Литосферные плиты. Литосферные плиты: теория тектоники и ее основные положения

Есть два типа литосферы. Океаническая литосфера имеет океаническую кору толщиной около 6 км. Она в основном покрыта морем. Материковую литосферу покрывает материковая кора толщиной от 35 до 70 км. Большей частью эта кора выступает над , образуя сушу.

Плиты

Горные породы и минералы

Движущиеся плиты

Плиты земной коры постоянно перемещаются в разных направлениях, хотя и очень медленно. Средняя скорость их движения равна 5 см в год. Примерно с такой же скоростью растут ваши ногти. Поскольку все плиты плотно прилегают друг к другу, движение любой из них действует на окружающие плиты, заставляя и их постепенно перемещаться. Плиты могут перемещаться по-разному, что можно видеть на их границах, но причины, вызывающие движение плит, ученым пока неизвестны. Видимо, этот процесс может не иметь ни начала, ни конца. Тем не менее некоторые теории утверждают, один тип движения плит может быть, так сказать, «первичным», а от него уже приходят в движение все прочие плиты.

Один из типов движения плит - это «подныривание» одной плиты под другую. Некоторые ученью полагают, что именно этот тип движения вызывает все прочие перемещения плит. На некоторых границах расплавленная порода, пробиваясь на поверхность между двумя плитами, затвердевает по их краям, расталкивая эти плиты. Этот процесс тоже может вызывать перемещение всех других плит. Считается также, что, помимо первичного толчка, движение плит стимулируют гигантские тепловые потоки, циркулирующие в мантии (см. статью « «).

Дрейфующие материки

Ученые полагают, что со времени образования первичной земной коры движение плит изменяло положение, очертания и размеры материков и океанов. Этот процесс назвали тектоникой плит . Приводятся разные доказательства этой теории. Например, очертания таких материков, как Южная Америка и Африка, выглядят так, будто они когда-то составляли единое целое. Обнаружилось и несомненное сходство в строении и возрасте горных пород, слагающих древние горные цепи на обоих материках.

1. По мнению ученых, массивы суши, ныне образующие Южную Америку и Африку, более 200 млн. лет назад были соединены друг с другом.

2. Видимо, дно Атлантического океана постепенно расширялось, когда на границах плит формировалась новая порода.

3. Сейчас Южная Америка и Африка удаляются друг от друга со скоростью порядка 3,5 см в год из-за движения плит.

ЭВОЛЮЦИЯ ЗЕМЛИ

ЗЕМЛЯ В СОЛНЕЧНОЙ СИСТЕМЕ

Земля относится к планетам земной группы, а значит она, в отличие от газовых гигантов, таких как Юпитер, имеет твердую поверхность. Это крупнейшая из четырех планет земной группы в Солнечной системе, как по размеру, так и по массе. Кроме того, Земля имеет наибольшую плотность, самую сильную поверхностную гравитацию и сильнейшее магнитное поле среди этих четырех планет.

Форма Земли

Сопоставление размеров планет земной группы (слева направо): Меркурий, Венера, Земля, Марс.

Движение Земли

Земля движется вокруг Солнца по эллиптической орбите на расстоянии около 150 млн. км со средней скоростью 29,765 км/сек. Скорость движения Земли по орбите непостоянна: в июле она начинает ускоряться (после прохождения афелия), а в январе – снова начинает замедляться (после прохождения перигелия). Солнце и вся Солнечная система обращается вокруг центра галактики Млечного Пути по почти круговой орбите со скоростью около 220 км/c. Увлекаемая движением Солнца, Земля описывает в пространстве винтовую линию.

В настоящее время перигелий Земли приходится примерно на 3 января, а афелий – примерно на 4 июля.

Для Земли радиус сферы Хилла (сфера влияния земной гравитации) равен примерно 1,5 млн. км. Это максимальное расстояние, на котором влияние гравитации Земли больше, чем влияние гравитаций других планет и Солнца.

Строение земли Внутреннее строение

Общая структура планеты Земля

Земля, как и другие планеты земной группы, имеет слоистое внутреннее строение. Она состоит из твердых силикатных оболочек (коры, крайне вязкой мантии) и металлического ядра. Внешняя часть ядра жидкая (значительно менее вязкая, чем мантия), а внутренняя – твердая.

Внутренняя теплота планеты, скорее всего, обеспечивается радиоактивным распадом изотопов калия-40, урана-238 и тория-232. У всех трех элементов период полураспада составляет более миллиарда лет. В центре планеты, температура, возможно, поднимается до 7 000 К, а давление может достигать 360 ГПа (3,6 тыс. атм.).

Земная кора – это верхняя часть твердой Земли.

Земная кора разделена на различные по величине литосферные плиты, двигающиеся относительно друг друга.

Мантия – это силикатная оболочка Земли, сложенная преимущественно породами, состоящими из силикатов магния, железа, кальция и др.

Мантия простирается от глубин 5 – 70 км ниже границы с земной корой, до границы с ядром на глубине 2900 км.

Ядро состоит из железо-никелевого сплава с примесью других элементов.

Теория тектонических плит Тектонические платформы

Согласно теории тектонических плит, внешняя часть Земли состоит из литосферы, включающей земную кору и затвердевшую верхнюю часть мантии. Под литосферой располагается астеносфера, составляющая внутреннюю часть мантии. Астеносфера ведет себя как перегретая и чрезвычайно вязкая жидкость.

Литосфера разбита на тектонические плиты и как бы плавает по астеносфере. Плиты представляют собой жесткие сегменты, которые двигаются относительно друг друга. Эти периоды миграции составляют многие миллионы лет. На разломах между тектоническими плитами могут происходить землетрясения, вулканическая активность, горообразование, образование океанских впадин.

Среди тектонических плит наибольшей скоростью перемещения обладают океанские плиты. Так, тихоокеанская плита движется со скоростью 52 – 69 мм в год. Самая низкая скорость ‒ у евразийской плиты – 21 мм в год.

Суперконтинент

Суперконтинент – в тектонике плит континент, содержащий почти всю континентальную кору Земли.

Изучение истории перемещений континентов показало, что с периодичностью около 600 млн. лет все континентальные блоки собираются в единый блок, который затем раскалывается.

Образование очередного суперконтинента через 50 миллионов лет предсказывают американские ученые на основании спутниковых наблюдений за перемещением материков. Африка сольется с Европой, Австралия и дальше будет двигаться на север и объединится с Азией, а Атлантический океан после некоторого расширения исчезнет вовсе.

Вулканы

Вулканы – геологические образования на поверхности земной коры или коры другой планеты, где магма выходит на поверхность, образуя лаву, вулканические газы, камни.

Слово «Вулкан» происходит от имени древнеримского Бога огня Вулкана.

Наука, изучающая вулканы, – вулканология.

    1. Вулканическая активность

Вулканы делятся в зависимости от степени вулканической активности на действующие, спящие и потухшие.

Среди вулканологов нет единого мнения, как определить активный вулкан. Период активности вулкана может продолжаться от нескольких месяцев до нескольких миллионов лет. Многие вулканы проявляли вулканическую активность несколько десятков тысяч лет назад, но в настоящее время не считаются действующими.

Нередко в кратерах вулканов имеются озера жидкой лавы. Если магма вязкая, то она может закупоривать жерло, подобно «пробке». Это приводит к сильнейшим взрывным извержениям, когда поток газов буквально вышибает «пробку» из жерла.

Теория тектоники плит – это современная наука о происхождении и развитии литосферы Земли. Основные идеи теории тектоники плит таковы. Литосферные плиты находятся над пластической и вязкой оболочкой, астеносферой . Астеносфера – это слой пониженной твердости и вязкости в верхней части мантии Земли. Плиты плавают и медленно перемещаются в горизонтальном направлении по астеносфере.

При раздвижении плит на противоположной стороне океанических рифов, находящихся в середине долины, появляются трещины, которые заполняются молодыми базальтами, поднимающимся из мантии Земли. Океанические плиты иногда оказываются под континентальными плитами, или скользят относительно друг друга по вертикальной плоскости разломов. Раздвижение и подлезание плит компенсируется рождением новой океанической коры на местах трещины.

Современная наука объясняет причины перемещения литосферных плит тем, что в недрах Земли накапливается тепло, из-за которого возникают конвекционные течения вещества мантии. Мантийные струи возникают даже на границе ядра и мантии. А охлажденные океанические плиты постепенно погружаются в мантию. Это дает толчок к гидродинамическим процессам. Падающие плиты задерживаются около 400 млн. лет на границе 700 км, и после накопления достаточного веса «проваливаются » сквозь границы, в нижнюю мантию, достигая поверхности ядра. Это становится причиной подъема мантийных струй на поверхность. На границе 700 км эти струи расщепляется, и проникают в верхнюю мантию, порождая в ней восходящее течение. Над этими течениями образуется линия раздвижения плит. Под действием мантийных струй, происходит тектоника плит.

В 1912 году немецкий геофизик, метеоролог Альфред Вегенер, на основе схожести атлантических берегов Северной и Южной Америки с Европой и Африкой, а также на основе палеонтологических и геологических данных доказал «дрейф материков ». Эти данные он опубликовал в 1915 году в Германии.

Согласно этой теории, материки «плавают» на нижнем базальтовом «озере» как айсберги. Согласно гипотезе Вегенера, 250 млн. лет назад существовал суперматерик Пангея (гр. пан - все, а гея – Земля, т.е. Вся Земля). Около 200 млн. лет назад Пангея разделилась на Лавразию на севере и Гондвану на юге. Между ними находилось море Тетис.

Существование суперконтинента Гондваны в начале мезозойской эры, подтверждается схожестью рельефа Южной Америки, Африки, Австралии и полуострова Индостан. В Антарктиде найдены залежи каменного угля, свидетельствующие о том, что в далеком прошлом в этих местах был жаркий климат и обильная растительность.

Палеонтологи доказали, что флора и фауна материков, которые образовались после распада Гондваны, являются одинаковыми и составляют одну семью. Схожесть угольных пластов Европы и Северной Америки и одинаковость останков динозавров свидетельствуют о том, что эти материки разделились после триасового периода.


В ХХ веке выяснилось, что в середине океанов существуют подводные горы высотой около 2 км, шириной от 200 до 500 км и с длиной до нескольких тысяч км. Их назвали среднеокеаническими хребтами (СХ) . Эти хребты кольцеобразно охватывали всю планету. Установлено, что наиболее сейсмоактивными местами земной поверхности являютсяСХ. Основным материалом этих гор является базальт.

Ученые обнаружили под океанами глубокие (около 10 км) океанические желоба, которые в основном располагаются на берегах материков или островов. Их обнаружили в Тихом и Индийском океанах. А в Атлантическом океане их нет. Самый глубокий желоб – это Марианский желоб , глубиной 11022 м, находящийся в Тихом океане. В глубоких желобах наблюдается большая сейсмическая активность, и земная кора таких мест проваливается внутрь мантии.

Американский ученый Г. Хесс предположил, что вещество мантии через рифтовые (анг. рифт – удаление, расширение) трещины поднимается вверх к центральным частям СХ, и, заполняя трещины, кристаллизируется, ориентируясь по направлению магнитного поля Земли. Через некоторое время, в ходе удаления друг от друга, опять появляется новая трещина , и процесс повторяется. Ученые, учитывая направление магнитного поля кристалликов вулканического происхождения и Земли, путем корреляции установили местонахождение и направление движения материков в разных геологических временах. Экстраполируя в обратном направлении движение материков, они получили суперматерики Гондвану и Пангею.

Самое активное место горных хребтов - это линия, проходящая посередине хребтов , где появляются разломы, достигающие до мантии. Длина разломов достигает от 10 км до 100 км. Рифты разделяют СХ на две части. Рифты, находящиеся между полуостровом Аравия и Африкой имеют длину около 6500 км. В сумме длина океанических рифтов около 90 тысяч км.

Осадочные породы накапливались, начиная с юрского периода . Вблизи СХ осадочные породы отсутствуют, а направление магнитного поля кристалликов совпадает с направлением магнитного поля Земли. Исходя из этих данных, в 1962 году американские геологи Г. Хесс и Р. Дитц, объяснили причины возникновения СХ тем, что земная кора под океанами скользит в противоположную сторону. И по этой причине, появляются рифтовые трещины и СХ. Причины дрейфа континентов связаны с возникновением СХ, которые расширяясь, отталкивают литосферные плиты, и тем самым, приводят их в движение.

Подводные плиты тяжелы , они при встрече с континентальными плитами проваливаются в мантию Земли. Вблизи Венесуэлы Караибская плита подвигается под Южно-Американскую. В последние годы, при помощи космических аппаратов установлено, что скорости движение плит разные. К примеру, скорость движения полуострова Индостан к северу составляет около 6 см/год, Северной Америки в сторону запада - 5 см/год и Австралии к северо-востоку - 14 см/год.

Скорость образования новой земной коры равна 2,8 км 2 /год. ПлощадьСХ равна 310 млн. км 2 , следовательно, они сформировались за 110 млн. лет. Возраст горных пород коры западной части Тихого океана равен 180 млн. лет. За последние 2 млрд. лет около 20 раз возникали новые и исчезали старые океаны.

Южная Америка отделилась от Африки 135 млн. лет назад . Северная Америка отделилась от Европы 85 млн. лет назад . Индостанская плита 40 млн. лет назад столкнулась с Евроазиатской, в результате чего появились горы Тибета и Гималаев . Наукой установлено, что после образования земной коры (4,2 млрд. лет назад) в результате тектонических процессов четырежды происходил распад и образование Пангеи с периодом около одного миллиарда лет.

На стыках плит сосредоточена вулканическая активность. Вдоль линии стыка плит возникают цепочки вулканов , например, на Гавайских островах и в Гренландии. Длина вулканических цепей в настоящее время равна около 37 тысячам км. Ученые считают, что через несколько сотен млн. лет Азия объединится с Северной и Южной Америкой. Тихий океан закроется, а Атлантический океан расширится.

Вопросы для самоконтроля

1. Как называется теория о происхождении и развитии литосферы Земли?

2. Как называют слоя пониженной твердости, и вязкости, в верхней части мантии Земли?

3. Где океанические плиты раздвигаются на противоположной стороне?

4. Как объясняет современная наука причины перемещения литосферных плит?

5. Какие плиты погружаются в мантии Земли?

6. Что становится причиной подъема мантийных струй на поверхность?

7. Кто и когда, на основе схожести атлантических берегов Северной и Южной Америки с Европой и Африкой, доказал «дрейф материков ».

8. Сколько миллионов лет назад существовал суперматерик Пангея?

9. Сколько млн. лет назад Пангея разделилась на Лавразию на севере и Гондвану на юге?

10. Где находилось море Тетис?

11. Где найдены залежи каменного угля, свидетельствующие о том, что в далеком прошлом в этих местах был жаркий климат и обильная растительность?

12. Флора и фауна, каких материков, являются одинаковыми и составляют одну семью?

13. О чем свидетельствует схожесть угольных пластов Европы и Северной Америки?

14. Когда выяснили, что в середине океанов существуют среднеокеанические хребты?

15.Среднеокеанические хребты кольцеобразно охватывают всю планету или нет?

16. Где располагаются океанические желоба?

17. Какой океанический желоб самый глубокий и где оно находится?

18. Насколько частей делят рифты (трещины) среднеокеанические хребты?

19. Сколько тысяч км в сумме, длина океанических рифтов?

20. Кто и когда связывали причины дрейфа континентов, с возникновением среднеоканических хребтов?

21. Почему подводные плиты, при встрече с континентальными плитами проваливаются в мантию Земли?

22. Сколько см/год скорость движения Северной Америки в сторону запада?

23. Сколько см/год скорость движенияАвстралии к северо-востоку?

24. Сколько км 2 /год скорость образования новой земной коры?

25. Сколько млн. км 2 площадьсреднеокеанических хребтов?

26. Сколько млн. лет формировались среднеокеанические хребты?

27. По какой причине возникают цепочки вулканов?

28. На каких островах наблюдается цепочка вулканов?

29. Насколько тысяч км протянулась длина вулканических цепей, в настоящее время?

…******…
Тема 21. Экологии и здоровье

Твердые планеты в своем развитии проходят период нагревания, основную энергию для которого дают падающие на поверхность планеты обломки космических тел (см . Гипотеза газопылевого облака). При столкновении этих объектов с планетой почти вся кинетическая энергия падающего объекта мгновенно преобразуется в тепловую, поскольку его скорость движения, составляющая несколько десятков километров в секунду, в момент удара резко падает до нуля. Всем внутренним планетам Солнечной системы — Меркурию, Венере, Земле, Марсу — этого тепла хватало если не для того, чтобы полностью или частично расплавиться, то хотя бы для того, чтобы размягчиться и сделаться пластичными и текучими. В этот период вещества с наибольшей плотностью передвигались к центру планет, образуя ядро , а наименее плотные, наоборот, поднимались на поверхность, образуя земную кору . Примерно так же расслаивается соус для салата, если его надолго оставить на столе. Этот процесс, называемый дифференциацией магмы , объясняет внутреннее строение Земли.

У самых маленьких внутренних планет, Меркурия и Марса (а также у Луны), это тепло в конце концов выходило на поверхность и рассеивалось в космосе. Затем планеты затвердевали и (как в случае с Меркурием) в последующие несколько миллиардов лет проявляли низкую геологическую активность. История Земли была совсем другой. Поскольку Земля — самая крупная из внутренних планет, в ней сохранился и самый большой запас тепла. А чем крупнее планета, тем меньше у нее отношение площади поверхности к объему и тем меньше она теряет тепла. Следовательно, Земля остывала медленнее, чем другие внутренние планеты. (То же самое можно сказать и о Венере, размер которой немного меньше Земли.)

Кроме того, с начала формирования Земли в ней происходил распад радиоактивных элементов, что увеличивало запас тепла в ее недрах. Следовательно, Землю можно рассматривать как шарообразную печь. Внутри нее непрерывно образуется тепло, переносится к поверхности и излучается в космос. Перенос тепла вызывает ответное перемещение мантии — оболочки Земли, расположенной между ядром и земной корой на глубине от нескольких десятков до 2900 км (см . Теплообмен). Горячее вещество из глубины мантии поднимается, охлаждается, а затем вновь погружается, замещаясь новым горячим веществом. Это классический пример конвективной ячейки.

Можно сказать, что порода мантии бурлит так же, как вода в чайнике: и в том, и в другом случае тепло переносится в процессе конвекции. Некоторые геологи считают, что для завершения полного конвективного цикла породам мантии требуется несколько сотен миллионов лет — по человеческим меркам очень большое время. Известно, что многие вещества с течением времени медленно деформируются, хотя на протяжении человеческой жизни они выглядят абсолютно твердыми и неподвижными. Например, в средневековых соборах старинные оконные стекла внизу толще, чем наверху, потому что в течение многих веков стекло стекало вниз под действием силы тяжести. Если за несколько столетий это происходит с твердым стеклом, то нетрудно представить себе, что то же самое может произойти с твердыми горными породами за сотни миллионов лет.

Наверху конвективных ячеек земной мантии плавают породы, составляющие твердую поверхность Земли, — так называемые тектонические плиты . Эти плиты состоят из базальта, самой распространенной излившейся магматической горной породы. Толщина этих плит примерно 10-120 км, и они перемещаются по поверхности частично расплавленной мантии. Материки, состоящие из относительно легких пород, таких как гранит, образуют самый верхний слой плит. В большинстве случаев толщина плит под материками больше, чем под океанами. Со временем процессы, происходящие внутри Земли, сдвигают плиты, вызывая их столкновение и растрескивание, вплоть до образования новых плит или исчезновения старых. Именно благодаря этому медленному, но непрерывному перемещению плит поверхность нашей планеты все время находится в динамике, постоянно изменяясь.

Важно понимать, что понятия «плита» и «материк» — не одно и то же. Например, Северо-Американская тектоническая плита простирается от середины Атлантического океана до западного побережья Северо-Американского континента. Часть плиты покрыта водой, часть — сушей. Анатолийская плита, на которой расположены Турция и Ближний Восток, полностью покрыта сушей, в то время как Тихоокеанская плита расположена полностью под Тихим океаном. То есть границы плит и береговые линии материков не обязательно совпадают. Кстати, слово «тектоника» происходит от греческого слова tekton («строитель») — тот же корень есть и в слове «архитектор» — и подразумевает процесс строительства или сборки.

Тектоника плит заметнее всего там, где плиты соприкасаются друг с другом. Принято выделять три типа границ между плитами.

Дивергентные границы

В середине Атлантического океана поднимается к поверхности раскаленная магма, образовавшаяся в глубине мантии. Она прорывается сквозь поверхность и растекается, постепенно заполняя собой трещину между раздвигающимися плитами. Из-за этого морское дно расширяется и Европа и Северная Америка расходятся в стороны со скоростью несколько сантиметров в год. (Это движение смогли измерить с помощью радиотелескопов, расположенных на двух континентах, сравнив время прихода радиосигнала от далеких квазаров.)

Если дивергентная граница расположена под океаном, в результате расхождения плит возникает срединно-океанический хребет — горная цепь, образованная за счет скопления вещества в том месте, где оно выходит на поверхность. Срединно-Атлантический хребет, простирающийся от Исландии до Фолклендов, — это самая длинная горная цепь на Земле. Если же дивергентная граница находится под материком, она буквально разрывает его. Примером такого процесса, происходящего в наши дни, служит Великая долина разломов, простирающаяся от Иордании на юг в Восточную Африку.

Конвергентные границы

Если на дивергентных границах образуется новая кора, значит где-то в другом месте кора должна разрушаться, иначе Земля увеличивалась бы в размерах. При столкновении двух плит одна из них пододвигается под другую (это явление называется субдукцией, или пододвиганием). При этом плита, оказавшаяся внизу, погружается в мантию. Что происходит на поверхности над зоной субдукции, зависит от местонахождения границ плиты: под материком, на границе материка или под океаном.

Если зона субдукции расположена под океанической корой, то в результате пододвигания образуется глубокая срединно-океаническая впадина (желоб). Примером этого может служить самое глубокое место в Мировом океане — Марианская впадина около Филиппин. Вещество нижней плиты попадает вглубь магмы и расплавляется там, а потом может опять подняться к поверхности, образуя гряду вулканов — как, например, цепь вулканов на востоке Карибского моря и на западном берегу Соединенных Штатов.

Если обе плиты на конвергентной границе находятся под материками, результат будет совсем другим. Материковая кора состоит из легких веществ, и обе плиты фактически плавают над зоной субдукции. Поскольку одна плита пододвигается под другую, два материка сталкиваются, и их границы сминаются, образуя материковый горный хребет. Так сформировались Гималаи, когда Индийская плита около 50 миллионов лет назад столкнулась с Евразийской. В результате такого же процесса сформировались и Альпы, когда Италия соединилась с Европой. А Уральские горы, старую горную цепь, можно назвать «сварочным швом», образовавшимся при объединении европейского и азиатского массивов.

Если материк покоится только на одной из плит, на нем будут образовываться складки и смятия по мере его наползания на зону субдукции. Примером этого служат Анды на Западном побережье Южной Америки. Они сформировались после того, как Южно-Американская плита наплыла на погрузившуюся под нее плиту Наска в Тихом океане.

Трансформные границы

Иногда бывает так, что две плиты не расходятся и не пододвигаются друг под друга, а просто трутся краями. Самый известный пример такой границы — разлом Сан-Андреас в Калифорнии, где движутся бок о бок Тихоокеанская и Северо-Американская плиты. В случае трансформной границы плиты сталкиваются на время, а затем расходятся, высвобождая много энергии и вызывая сильные землетрясения.

В заключение я хотел бы подчеркнуть, что, хотя тектоника плит включает в себя понятие о движении материков, это не то же самое, что гипотеза дрейфа материков, предложенная в начале ХХ века. Эта гипотеза была отвергнута (справедливо, по мнению автора) геологами из-за некоторых экспериментальных и теоретических неувязок. И тот факт, что наша современная теория включает в себя один аспект из гипотезы дрейфа материков — перемещение материков, — не означает, что ученые отвергли тектонику плит в начале прошлого века только для того, чтобы принять ее позже. Теория, которая принята сейчас, коренным образом отличается от прежней.

В процессе становления, а затем и развития геологии как науки предлагались многие гипотезы, каждая из которых с тех или иных позиций рассматривала и объясняла либо отдельные проблемы, либо комплекс проблем, касающихся развития земной коры или Земли в целом. Эти гипотезы получили название геотектонических. Одни из них из-за недостаточной убедительности быстро утрачивали свое значение в науке, другие же оказывались более долговечными, опять-таки до тех пор, пока не накапливались новые факты и представления, положенные в основу новых гипотез, более соответствующих данному этапу развития науки. Несмотря на большие успехи, достигнутые в изучении строения и развития земной коры, ни одна из современных гипотез и теорий (даже признанных) не в состоянии с достаточной достоверностью и в полной мере объяснить все условия формирования земной коры.

Первая научная гипотеза-гипотеза поднятия- была сформулирована в первой половине XIX в. на основе представлений плутонистов о роли внутренних сил Земли, которая сыграла положительную роль в борьбе с ошибочными представлениями нептунистов. В 50-х гг. XIX в. она была заменена более обоснованной в то время гипотезой контракции (сжатая), изложенной французским ученым Эли де Бомоном. Гипотеза контракции опиралась на космогоническую гипотезу Лапласа, признававшую, как известно первичное горячее состояние Земли и последующее постепенное ее охлаждение.

Сущность контракционной гипотезы заключается в том, что охлаждение Земли вызывает ее сжатие с последующим уменьшением ее объема. В результате земная кора, затвердевшая раньше внутренних зон планеты, вынуждена сморщиваться, отчего образуются складчатые горы.

Во второй половине XIX в. американскими учеными Дж. Холлом и Дж. Дэном было сформулировано учение о геосинклиналях - особых подвижных зонах земной коры со временем превращающихся в складчатые горные сооружения. Это учение заметно усилило позиции гипотезы контракции. Однако к началу XX в. в связи с получением новых данных о Земле эта гипотеза стала утрачивать свое значение, так как оказалась не в состоянии объяснить периодичность горообразовательных движений и процессов магматизма, игнорировала процессы растяжения и т. д. К тому же в науке возникли представления об образовании планеты из холодных частиц, что лишило гипотезу ее основной опоры.

Вместе с тем учение о геосинклиналях продолжало дополняться и развиваться. В этом отношении большой вклад внесен и советскими учеными А. Д. Архангельским, Н. С. Шатским, М. В. Муратовым и др. Наряду с представлениями о подвижных зонах - геосинклиналях и на основе их в конце XIX в. и особенно с начала XX в. стало развиваться учение об относительно устойчивых континентальных площадях - платформах; из отечественных ученых, развивавших это учение, надо прежде всего назвать А. П. Карпинского, А. Д. Архангельского, Н. С. Шатского, А. А. Богданова, А. Л. Яншина.

Учение о геосинклиналях и платформах прочно вошло в геологическую науку и сохраняет свое значение до настоящего времени. Однако прочной теоретической базы оно до сих пор не имеет.

Стремление к дополнению и устранению недостатков в контракционной гипотезе или, наоборот, к ее полной замене привело к появлению на протяжении первой половины XX в. ряда новых геотектонических гипотез. Отметим некоторые из них.

Пульсационная гипотеза. В основе ее лежит представление о чередовании процессов сжатия и расширения Земли - процессов, весьма характерных для Вселенной в целом. М. А. Усов и В. А. Обручев, развивавшие эту гипотезу, с фазами сжатия связывали складчатость, надвиги, внедрение кислых интрузий, а с фазами расширения - возникновение трещин в земной коре и излияние по ним преимущественно основных лав.

Гипотеза дифференциации подкорового вещества и миграции радиоэлементов. Под действием гравитационной дифференциации и радиогенного разогрева происходит периодическое выплавление жидких компонентов из атмосферы, что влечет за собой разрывы земной коры, вулканизм, горообразование и другие явления. Одним из авторов этой гипотезы является известный советский ученый В. В. Белоусов.

Гипотеза дрейфа материков. Она была изложена в 1912 г. немецким ученым А. Вегенером и принципиально отличается от всех других гипотез. Основана на принципах мобилизма - признания значительных горизонтальных перемещений обширных континентальных масс. Большинство гипотез исходило из принципов фиксизма - признания стабильного, фиксированного положения отдельных частей земной коры, относительно подстилающей мантии (такими являются гипотезы контракции, дифференциации подкорового вещества и миграции радиоэлементов и др.).

Согласно представлениям А. Вегенера, гранитный слой земной коры “плавает” по базальтовому слою. Под влиянием вращения Земли он оказался собранным в единый материк Пангея. В конце палеозойской эры (около 200-300 млн. лет назад) произошло дробление Пангеи на отдельные блоки и начался их дрейф, пока они не заняли современное положение. Под влиянием дрейфа блоков Северной и Южной Америки на запад возник Атлантический океан, а сопротивление, которое испытывали эти материки при своем движении по базальтовому слою, способствовало возникновению таких гор, как Анды и Кордильеры. По тем же причинам Австралия и Антарктида раздвинулись и сместились на юг и т. д.

Подтверждение своей гипотезы А. Вегенер видел в сходстве контуров и геологического строения побережий по обе стороны Атлантического океана, в сходстве ископаемых организмов материков, далеко отстоящих друг от друга, в различном строении земной коры в пределах океанов и материков.

Появление гипотезы А. Вегенера вызвало большой интерес, но он сравнительно быстро угас, так как она не в состоянии была объяснить многие явления, а главное - возможность движения материков по базальтовому слою. Тем не менее, как увидим ниже, мобилистские взгляды, но на совершенно новой основе, возродились и получили широкое признание во второй половине XX в.

Ротационная гипотеза. Занимает обособленное место среди геотектонических гипотез, так как усматривает проявление тектонических процессов на Земле под воздействием внеземных причин, а именно притяжения Луны и Солнца, вызывающих твердые приливы в земной коре и мантии, замедляющие вращение Земли и изменяющие ее форму. Следствием этого являются не только вертикальные, но и горизонтальные перемещения отдельных глыб земной коры. Гипотеза не находит широкого признания, так как абсолютное большинство ученых считают, что тектогенез является результатом проявления внутренних сил Земли. Вместе с тем влияние внеземных причин на формирование земной коры, очевидно, тоже необходимо учитывать.

Теория новой глобальной тектоники, или тектоники литосферных плит. С начала второй половины XX в. развернулись обширные геолого-геофизические исследования дна Мирового океана. Результатом их явилось появление совершенно новых представлений о развитии океанов, таких, например, как раздвиг литосферных плит и формирование молодой океанической коры в рифтовых долинах, образование континентальной коры в зонах поддвига литосферных плит и др. Эти представления привели к возрождению в геологической науке мобилистских идей и к появлению теории новой глобальной тектоники, или тектоники литосферных плит.

В основу новой теории положено представление, что вся литосфера (т. е. земная кора совместно с верхним слоем мантии) разделяется узкими тектонически активными зонами на отдельные жесткие плиты, перемещающиеся по астеносфере (пластичный слой в верхней мантии). Активными тектоническими зонами, характеризующимися высокой сейсмичностью и вулканизмом, являются рифтовые зоны срединно-океанических хребтов, системы островных дуг и глубоководных желобов океанов, рифтовые долины на материках. В рифтовых зонах срединно-океанических хребтов происходит раздвигание плит и образование новой океанической коры, а в глубоководных желобах - поддвигание одних плит под другие и образование континентальной коры. Возможно и столкновение плит - результатом такого явления считается образование Гималайской складчатой зоны.

Различают семь крупных литосферных плит и несколько большее число мелких. Эти плиты получили следующие названия: 1) Тихоокеанская, 2) Северо-Американская, 3) Южно-Американская, 4) Евразийская, 5) Африканская, 6) Индо-Австралийская и 7) Антарктическая. В состав каждой из них входят один или несколько материков или их части и океаническая кора, за исключением Тихоокеанской плиты, почти целиком состоящей из океанической коры. Одновременно с горизонтальными перемещениями плит происходили и их повороты.

Перемещение литосферных плит, согласно данной теории, вызывается конвективными течениями вещества в мантии, порождаемыми теплом, выделяемым при радиоактивном распаде элементов и гравитационной дифференциации вещества в недрах Земли. Однако аргументированность тепловой конвекции в мантии, по мнению многих ученых, является недостаточной. Это касается также возможности погружения океанских плит в мантию на большую глубину и ряда других положений. Поверхностным выражением конвективного движения служат рифтовые зоны срединно-океанских хребтов, где относительно более нагретая мантия, поднимаясь к поверхности, подвергается плавлению. Она изливается в виде базальтовых лав и застывает. Далее в эти застывшие породы вновь внедряется базальтовая магма и раздвигает в обе стороны более древние базальты. Так происходит много раз. При этом океанское дно наращивается, разрастается. Подобный процесс получил название спрединга . Скорость разрастания океанского дна колеблется от нескольких мм до 18 см в год.

Другие границы между литосферными плитами являются конвергентными, то есть земная кора на эти участках поглощается. Такие зоны были названы зонами субдукции. Располагаются они по краям Тихого океана и на востоке Индийского. Тяжелая и холодная океанская литосфера, подходя к более толстой и легкой континентальной, уходит под нее, как бы подныривает. Если в контакт входят две океанские плиты, то погружается более древняя, так как она тяжелее и холоднее, чем молодая плита.

Зоны, где происходит субдукция, морфологически выражены глубоководными желобами, а сама погружающаяся океанская холодная и упругая литосфера хорошо устанавливается по данным сейсмической томографии. Угол погружения океанских плит различный, вплоть до вертикального, и плиты прослеживаются до границы верхней и нижней мантий на глубине примерно 670 км.

Когда океанская плита при подходе к континентальной начинает резко изгибаться, в ней возникают напряжения, которые, разряжаясь, провоцируют землетрясения. Гипоцентры или очаги землетрясений четко маркируют границу трения между двумя плитами и образуют наклонную сейсмофокальную зону, погружающуюся под континентальную литосферу до глубин 700 км. Эти зоны называются зонами Беньофа, в честь исследовавшего их американского сейсмолога.

Погружение океанской литосферы приводит еще к одним важным последствиям. При достижении литосферы глубины 100 – 200 км в области высоких температур и давлений из нее выделяются флюиды – особые перегретые минеральные растворы, которые вызывают плавление горных пород континентальной литосферы и образование магматических очагов, питающих цепи вулканов, развитых параллельно глубоководным желобам на активных континентальных окраинах.

Таким образом, на активной континентальной окраине благодаря субдукции наблюдается сильно расчлененный рельеф, высокая сейсмичность и энергичная вулканическая деятельность.

Кроме явления субдукции существует так называемая обдукция , то есть надвигание океанской литосфера на континентальную, примером которой является огромный тектонический покров на восточной окраине Аравийского полуострова, сложенный типичной океанской корой.

Следует также упомянуть о столкновении, или коллизии , двух континентальный плит, которые в силу относительной легкости слагающего их материала не могут погрузиться друг под друга, а сталкиваются, образуя горно-складчатый пояс с очень сложным внутренним строением.

Основными положениями тектоники литосферных плит являются следующие:

1.Первой предпосылкой тектоники плит является разделение верхней части твердой Земли на две оболочки, существенно отли­чающиеся по реологическим свойствам (вязкости),- жесткую и хрупкую литосферу и более пластичную и подвижную астеносферу. Как уже говорилось, выделение этих двух оболочек произво­дится по сейсмологическим или магнитотеллурическим данным.

2.Второе положение тектоники плит, которому она и обязана своим названием, состоит в том, что литосфера естественно под­разделена на ограниченное число плит-в настоящее время семь крупных и столько же малых.Основанием для их выде­ления и проведения границ между ними служит размещение оча­гов землетрясений.

3.Третье положение тектоники плит касается характера их взаимных перемещении. Различают три рода таких перемещений и соответственно границ между плитами: 1)дивергентные грани­цы, вдоль которых происходит раздвижение плит,- спрединг; 2) конвергентные границы, на которых идет сближение плит, обычно выражающееся поддвигом одной плиты под другую; если океанская плита пододвигается под континентальную, этот процесс называетсясубдукцией, если океанская плита надвигается на континентальную -обдукцией; если сталкиваются две континентальные плиты, тоже обычно с поддвигом одной под другую,- коллизией; 3)трансформные границы, вдоль которых происходит горизонтальное скольжение одной плиты относительно другой по плоскости вертикального трансформного разлома.

В природе преобладают границы первых двух типов.

На дивергентных границах, в зонах спрединга, происходит не­прерывное рождение новой океанской коры; поэтому эти границы называют еще конструктивными. Кора эта перемещается астеносферным течением в сторону зон субдукции, где она поглощается на глубине; это дает основание называть такие границыдеструктивными.

Четвертое положение тектоники плит заключается в том, что при своих перемещениях плиты подчиняются законам сферической геометрии, а точнеетеореме Эйлера, согласно которой любое пе­ремещение двух сопряженных точек по сфере совершается вдоль окружности, проведенной относительно оси, проходящей через центр Земли.

5.Пятое положение тектоники плит гласит, что объем погло­щаемой в зонах субдукции океанской коры равен объему коры, нарождающейся в зонах спрединга.

6.Шестое положение тектоники плит усматривает основную причину движения плит в мантийнойконвекции. Эта конвекция в классической модели 1968г. является чисто тепловой и общеман­тийной, а способ ее воздействия на литосферные плиты состоит в том, что эти плиты, находящиеся в вязком сцеплении с астеносферой, увлекаются течением последней и движутся на манер ленты конвейера от осей спрединга к зонам субдукции. В целом схе­ма мантийной конвекции, приводящей к плитнотектонической модели движений литосферы, состоит в том, что под срединно-океан­скими хребтами располагаются восходящие ветви конвективных ячей, под зонами субдукции-нисходящие, а в промежутке между хребтами и желобами, под абиссальными равнинами и конти­нентами - горизонтальные отрезки этих ячей.

Теория новой глобальной тектоники, или тектоники литосферных плит особенно популярна за рубежом: признается она и многими советскими учеными, которые не ограничиваются общим признанием, а много работают над уточнением основных его положений, дополняя, углубляя и развивая их. Советский ученый-мобилист А. В. Пейвс, развивая эту теорию, пришел, однако, к выводу, что гигантских жестких литосферных плит вообще не существует, а литосфера, в силу того что она пронизана горизонтальными, наклонными и вертикальными подвижными зонами, состоит из отдельных пластин (“литопластин”), перемещающихся дифференцированно. Это существенно новый взгляд на одно из основных, но спорных положений данной теории.

Отметим, что определенная часть ученых-мобилистов (как за рубежом, так и отечественных) в своих взглядах проявляют крайне отрицательное отношение к классическому учению о геосинклиналях по сути полностью его отвергают, не считаясь с тем, что многие положения этого учения опираются на достоверные факты и наблюдения, установленные и осуществленные при геологических исследованиях материков.

Очевидно, что наиболее правильным путем в создании действительно глобальной теории Земли является не противопоставление, а выявление единства и взаимосвязи между всем положительным, отраженном в классическом учении о геосинклиналях, и всем тем новым, что раскрывается в теории новой глобальной тектоники.