунду для исполнения своей работы. Это на 4-7 порядков меньше вычислительной мощности человеческого мозга, составляющей ~10 13 операций в секунду. Большей скорости вычислений для нанороботов не требуется.

11. От каких источников энергии будут работать нанороботы?

Одним из ранних предположений Эрика Дрекслера в "Двигателях создания" было использовать локальные запасы глюкозы и аминокислот в теле человека (in vivo). Таким образом, наноустройство сможет при помощи механохимических реакций получать энергию из метаболиза О 2 и глюкозы. Другая возможность - получение акустической энергии извне, что наиболее удобно при клиническом применении. В главе 6 "Nanomedicine: Basic Capabilities" описана дюжина других источников энергии, потенциально доступных в человеческом теле.

12. Как можно будет связаться с этими машинами, когда они завершат свою работу?

Для этого существует много способов. Простейший путь состоит в распространении тестовых акустических сигналов внутри тела, которые нанороботы in vivo будут принимать. Устройство, похожее на ультразвуковой датчик будет раскодировать акустические сигналы с частотой порядка 1-10 МГц. Таким образом, врач, проводящий лечение, может легко посылать новые команды нанороботу, находящемуся в теле человека. Каждый наноробот имеет автономный источник энергии, компьютер, набор сенсоров, и, поэтому может принимать акустические сигналы, декодировать их и посылать соответствующий ответ.

Существует еще вторая половина процесса передачи данных - от нанороботов врачу. Эти данные также можно передавать акустически. Однако, возможности бортовой силовой установки робота ограничивают радиус передачи акустических сигналов до нескольких сот микрон для каждого наноробота. Поэтому необходимо будет создать внутреннюю сеть, собирающую локальные данные, и, затем, пересылающую их к центральному "пункту связи", где лечащий врач сможет их принять с помощью высокочувствительных ультразвуковых сенсоров. Подобная сеть, состоящая примерно из 100 биллионов мобильных узлов (рассеивающих 60 Вт тепла, в то время как нормальное рассеивание энергии человеческого тела - 100 Вт) внутри тела пациента может быть установлена в течение часа.

Кроме вышеназванного способа, существует ряд других, более сложных методов обмена сообщениями.

13. Если медицинские нанороботы будут введены в тело внутривенно, как можно будет проследить их расположение?

Как только навигационная сеть внедряется в тело пациента, она образует навигационную систему со многими станциями позиционного управления нанороботами.

Месторасположение нанороботов in vivo будет передаваться через коммуникационную сеть. Так как обычная терапевтическая доза нанороботов составляет биллионы или триллионы устройств, то неважно получать данные о месторасположении каждого робота. Передача данных о индивидуальном расположении нанороботов возможно лишь при их дозе менее миллиона.

14. Какими видами детектирующих систем нанороботы будут отличать различные типы клеток?

Каждый тип клеточной поверхности имеет уникальный набор антигенов. Некоторые поверхностные антигены отображают статус клетки (здорова/больна и т.д.), тип органа, и даже индивидуальность организма (что-то наподобие биохимического номера "социальной защиты", присущей каждому организму).

Поэтому короткий ответ на этот вопрос таков: необходимо использовать хемотактические сенсоры (схожие с сенсорами в химической силовой микроскопии), имеющие конфигурацию связывающей поверхности тех антигенов, которыми обладает искомая клетка. Знание о структуре этих антигенов будет получено при обработке результатов Проекта Человеческого Генома в начале 21 веке.

15. Как будут химические агенты (например лекарства против рака) транспортироваться и доставляться к определенной клетке?

Как только определена группа клеток, нуждающихся в доставке лекарства, наноустройства просто доставляет лечащий агент в клетку из бортовых хранилищ. Инъекция 1 см 3 1-микронных наноустройств содержит в себе как минимум 0.5 см 3 лечащего агента. Практически все эти биллионы нанороботов достаточно "умны" для того, чтобы доставить 100% своего багажа внутрь клетки, поэтому эффективность их применения составит 100%. Сенсоры на борту устройств обеспечат надежный контроль за передозировкой клеток лекарством.

Однако, этот вопрос - яркий пример "анахронизма" в наномедицине. Развитая нанотехнология сможет в будущем обеспечить другой путь, менее деструктивный для достижения той же цели. Например, доставка цитотоксина в тканевые клетки необязательно при удалении карциноматоза на клеточном и генетическом уровне.

16. Возможно ли увидеть in vivo наноробота, используя радиоизотопный метод, или необходимо рассматривать их непосредственно в тканях?

Да, наноустройства могут наблюдаться внутри тела при помощи MRI, особенно если их алмазоидные компоненты будут изготовлены из атомов 13C, а не обычных 12C. Изотоп углерода, 13C имеет ненулевой магнитный момент. Но в эре наномедицины изотопный подход будет, опять-таки, анахронизмом. Объясним, почему.

Применяя классический медицинский метод к нанолечению, медицинские нанороботы должны быть сперва инъектированы в тело пациента (или орган) для начала работы. Врачи хотели бы наблюдать прогресс лечения, и быть уверенными, что наноустройства действительно взаимодействуют с искомыми клетками и попадают в район заболевания. Поэтому первым инстинктивным желанием врачей будет желание видеть нанороботы в теле за работой. Говоря по-другому, врачи хотели бы сканировать участки тела, и увидеть наноустройства, находящиеся возле цели их применения (в органах, тканях и т.п.).

Однако, технологии, изготовляющие наноустройства с молекулярной точностью, могут позволить разработать и встроить внутрь нанороботов механизмы для коммуникации и навигации. Также будут разработаны коммуникационные сети внутри тела пациента. Терапевтические наноустройства, запрограммированы на специальные поверхностные антигены клеток искомой ткани. Это дополнительный инструмент, помогающий нанороботу работать внутри заданной области с необходимой точностью (около миллиметра или точнее).

Поэтому корректная модель медицинского вмешательства в наноэпоху будет выглядеть следующим образом: нанороботы, введенные в человеческое тело будут абсолютно инактивны за пределами области медицинского вмешательства. Даже внутри искомой области нанороботы пребывают неактивными до тех пор, пока их сенсоры не будут хемотактически активированы индивидуальной последовательностью белков, характерной для клеток, подлежащих лечению. Нанороботы будут также разработаны таким образом, чтобы активироваться только по акустическому сигналу извне (например, от врача, который, наметив пораженную область выделяет область активирования на пространственной координатной сетке, совмещенной с телом пациента), и только затем производить сенсоринг клеточных белков. Врач целиком контролирует местопребывание и статус нанороботов в течение всего лечения. Сигналы на остановку нанороботов могут быть поданы в любое время.
Также важно, что при этом нанороботы смогут обмениваться данными о своем местоположении, количественном характере заболевания и о процессе лечения. Диапазон передачи сигналов отдельного наноробота ограничен, но и эти технические трудности преодолимы. В этой модели лечения врач получает данные от активных нанороботов. Они сообщают врачу, сколько раковых клеток в их окружении; где находятся механизмы, и т.д. У бортовых компьютеров наномашин будут системы предотвращения сбоев (подобно пяти независимым бортовым компьютерам в космическом шаттле), устройства блокировки робота при сбоях и системы полной остановки при выводе роботов из тела.

Поэтому, при лечении таким способом, совершенно неважно полностью представлять наноустройства непосредственно, так как обратная связь от нанороботов облегчит их контроль и визуализацию.

17. Можно ли использовать тканевую биопсию и последующую электронную микроскопию для отображения процесса работы роботов при лечении заболевания?

Да, можно использовать методы биопсии для обнаружения нанороботов в тканях пациента, используя электронную микроскопию. Однако, в нормальных условиях, медицинские нанороботы будут работать без сбоев, так что биопсия станет ненужной. Наноустройства, разработанные с использованием протоколов, исключающих некорректную работу и имеющие ряд механических устройств, повышающих надежность работы устройства, практически не будут работать некорректно.

В обычной биопсии первичный интерес представляет исследуемая ткань (не наноустройства, а именно состояние самой ткани). Но наноустройства могут быть использованы для быстрого тестирования ткани, исследования ее биохимии, биомеханики и гистометрических характеристик ("гисто" - ткань) с большой точностью и подробностями. Вообще, в эру профессиональной наномедицины, будет важно производить ряд тестов in situ (по месту, на отдельном препарате, без организма), прежде чем начинать лечение. Это облегчит последующую наномедицинскую процедуру и сделает ее более комфортабельной для пациента.

18. Что может быть сделано неправильно в течение лечения нанороботами человека?

Некомпетентность или халатность лечащего персонала - вот первостепенная опасность для пациента. Однако, как и сейчас, так и в эре нанотехнологий, такие случаи должны быть нечасты.

Ошибка может происходить в неожиданных случаях. Биосовместимость человека с нанороботами хорошо изучена и не представит проблемы. Несколько взаимозаменяемых бортовых компьютеров робота разрешат проблему перепрограммирования, адаптации, сбоев даже после того, как он начнет свою работу внутри ткани. В заданиях с высокой степенью риска будут введены в действие усложненные протоколы работы роботов, исключающие неправильную работу совокупности наномеханизмов.

Поэтому наиболее серьезные проблемы могут появляться при совместной работе триллиона механизмов в ограниченном пространстве и за очень короткий промежуток времени. Одним из непредвиденных сбоев может быть взаимодействие между роботами при их столкновении. Такие неисправности трудно определить в настоящее время, и, по всей видимости, они будут проверены при тестировании уже готовых роботов.

Простым примером подобной неисправности будет взаимная работа двух типов нанороботов в одной ткани. Если наноробот типа А запрограммирован восстанавливать последствия работы наноробота В, то, ткань, содержащая их обоих, подвергнется сначала воздействию наноробота В, а, затем, наноробот А удалит все результаты вмешательства наноробота В, что в свою очередь приведет к повторной работе наноробота В и так далее до бесконечности. То есть нанороботы будут "исправлять" работу друг друга.

Но даже в подобной ситуации контроль над роботами сохраняется. Лечащий врач, наблюдая процесс лечения, либо отключит один тип наноробота, либо перепрограммирует оба (пока они все еще внутри тела), чтобы их работа не вызывала деформацию тканей. Врач должен все время держать "руку на пульсе", чтобы избежать подобных ситуаций. Вмешательство лечащего врача - основной регуляционный элемент в неожиданных неисправностях и проблемах, поэтому квалификация лечащего персонала играет первостепенную роль.

19. Какая была бы наибольшая выгода для человечества, в использовании наномедицины?

Наномедицина исключит почти все широко распространенные заболевания двадцатого столетия, боль; увеличит срок жизни человека и расширит наши умственные возможности.

Устройство для хранения данных нанометрических размеров, способное хранить информацию, эквивалентную информации Библиотеки Конгресса, займет всего ~8 000 микрон 3 , что составляет объем клетки печени и меньше объема, занимаемого нейроном - нервной клеткой. Если имплантировать подобные устройства в человеческий мозг вместе с устройствами, обеспечивающими к ним доступ, то объем информации, способной храниться в человеческой памяти, неизмеримо вырастет.

Простой нанокомпьютер, выполняющий 10 терафлоп операций в секунду (10 терафлоп - 10 13 операций с числами с плавающей запятой) детально описанный Дрекслером, также занимает объем средней человеческой клетки. Этот компьютер эквивалентен (со многими упрощениями) счетной способности человеческого мозга. Он рассеивает в окружающую среду около 0.001 ватт тепла. Человеческий мозг при таком же количестве операций в секунду, рассеивает 25 ватт тепла. Если имплантировать в человеческий мозг несколько таких устройств, можно в несколько раз ускорить процессы человеческого мышления.

Но, возможно, основной пользой для человечества будет эра мира, наступившая благодаря развитию нанотехнологий. Мы надеемся, что умные, образованные, здоровые, ни в чем не нуждающиеся люди, имеющие хорошие дома, не захотят воевать друг с другом. Люди, могущие прожить жизнь гораздо полнее и дольше, чем сейчас, не захотят подвергать свое существование угрозе.

Большинство историков считают создателем термина физика Ричарда Фейнмана и его речь 1959 года: «Там, внизу, полно места». В своей речи Фейнман представил день, когда машины можно будет настолько уменьшить, а в крошечных пространствах будет закодировано столько информации, что с этого дня начнутся совершенно невероятные технологические прорывы.

Но по-настоящему эту идею раскрыла книга Эрика Дрекслера «Двигатели создания: грядущая эра нанотехнологий». Дрекслер привел идею самовоспроизводящихся наномашин: машин, которые строят другие машины.

Поскольку эти машины программируемы, их можно направить на строительство не только большего числа таких машин, но и на что захотите. И поскольку это строительство происходит на атомном уровне, эти нанороботы могут растащить любой вид материала (почву, воду, воздух, что угодно) атом за атомом и собрать из него что угодно.

Дрекслер нарисовал картину мира, где вся библиотека Конгресса может поместиться на чипе размером с кубик сахара и где экологические скрубберы вычищают загрязняющие вещества прямо из воздуха.

Но прежде чем мы исследуем возможности нанотехнологий, давайте изучим основы.

Что такое « »?

Нанотехнологии - это наука, инженерия и технологии, проводимые на наноуровне, что составляет от 1 до 100 нанометров. По сути, эти манипулирование и управление материалами на атомном и молекулярном уровне.

Чтобы вы понимали, давайте представим, что такое нанометр:

  • Отношение Земли к детскому кубику - это примерно отношение метра к нанометру.
  • Это в миллион раз меньше длины муравья.
  • Толщина листа бумаги - примерно 100 000 нанометров.
  • Диаметр красной кровяной клетки - 7000-8000 нанометров.
  • Диаметр цепочки ДНК - 2,5 нанометра.

Наноробот - это машина, которая может строить и манипулировать вещами точно и на атомном уровне. Представьте робота, который может манипулировать атомами, как ребенок - кубиками LEGO, выстраивая из базовых атомных строительных блоков что угодно (C, N, H, O, P, Fe, Ni и пр.). Хотя некоторые люди отрицают будущее нанороботов как научную фантастику, вы должны понимать, что каждый из нас жив сегодня благодаря бесчисленным операциям наноботов в триллионах наших клеток. Мы даем им биологические названия вроде «рибосом», но по своей сути они - запрограммированные машины с функцией.

Стоит также провести различие между «мокрыми» или «биологическими» нанотехнологиями, которые используют ДНК и машины жизни для создания уникальных структур из белков или ДНК (в качестве строительного материала) и больше дрекслеровских нанотехнологий, которые включают строительство «ассемблера», или машины, которая занимается 3D-печатью с атомами в наномасштабах для эффективного создания любой термодинамически стабильной структуры.

Давайте рассмотрим несколько типов нанотехнологий, над которыми бьются исследователи.

Различные типы нанороботов и применений

Вообще, нанороботов очень много. Вот лишь некоторые из них.

  • Самые малые из возможных двигатели . Группа физиков из Университета Майнца в Германии недавно построила самый маленький двигатель в истории из одного атома. Как и любой другой, этот двигатель преобразует тепловую энергию в движение - но делает это на самых малых масштабах. Атом находится в ловушке в конусе электромагнитной энергии, а с помощью лазеров его нагревают и охлаждают, что приводит к движению атома в конусе вперед и назад, будто поршня двигателя.
  • 3D-движущиеся наномашины из ДНК . Инженеры-механики из Университета штата Огайо спроектировали и построили сложные наноразмерные механические части, используя «ДНК-оригами» - доказав, что одни и те же основные принципы проектирования, которые применяются к полноразмерным машинам, можно применить и к ДНК - и может производить сложные, управляемые компоненты для будущих нанороботов.
  • Наноплавники . Ученые ETH Zurich и Technion разработали эластичный «наноплавник» в виде полипирроловой (Ppy) нанопроволоки длиной в 15 микрометров (миллионных метра) и толщиной в 200 нанометров, который может двигаться через биологическую жидкость на скорости 15 микрометров в секунду. Наноплавники можно приспособить для доставки лекарств и с помощью магнитов проводить их через кровоток к целевым раковым клеткам, например.
  • Муравьиный нанодвигатель . Ученые Кембриджского университета разработали крошечный двигатель, способный оказывать силу, в 100 раз превышающую собственный вес, на любой мускул. Новые нанодвигатели могут привести к нанороботам, которые достаточно малы, чтобы проникать в живые клетки и бороться с заболеваниями, считают ученые. Профессор Джереми Баумберг из Лаборатории Кавендиш, руководящий исследованием, назвал это устройство «муравьем». Подобно настоящему муравью, оно может оказывать силу, во много раз превышающую собственный вес.
  • Микророботы по типу сперматозоидов . Группа ученых из Университета Твенте (Нидерланды) и Немецкого университета в Каире (Египет) разработала микророботов по типу сперматозоидов, которыми можно было бы управлять за счет осциллирующих слабых магнитных полей. Их можно было бы использовать для сложных микроманипуляций и целевых терапевтических задач.
  • Роботы на основе бактерий . Инженеры Университета Дрекселя разработали способ использования электрических полей, чтобы помогать микроскопическим роботам, работающим от бактерий, обнаруживать препятствия и перемещаться по ним. Область применения включает доставку лекарств, манипуляцию стволовыми клетками для направления их роста или строительство микроструктур.
  • Наноракеты . Несколько групп исследователей недавно построили высокоскоростную версию наноразмерных ракет с дистанционным управлением, объединив наночастицы с биологическими молекулами. Ученые надеются разработать ракету, способную работать в любой среде; например, для доставки лекарства в целевую область тела.

Основные сферы применения нано- и микромашин

Возможности применения таких нано- и микромашин практически безграничны. Например:

  • Лечение рака . Выявлять и уничтожать раковые клетки более точно и эффективно.
  • Механизм доставки лекарств . Строить механизмы целевой доставки лекарств для контроля и предотвращения заболеваний.
  • Медицинская визуализация . Создание наночастиц, которые собираются в определенных тканях и затем сканируют тело в процессе магнитно-резонансной томографии - это могло бы выявить такие проблемы, как диабет.
  • Новые устройства зондирования . С практически безграничными возможностями настраивать зондирующие и сканирующие характеристики нанороботов, мы могли бы открыть для себя наши тела и более эффективно измерять мир вокруг нас.
  • Устройства хранения информации . Биоинженер и генетик из Гарвардского института Висса успешно сохранил 5,5 петабит данных - около 700 терабайтов - в одном грамме ДНК, превзойдя предыдущий рекорд плотности данных в ДНК в тысячу раз.
  • Новые энергетические системы . Нанороботы могут сыграть определенную роль в разработке более эффективной системы использования возобновляемых источников энергии. Или они могли бы сделать наши современные машины более энергоэффективными таким образом, что те будут нуждаться в меньшем количестве энергии для работы с прежней эффективностью.
  • Сверхпрочные метаматериалы . В области метаматериалов проводится много исследований. Группа из Калифорнийского технологического института разработала новый тип материала, состоящего из наноразмерных распорок, подобных распоркам Эйфелевой башни, который стал одним из самых прочных и легковесных в истории.
  • Умные окна и стены . Электрохромные устройства, которые динамически меняют цвет при приложении потенциала, широко изучаются для использования в энергоэффективных умных окнах - которые могли бы поддерживать внутреннюю температуру комнаты, самоочищаться и многое другое.
  • Микрогубки для очищения океанов . Губка из углеродных нанотрубок, способная всасывать загрязняющие воду вещества, вроде удобрений, пестицидов и фармацевтических препаратов, в три раза эффективнее предыдущих вариантов.
  • Репликаторы . Известные также как «молекулярные ассемблеры», эти предлагаемые устройства могут осуществлять химические реакции путем расположения реактивных молекул с атомной точностью.
  • Датчики здоровья . Эти датчики могли бы наблюдать за химией нашей крови, уведомляя нас обо всем происходящем, обнаруживать вредную еду или воспаления в теле и так далее.
  • Подключение наших мозгов к Интернету . Рэй Курцвейл считает, что нанороботы позволят нам подключить нашу биологическую нервную систему к облаку в 2030 году.

Как видите, это только начало. Возможности практически безграничны.

Нанотехнологии обладают потенциалом решить крупнейшие проблемы, с которыми сегодня столкнулся мир. Они могли бы улучшить производительность людей, обеспечить нас всеми необходимыми материалами, водой, энергией и едой, защитить нас от неизвестных бактерий и вирусов и даже уменьшить число причин для нарушения мира.

Если этого мало, рынок нанотехнологий просто огромен. К 2020 году мировая отрасль нанотехнологий вырастет до рынка в 75,8 миллиарда долларов.