Критерии научной картины мира. Понятие и структура научной картины мира

интегративная система представлений о мире, вырабатываемая путем обобщения и синтеза важнейших теоретических знаний о мире, полученных на том или ином этапе исторического развития науки. Различают частнонаучные картины мира: физическая, биологическая, химическая и др.; общенаучную картину мира.

Отличное определение

Неполное определение ↓

научная картина мира

НАУЧНАЯ КАРТИНА МИРА - целостный образ предмета научного исследования в его главных системно-структурных характеристиках, формируемый посредством фундаментальных понятий, представлений и принципов науки на каждом этапе ее исторического развития. Различают основные разновидности (формы) Н. к. м.: 1) общенаучную, как обобщенное представление о Вселенной, живой природе, обществе и человеке, формируемое на основе синтеза знаний, полученных в различных научных дисциплинах; 2) социальную и естественнонаучную картины мира, как представления об обществе и природе, обобщающие достижения, соответственно, социально-гуманитарных и естественных наук; 3) специальные Н. к. м. (дисциплинарные онтологии) - представления о предметах отдельных наук (физическая, химическая, биологическая и т. п. картины мира). В последнем случае термин «мир» применяется в специфическом смысле, обозначая не мир в целом, а предметную область отдельной науки (физический мир, биологический мир, мир химических процессов). Чтобы избежать терминологических проблем, для обозначения дисциплинарных онтологии применяют также термин «картина исследуемой реальности». Наиболее изученным ее образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания. Обобщенный системно-структурный образ предмета исследования вводится в специальной Н. к. м. посредством представлений: 1) о фундаментальных объектах, из которых полагаются построенными все др. объекты, изучаемые соответствующей наукой; 2) о типологии изучаемых объектов; 3) о общих особенностях их взаимодействия; 4) о пространственно-временной структуре реальности. В с е эти представления могут быть описаны в системе онтологических принципов, которые выступают основанием научных теорий соответствующей дисциплины. Напр., принципы: мир состоит из неделимых корпускул; их взаимодействие строго детерминировано и осуществляется как мгновенная передача сил по прямой; корпускулы и образованные из них тела перемещаются в абсолютном пространстве с течением абсолютного времени, - все они описывают картину физического мира, сложившуюся во второй половине 17 в. и получившую впоследствии название механической картины мира. Переход от механической к электродинамической (в конце 19 в.), а затем к квантово-релятивистской картине физической реальности (первая половина 20 в.) сопровождался изменением системы онтологических принципов физики. Наиболее радикальным он был в период становления квантово-релятивистской физики (пересмотр принципов неделимости атомов, существования абсолютного пространства-времени, лапласовской детерминации физических процессов). По аналогии с физической картиной мира выделяют картины исследуемой реальности в др. науках (в химии, астрономии, биологии и т.д.). Среди них также существуют исторически сменяющие друг друга типы картин мира. Напр., в истории биологии имел место переход от додарвиновских представлений о живом к картине биологического мира, предложенной Ч. Дарвином, к последующему включению в картину живой природы представлений о генах как носителях наследственности, к современным представлениям об уровнях системной организации живого - популяции, биогеоценозе, биосфере и их эволюции. Каждая из конкретно-исторических форм специальной Н. к. м. может реализовываться в ряде модификаций. Среди них существуют линии преемственности (напр., развитие ньютоновских представлений о физическом мире Эйлером, развитие электродинамической картины мира Фарадеем, Максвеллом, Герцем, Лоренцем, каждый из которых вводил в эту картину новые элементы). Но возможны ситуации, когда один и тот же тип картины мира реализуется в форме конкурирующих и альтернативных друг другу представлений об исследуемой реальности (напр., борьба ньютоновской и декартовской концепций природы как альтернативных вариантов механической картины мира; конкуренция двух основных направлений в развитии электродинамической картины мира - программы Ампера-Вебера, с одной стороны, и программы Фарадея-Максвелла - с др.). Картина мира является особым типом теоретического знания. Ее можно рассматривать в качестве некоторой теоретической модели исследуемой реальности, отличной от моделей (теоретических схем), лежащих в основании конкретных теорий. Во-первых, они различаются по степени общности. На одну и ту же картину мира может опираться множество теорий, в том числе и фундаментальных. Напр., с механической картиной мира были связаны механика Ньютона-Эйлера, термодинамика и электродинамика Ампера-Вебера. С электродинамической картиной мира связаны не только основания максвелловской электродинамики, но и основания механики Герца. Во-вторых, специальную картину мира можно отличить от теоретических схем, анализируя образующие их абстракции (идеальные объекты). Так, в механической картине мира процессы природы характеризовались посредством абстракций - «неделимая корпускула», «тело», «взаимодействие тел, передающееся мгновенно по прямой и меняющее состояние движения тел», «абсолютное пространство» и «абсолютное время». Что касается теоретической схемы, лежащей в основании ньютоновской механики (взятой в ее эйлеровском изложении), то в ней сущность механических процессов характеризуется посредством иных абстракций - «материальная точка», «сила», «инерциальная пространственно-временная система отсчета». Идеальные объекты, образующие картину мира, в отличие от идеализации конкретных теоретических моделей, всегда имеют онтологический статус. Любой физик понимает, что «материальная точка» не существует в самой природе, ибо в природе нет тел, лишенных размеров. Но последователь Ньютона, принявший механическую картину мира, считал неделимые атомы реально существующими «первокирпичиками» материи. Он отождествлял с природой упрощающие ее и схематизирующие абстракции, в системе которых создается физическая картина мира. В каких именно признаках эти абстракции не соответствуют реальности - это исследователь выясняет, чаще всего, лишь тогда, когда его наука вступает в полосу ломки старой картины мира и замены ее новой. Будучи отличными от картины мира, теоретические схемы, составляющие ядро теории, всегда связаны с ней. Установление этой связи является одним из обязательных условий построения теории. Процедура отображения теоретических моделей (схем) на картину мира обеспечивает ту разновидность интерпретации уравнений, выражающих теоретические законы, которую в логике называют концептуальной (или семантической) интерпретацией и которая обязательна для построения теории. Вне картины мира теория не может быть построена в завершенной форме. Н. к. м. создают три основные взаимосвязанные функции в процессе исследования которые: 1) систематизируют научные знания, объединяя их в сложные целостности; 2) выступают в качестве исследовательских программ, определяющих стратегию научного познания; 3) обеспечивают объективацию научных знаний, их отнесение к исследуемому объекту и их включение в культуру. Специальная Н. к. м. интегрирует знания в рамках отдельных научных дисциплин. Естественнонаучная и социальная картины мира, а затем общенаучная картина мира, задают более широкие горизонты систематизации знаний. Они интегрируют достижения различных дисциплин, выделяя в дисциплинарных онтологиях устойчивое эмпирически и теоретически обоснованное содержание. Напр., представления современной общенаучной картины мира о нестационарной Вселенной и Большом взрыве, о кварках и синергетических процессах, о генах, экосистемах и биосфере, об обществе как целостной системе, о формациях и цивилизациях и т. п. - развиты в рамках соответствующих дисциплинарных онтологии физики, биологии, социальных наук и затем включены в общенаучную картину мира. Осуществляя систематизирующую функцию, Н. к. м. вместе с тем выполняют роль исследовательских программ. Специальные Н. к. м. задают стратегию эмпирических и теоретических исследований в рамках соответствующих областей науки. По отношению к эмпирическому исследованию направляющая роль специальных картин мира наиболее отчетливо проявляется тогда, когда наука начинает изучать объекты, для которых еще не созданы теории и которые исследуются эмпирическими методами (типичными примерами служит роль электродинамической картины мира в экспериментальном из учении катодных и рентгеновских лучей). Представления об исследуемой реальности, вводимые в картине мира, обеспечивают выдвижение гипотез о природе явлений, обнаруженных в опыте. Соответственно этим гипотезам формулируются экспериментальные задачи и вырабатываются планы экспериментов, посредством которых обнаруживаются все новые характеристики изучаемых в опыте объектов. В теоретических исследованиях роль специальной Н. к. м. как исследовательской программы проявляется в том, что она определяет круг допустимых задач и постановку проблем на начальном этапе теоретического поиска, а также выбор теоретических средств их решения. Напр., в период построения обобщающих теорий электромагнетизма соперничали две физические картины мира и, соответственно, две исследовательские программы: Ампера-Вебера, с одной стороны, и Фарадея-Максвелла, с др. Они ставили разные задачи и определяли разные средства построения обобщающей теории электромагнетизма. Программа Ампера-Вебера исходила из принципа дальнодействия и ориентировала на применение математических средств механик точек, программа Фарадея-Максвелла опиралась на принцип близкодействия и заимствовала математические структуры из механики сплошных сред. В междисциплинарных взаимодействиях, основанных на переносах представлений из одной области знаний в др., роль исследовательской программы выполняет общенаучная картина мира. Она выявляет сходные черты дисциплинарных онтологии, тем самым формирует основания для трансляции идей, понятий и методов из одной науки в др. Обменные процессы между квантовой физикой и химией, биологией и кибернетикой, породившие целый ряд открытий 20 в., направлялись и регулировались общенаучной картиной мира. Факты и теории, созданные при направляющем влиянии специальной Н. к. м., вновь соотносятся с ней, что приводит к двум вариантам ее изменений. Если представления картины мира выражают существенные характеристики исследуемых объектов, происходит уточнение и конкретизация этих представлений. Но если исследование наталкивается на принципиально новые типы объектов, происходит радикальная перестройка картины мира. Такая перестройка выступает необходимым компонентом научных революций. Она предполагает активное использование философских идей и обоснование новых представлений накопленным эмпирическим и теоретическим материалом. Первоначально новая картина исследуемой реальности выдвигается в качестве гипотезы. Ее эмпирическое и теоретическое обоснование может занять длительный период, когда она конкурирует в качестве новой исследовательской программы с ранее принятой специальной Н. к. м. Утверждение новых представлений о реальности в качестве дисциплинарной онтологии обеспечивается не только тем, что они подтверждаются опытом и служат базисом новых фундаментальных теорий, но и их философско-мировоззренческим обоснованием (См. Философские обоснования науки). Представления о мире, которые вводятся в картинах исследуемой реальности, всегда испытывают определенное воздействие аналогий и ассоциаций, почерпнутых из различных сфер культурного творчества, включая обыденное сознание и производственный опыт определенной исторической эпохи. Напр., представления об электрическом флюиде и теплороде, включенные в механическую картину мира в 18 в., складывались во многом под влиянием предметных образов, почерпнутых из сферы повседневного опыта и техники соответствующей эпохи. Здравому смыслу 18 в. легче было согласиться с существованием немеханических сил, представляя их по образу и подобию механических; напр., представляя поток тепла как поток невесомой жидкости - теплорода, - падающего, наподобие водной струи, с одного уровня на др. и производящего за счет этого работу так же, как совершает эту работу вода в гидравлических устройствах. Но, вместе с тем, введение в механическую картину мира представлений о различных субстанциях - носителях сил - содержало и момент объективного знания. Представление о качественно различных типах сил было первым шагом на пути к признанию несводимости всех видов взаимодействия к механическому. Оно способствовало формированию особых, отличных от механического, представлений о структуре каждого из таких видов взаимодействий. Онтологический статус Н. к. м. выступает необходимым условием объективации конкретных эмпирических и теоретических знаний научной дисциплины и их включения в культуру. Через отнесение к Н. к. м. специальные достижения науки обретают общекультурный смысл и мировоззренческое значение. Напр., основная физическая идея общей теории относительности, взятая в ее специальной теоретической форме (компоненты фундаментального метрического тензора, определяющего метрику четырехмерного пространства времени, вместе с тем выступают как потенциалы гравитационного поля), малопонятна тем, кто не занимается теоретической физикой. Но при формулировке этой идеи в языке картины мира (характер геометрии пространства времени взаимно определен характером поля тяготения) придает ей понятный для неспециалистов статус научной истины, имеющей мировоззренческий смысл. Эта истина видоизменяет представления об однородном евклидовом пространстве и квазиевклидовом времени, которые через систему обучения и воспитания со времен Галилея и Ньютона превратились в мировоззренческий постулат обыденного сознания. Так обстоит дело со многими открытиями науки, которые включались в Н. к. м. и через нее влияют на мировоззренческие ориентиры человеческой жизнедеятельности. Историческое развитие Н. к. м. выражается не только в изменении ее содержания. Историчны сами ее формы. В 17 в., в эпоху возникновения естествознания, механическая картина мира была одновременно и физической, и естественнонаучной, и общенаучной картиной мира. С появлением дисциплинарно организованной науки (конец 18 - первая половина 19 вв.) возникает спектр специально-научных картин мира. Они становятся особыми, автономными формами знания, организующими в систему наблюдения факты и теории каждой научной дисциплины. Возникают проблемы построения общенаучной картины мира, синтезирующей достижения отдельных наук. Единство научного знания становится ключевой философской проблемой науки 19 - первой половины 20 вв. Усиление междисциплинарных взаимодействий в науке 20 в. приводит к уменьшению уровня автономности специальных Н. к. м. Они интегрируются в особые блоки естественнонаучной и социальной картин мира, базисные представления которых включаются в общенаучную картину мира. Во второй половине 20 в. общенаучная картина мира начинает развиваться на базе идей универсального (глобального эволюционизма), соединяющего принципы эволюции и системного подхода. Выявляются генетические связи между неорганическим миром, живой природой и обществом, в результате устраняется резкое противопоставление естественнонаучной и социальной Н. к. м. Соответственно усиливаются интегративные связи дисциплинарных онтологии, которые все более выступают фрагментами или аспектами единой общенаучной картины мира. B.C. Степин Лит.: Алексеев И.С. Единство физической картины мира как методологический принцип // Методологические принципы физики. М., 1975; Вернадский В.И. Размышления натуралиста. Кн. 1. 1975. Кн. 2. 1977; Дышлевый П. С. Естественнонаучная картина мира как форма синтеза научного знания // Синтез современного научного знания. М., 1973; Мостепаненко М.В. Философия и физическая теория. Л., 1969; Научная картина мира: логико-гносеологический аспект. Киев, 198 3; ЯЛЙНКМ. Статьи и речи // Планк М. Избранные научные труды. М., 1975; Пригожин И., Стенгерс И. Порядок из хаоса. М, 1986; Природа научного познания. Минск, 1979; Степин B.C. Теоретическое знание. М., 2000; Степин B.C., Кузнецова Л. Научная картина мира в культуре техногенной цивилизации. М., 1994; Холтон Дж. Что такое «антинаука»//Вопросы философии. 1992. №2; Эйнштейн А. Собрание научных трудов. Т. 4. М., 1967.

НАУЧНАЯ КАРТИНА МИРА – целостный образ предмета научного исследования в его главных системно-структурных характеристиках, формируемый посредством фундаментальных понятий, представлений и принципов науки на каждом этапе ее исторического развития.

Различают основные разновидности (формы) научной картины мира: 1) общенаучную как обобщенное представление о Вселенной, живой природе, обществе и человеке, формируемое на основе синтеза знаний, полученных в различных научных дисциплинах; 2) социальную и естественнонаучную картины мира как представления об обществе и природе, обобщающие достижения соответственно социально-гуманитарных и естественных наук; 3) специальные научные картины мира (дисциплинарные онтологии) – представления о предметах отдельных наук (физическая, химическая, биологическая и т.п. картины мира). В последнем случае термин «мир» применяется в специфическом смысле, обозначая не мир в целом, а предметную область отдельной науки (физический мир, биологический мир, мир химических процессов). Чтобы избежать терминологических проблем, для обозначения дисциплинарных онтологии применяют также термин «картина исследуемой реальности». Наиболее изученным ее образцом является физическая картина мира. Но подобные картины есть в любой науке, как только она конституируется в качестве самостоятельной отрасли научного знания. Обобщенный системно-структурный образ предмета исследования вводится в специальной научной картине мира посредством представлений 1) о фундаментальных объектах, из которых полагаются построенными все другие объекты, изучаемые соответствующей наукой; 2) о типологии изучаемых объектов; 3) об общих особенностях их взаимодействия; 4) о пространственно-временной структуре реальности. Все эти представления могут быть описаны в системе онтологических принципов, которые выступают основанием научных теорий соответствующей дисциплины. Напр., принципы – мир состоит из неделимых корпускул; их взаимодействие строго детерминировано и осуществляется как мгновенная передача сил по прямой; корпускулы и образованные из них тела перемещаются в абсолютном пространстве с течением абсолютного времени – описывают картину физического мира, сложившуюся во 2-й пол. 17 в. и получившую впоследствии название механической картины мира.

Переход от механической к электродинамической (в кон. 19 в.), а затем кквантово-релятивистской картине физической реальности (1-я пол. 20 в.) сопровождался изменением системы онтологических принципов физики. Наиболее радикальным он был в период становления квантово-релятивистской физики (пересмотр принципов неделимости атомов, существования абсолютного пространства – времени, лапласовский детерминации физических процессов).

По аналогии с физической картиной мира выделяют картины исследуемой реальности в других науках (химии, астрономии, биологии и т.д.). Среди них также существуют исторически сменяющие друг друга типы картин мира. Напр., в истории биологии – переход от додарвиновских представлений о живом к картине биологического мира, предложенной Дарвином, к последующему включению в картину живой природы представлений о генах как носителях наследственности, к современным представлениям об уровнях системной организации живого – популяции, биогеоценозе, биосфере и их эволюции.

Каждая из конкретно-исторических форм специальной научной картины мира может реализовываться в ряде модификаций. Среди них существуют линии преемственности (напр., развитие ньютоновских представлений о физическом мире Эйлером, развитие электродинамической картины мира Фарадеем, Максвеллом, Герцем, Лоренцем, каждый из которых вводил в эту картину новые элементы). Но возможны ситуации, когда один и тот же тип картины мира реализуется в форме конкурирующих и альтернативных друг другу представлений об исследуемой реальности (напр., борьба ньютоновской и декартовской концепций природы как альтернативных вариантов механической картины мира; конкуренция двух основных направлений в развитии электродинамической картины мира – программы Ампера–Вебера, с одной стороны, и программы Фарадея–Максвелла – с другой).

Картина мира является особым типом теоретического знания. Ее можно рассматривать в качестве некоторой теоретической модели исследуемой реальности, отличной от моделей (теоретических схем), лежащих в основании конкретных теорий. Во-первых, они различаются по степени общности. На одну и ту же картину мира может опираться множество теорий, в т.ч. и фундаментальных. Напр., с механической картиной мира были связаны механика Ньютона–Эйлера, термодинамика и электродинамика Ампера–Вебера. С электродинамической картиной мира связаны не только основания максвелловской электродинамики, но и основания механики Герца. Во-вторых, специальную картину мира можно отличить от теоретических схем, анализируя образующие их абстракции (идеальные объекты). Так, в механической картине мира процессы природы характеризовались посредством абстракций – «неделимая корпускула», «тело», «взаимодействие тел, передающееся мгновенно по прямой и меняющее состояние движения тел», «абсолютное пространство» и «абсолютное время». Что же касается теоретической схемы, лежащей в основании ньютоновской механики (взятой в ее эйлеровском изложении), то в ней сущность механических процессов характеризуется посредством иных абстракций – «материальная точка», «сила», «инерциальная пространственно-временная система отсчета».

Идеальные объекты, образующие картину мира, в отличие от идеализации конкретных теоретических моделей всегда имеют онтологический статус. Любой физик понимает, что «материальная точка» не существует в самой природе, ибо в природе нет тел, лишенных размеров. Но последователь Ньютона, принявший механическую картину мира, считал неделимые атомы реально существующими «первокирпичиками» материи. Он отождествлял с природой упрощающие ее и схематизирующие абстракции, в системе которых создается физическая картина мира. В каких именно признаках эти абстракции не соответствуют реальности – это исследователь выясняет чаще всего лишь тогда, когда его наука вступает в полосу ломки старой картины мира и замены ее новой. Будучи отличными от картины мира, теоретические схемы, составляющие ядро теории, всегда связаны с ней. Установление этой связи является одним из обязательных условий построения теории. Процедура отображения теоретических моделей (схем) на картину мира обеспечивает ту разновидность интерпретации уравнений, выражающих теоретические законы, которую в логике называют концептуальной (или семантической) интерпретацией и которая обязательна для построения теории. Вне картины мира теория не может быть построена в завершенной форме.

Научные картины мира выполняют три основные взаимосвязанные функции в процессе исследования: 1) систематизируют научные знания, объединяя их в сложные целостности; 2) выступают в качестве исследовательских программ, определяющих стратегию научного познания; 3) обеспечивают объективацию научных знаний, их отнесение к исследуемому объекту и их включение в культуру.

Специальная научная картина мира интегрирует знания в рамках отдельных научных дисциплин. Естественнонаучная и социальная картины мира, а затем общенаучная картина мира задают более широкие горизонты систематизации знаний. Они интегрируют достижения различных дисциплин, выделяя в дисциплинарных онтологиях устойчивое эмпирически и теоретически обоснованное содержание. Напр., представления современной общенаучной картины мира о нестационарной Вселенной и Большом взрыве, о кварках и синергетических процессах, о генах, экосистемах и биосфере, об обществе как целостной системе, о формациях и цивилизациях и т.п. были развиты в рамках соответствующих дисциплинарных онтологии физики, биологии, социальных наук и затем включены в общенаучную картину мира.

Осуществляя систематизирующую функцию, научные картины мира вместе с тем выполняют роль исследовательских программ. Специальные научные картины мира задают стратегию эмпирических и теоретических исследований в рамках соответствующих областей науки. По отношению к эмпирическому исследованию целенаправляющая роль специальных картин мира наиболее отчетливо проявляется тогда, когда наука начинает изучать объекты, для которых еще не создано теории и которые исследуются эмпирическими методами (типичными примерами служит роль электродинамической картины мира в экспериментальном изучении катодных и рентгеновских лучей). Представления об исследуемой реальности, вводимые в картине мира, обеспечивают выдвижение гипотез о природе явлений, обнаруженных в опыте. Соответственно этим гипотезам формулируются экспериментальные задачи и вырабатываются планы экспериментов, посредством которых обнаруживаются все новые характеристики изучаемых в опыте объектов.

В теоретических исследованиях роль специальной научной картины мира как исследовательской программы проявляется в том, что она определяет круг допустимых задач и постановку проблем на начальном этапе теоретического поиска, а также выбор теоретических средств их решения. Напр., в период построения обобщающих теорий электромагнетизма соперничали две физические картины мира и соответственно две исследовательские программы: Ампера–Вебера, с одной стороны, и Фарадея–Максвелла, с другой. Они ставили разные задачи и определяли разные средства построения обобщающей теории электромагнетизма. Программа Ампера–Вебера исходила из принципа дальнодействия и ориентировала на применение математических средств механики точек, программа Фарадея–Максвелла опиралась на принцип близкодействия и заимствовала математические структуры из механики сплошных сред.

В междисциплинарных взаимодействиях, основанных на переносах представлений из одной области знаний в другую, роль исследовательской программы выполняет общенаучная картина мира. Она выявляет сходные черты дисциплинарных онтологий, тем самым формирует основания для трансляции идей, понятий и методов из одной науки в другую. Обменные процессы между квантовой физикой и химией, биологией и кибернетикой, породившие целый ряд открытий 20 в., целенаправлялись и регулировались общенаучной картиной мира.

Факты и теории, созданные при целенаправляющем влиянии специальной научной картины мира, вновь соотносятся с ней, что приводит к двум вариантам ее изменений. Если представления картины мира выражают существенные характеристики исследуемых объектов, происходит уточнение и конкретизация этих представлений. Но если исследование наталкивается на принципиально новые типы объектов, происходит радикальная перестройка картины мира. Такая перестройка выступает необходимым компонентом научных революций. Она предполагает активное использование философских идей и обоснование новых представлений накопленным эмпирическим и теоретическим материалом. Первоначально новая картина исследуемой реальности выдвигается в качестве гипотезы. Ее эмпирическое и теоретическое обоснование может занять длительный период, когда она конкурирует в качестве новой исследовательской программы с ранее принятой специальной научной картиной мира. Утверждение новых представлений о реальности в качестве дисциплинарной онтологии обеспечивается не только тем, что они подтверждаются опытом и служат базисом новых фундаментальных теорий, но и их философско-мировоззренческим обоснованием (см. Философские основания науки ).

Представления о мире, которые вводятся в картинах исследуемой реальности, всегда испытывают определенное воздействие аналогий и ассоциаций, почерпнутых из различных сфер культурного творчества, включая обыденное сознание и производственный опыт определенной исторической эпохи. Напр., представления об электрическом флюиде и теплороде, включенные в механическую картину мира в 18 в., складывались во многом под влиянием предметных образов, почерпнутых из сферы повседневного опыта и техники соответствующей эпохи. Здравому смыслу 18 в. легче было согласиться с существованием немеханических сил, представляя их по образу и подобию механических, напр. представляя поток тепла как поток невесомой жидкости – теплорода, падающего наподобие водной струи с одного уровня на другой и производящего за счет этого работу так же, как совершает эту работу вода в гидравлических устройствах. Но вместе с тем введение в механическую картину мира представлений о различных субстанциях – носителях сил – содержало и момент объективного знания. Представление о качественно различных типах сил было первым шагом на пути к признанию несводимости всех видов взаимодействия к механическому. Оно способствовало формированию особых, отличных от механических, представлений о структуре каждого из таких видов взаимодействий.

Онтологический статус научных картин мира выступает необходимым условием объективации конкретных эмпирических и теоретических знаний научной дисциплины и их включения в культуру.

Через отнесение к научной картине мира специальные достижения науки обретают общекультурный смысл и мировоззренческое значение. Напр., основная физическая идея обшей теории относительности, взятая в ее специальной теоретической форме (компоненты фундаментального метрического тензора, определяющего метрику четырехмерного пространства-времени, вместе с тем выступают как потенциалы гравитационного поля), малопонятна тем, кто не занимается теоретической физикой. Но при формулировке этой идеи в языке картины мира (характер геометрии пространства-времени взаимно определен характером поля тяготения) придает ей понятный для неспециалистов статус научной истины, имеющей мировоззренческий смысл. Эта истина видоизменяет представления об однородном евклидовом пространстве и квазиевклидовом времени, которые через систему обучения и воспитания со времен Галилея и Ньютона превратились в мировоззренческий постулат обыденного сознания. Так обстоит дело с многими открытиями науки, которые включались в научную картину мира и через нее влияют на мировоззренческие ориентиры человеческой жизнедеятельности. Историческое развитие научной картины мира выражается не только в изменении ее содержания. Историчны сами ее формы. В 17 в., в эпоху возникновения естествознания, механическая картина мира была одновременно и физической, и естественнонаучной, и общенаучной картиной мира. С появлением дисциплинарно организованной науки (кон. 18 в. – 1-я пол. 19 в.) возникает спектр специально-научных картин мира. Они становятся особыми, автономными формами знания, организующими в систему наблюдения факты и теории каждой научной дисциплины. Возникают проблемы построения общенаучной картины мира, синтезирующей достижения отдельных наук. Единство научного знания становится ключевой философской проблемой науки 19 – 1-й пол. 20 в. Усиление междисциплинарных взаимодействий в науке 20 в. приводит к уменьшению уровня автономности специальных научных картин мира. Они интегрируются в особые блоки естественнонаучной и социальной картин мира, базисные представления которых включаются в общенаучную картину мира. Во 2-й пол. 20 в. общенаучная картина мира начинает развиваться на базе идей универсального (глобального) эволюционизма, соединяющего принципы эволюции и системного подхода. Выявляются генетические связи между неорганическим миром, живой природой и обществом, в результате устраняется резкое противопоставление естественнонаучной и социальной научной картин мира. Соответственно усиливаются интегративные связи дисциплинарных онтологий, которые все более выступают фрагментами или аспектами единой общенаучной картины мира.

Литература:

1. Алексеев И.С. Единство физической картины Мира как методологический принцип. – В кн.: Методологические принципы физики. М., 1975;

2. Вернадский В.И. Размышления натуралиста, кн. 1, 1975, кн. 2, 1977;

3. Дышлевый П.С. Естественнонаучная картина мира как форма синтеза научного знания. – В кн.: Синтез современного научного знания. М., 1973;

4. Мостепаненко М.В. Философия и физическая теория. Л., 1969;

5. Научная картина мира: логико-гносеологический аспект. К., 1983;

6. Планк М. Статьи и речи. – В кн.: Планк М. Избр. науч. труды. М., 1975;

7. Пригожинй И. , Стенгерс И. Порядок из хаоса. М., 1986;

8. Природа научного познания. Минск, 1979;

9. Стенин В.С. Теоретическое знание. М., 2000;

10. Степин В.С. , Кузнецова Л.Ф. Научная картина мира в культуре техногенной цивилизации. М., 1994;

11. Холтон Дж. Что такое «антинаука». – «ВФ», 1992, № 2;

12. Эйнштейн А. Собр. науч. трудов, т. 4. М., 1967.

План

1. Общая характеристика современной естественно-научной картины мира 2

2. Основные открытия xx века в области естествознания 8

Литература 14

1. Общая характеристика современной естественно-научной картины мира

Научная картина мира - это целостная система представлений об общих свойствах и закономерностях природы, возникшая в результате обобщения основных естественнонаучных понятий и принципов.

Важнейшие элементы структуры научной картины мира - междисциплинарные концепции, образующие ее каркас. Концепции, лежащие в основе научной картины мира, являются ответами на сущностные основополагающие вопросы о мире. Эти ответы меняются с течением времени, по мере эволюции картины мира, уточняются и расширяются, однако сам "вопросник" остается практически неизменным по крайней мере со времен мыслителей классической Древней Греции.

Каждая научная картина мира обязательно включает в себя следующие представления:

о материи (субстанции);

о движении;

о пространстве и времени;

о взаимодействии;

о причинности и закономерности;

космологические представления.

Каждый из перечисленных элементов изменяется по мере исторической смены научных картин мира.

Современная естественно-научная картина мира , которую еще называют и эволюционной картиной мира является результатом синтеза систем мира древности, античности, гео- и гелиоцентризма, механистической, электромагнитной картин мира и опирается на научные достижения современного естествознания.

В своем развитии естестенно-научная картина мира прошла ряд этапов (табл.1).

Таблица 1

Основные этапы становления современной естественно-научной картины мира

Этап истории

Научная картина мира

4000 лет до н.э.

3000 лет до н.э.

2000 лет до н.э.

VIII в. до н.э.

VII в. до н.э.

VI в. до н.э.

V в. до н.э.

II в. до н.э.

Научные догадки египетских жрецов, составление солнечного календаря.

Предсказание солнечных и лунных затмений китайскими мыслителями.

Разработка семидневной недели и лунного календаря в Вавилоне.

Первые представления о единой естественно-научной картине мира в античный период. Возникновение представлений о материальной первооснове всех вещей.

Создание математической программы Пифагора-Платона.

Атомистическая физическая программа Демокрита-Эпикура.

Континуалистическая физическая программа Анаксагора-Аристотеля.

Изложение геоцентрической системы мира К. Птолемеем в сочинении "Альмагест".

Гелиоцентрическая система строения мира польского мыслителя Н. Коперника.

Становление механистической картины мира на основе законов механики И. Келлера и И. Ньютона.

Возникновение электромагнитной картины мира на основе трудов М. Фарадея и Д. Максвелла.

Становление современной естественно-научной картины мира.

Современное естествознание представляет окружающий материальный мир нашей Вселенной однородным, изотропным и расширяющимся. Материя в мире находится в форме вещества и поля. По структурному распределению вещества окружающий мир разделяется на три большие области: микромир, макромир и мегамир. Между структурами существуют четыре фундаментальных вида взаимодействий: сильное, электромагнитное, слабое и гравитационное, которые передаются посредством соответствующих полей. Существуют кванты всех фундаментальных взаимодействий.

Если раньше последними неделимыми частицами материи, своеобразными кирпичиками, из которых состоит природа, считали атомы, то впоследствии были открыты электроны, входящие в состав атомов. Позднее было установлено строение ядер атомов, состоящих из протонов (положительно заряженных частиц) и нейтронов.

В современной естественно-научной картине мира наблюдается теснейшая связь между всеми естественными науками, здесь время и пространство выступают как единый пространственно-временной континиум, масса и энергия взаимосвязаны, волновое и корпускулярное движения, в известном смысле, объединяются, характеризуя один и тот же объект, наконец, вещество и поле взаимопревращаются. Поэтому в настоящее время предпринимаются настойчивые попытки создать единую теорию всех взаимодействий.

Как механистическая, так и электромагнитная картины мира были построены на динамических, однозначных закономерностях. В современной картине мира вероятностные закономерности оказываются фундаментальными, не сводимыми к динамическим. Случайность стала принципиально важным атрибутом. Она выступает здесь в диалектической взаимосвязи с необходимостью, что и предопределяет фундаментальность вероятностных закономерностей.

Научно-техническая революция, развернувшаяся в последние десятилетия, внесла много нового в наши представления о естественно-научной картине мира. Возникновение системного подхода позволило взглянуть на окружающий мир как на единое, целостное образование, состоящее из огромного множества взаимодействующих друг с другом систем. С другой стороны, появление такого междисциплинарного направления исследований, как синергетика, или учение о самоорганизации, дало возможность не только раскрыть внутренние механизмы всех эволюционных процессов, которые происходят в природе, но и представить весь мир как мир самоорганизующихся процессов.

В наибольшей мере новые мировоззренческие подходы к исследованию естественно-научной картины мира и его познания коснулись наук, изучающих живую природу, например биологии.

Революционные преобразования в естествознании означают коренные, качественные изменения в концептуальном содержании его теорий, учений и научных дисциплин при сохранении преемственности в развитии науки и, прежде всего ранее накопленного и проверенного эмпирического материала. Среди них в каждый определенный период выдвигается наиболее общая или фундаментальная теория, которая служит парадигмой, или образцом, для объяснения фактов известных и предсказания фактов неизвестных. Такой парадигмой в свое время служила теория движения земных и небесных тел, построенная Ньютоном, поскольку на нее опирались все ученые, изучавшие конкретные механические процессы. Точно так же все исследователи, изучавшие электрические, магнитные, оптические и радиоволновые процессы, основывались на парадигме электромагнитной теории, которую построил Д.К. Максвелл. Понятие парадигмы для анализа научных революций подчеркивает важную их особенность - смену прежней парадигмы новой, переход к более общей и глубокой теории исследуемых процессов.

Все прежние картины мира создавались как бы извне - исследователь изучал окружающий мир отстраненно, вне связи с собой, в полной уверенности, что можно исследовать явления, не нарушая их течения. Такова была веками закреплявшаяся естественно-научная традиция. Теперь научная картина мира создается уже не извне, а изнутри, сам исследователь становится неотъемлемой частью создаваемой им картины. Очень многое нам еще неясно и скрыто от нашего взора. Тем не менее, сейчас перед нами раскрывается грандиозная гипотетическая картина процесса самоорганизации материи от Большого взрыва до современного этапа, когда материя познает себя, когда ей присущ разум, способный обеспечить ее целенаправленное развитие.

Наиболее характерной чертой современной естественно-научной картины мира является ее эволюционность . Эволюция происходит во всех областях материального мира в неживой природе, живой природе и социальном обществе.

Современная естественно-научная картина мира необыкновенно сложна и проста одновременно. Сложна потому, что способна поставить в тупик человека, привыкшего к согласующимся со здравым смыслом классическим научным представлениям. Идеи начала времени, корпускулярно-волнового дуализма квантовых объектов, внутренней структуры вакуума, способной рождать виртуальные частицы, - эти и другие подобные новации придают нынешней картине мира немножко "безумный" вид, что впрочем, является преходящим (когда - то и мысль о шарообразности Земли тоже выглядела совершенно "безумной").

Но в то же самое время эта картина величественно проста и стройна. Эти качества придают ей ведущие принципы построения и организации современного научного знания:

системность,

глобальный эволюционизм,

самоорганизация,

историчность.

Данные принципы построения современной научной картины мира в целом соответствуют фундаментальным закономерностям существования и развития самой Природы.

Системность означает воспроизведение наукой того факта, что наблюдаемая Вселенная предстает как наиболее крупная из всех известных нам систем, состоящая из огромного множества элементов (подсистем) разного уровня сложности и упорядоченности.

Системный способ объединения элементов выражает их принципиальное единство: благодаря иерархическому включению систем разных уровней друг в друга любой элемент системы, оказывается, связан со всеми элементами всех возможных систем. (Например: человек - биосфера - планета Земля - Солнечная система - Галактика и т.д.). Именно такой принципиально единый характер демонстрирует нам окружающий мир. Таким же образом организуется соответственно и научная картина мира, и создающее ее естествознание. Все его части ныне теснейшим образом взаимосвязаны - сейчас практически уже нет ни одной "чистой" науки, все пронизано и преобразовано физикой и химией.

Глобальный эволюционизм - это признание невозможности существования Вселенной и всех порождаемых ею менее масштабных систем вне развития, эволюции. Эволюционирующий характер Вселенной также свидетельствует о принципиальном единстве мира, каждая составная часть которого есть историческое следствие глобального эволюционного процесса, начатого Большим взрывом.

Самоорганизация - это наблюдаемая способность материи к самоусложнению и созданию все более упорядоченных структур в ходе эволюции. Механизм перехода материальных систем в более сложное и упорядоченное состояние, по-видимому, сходен для систем всех уровней.

Эти принципиальные особенности современной естественно-научной картины мира и определяют в главном ее общий контур, а также сам способ организации разнообразного научного знания в нечто целое и последовательное.

Однако у нее есть и еще одна особенность, отличающая ее от прежних вариантов. Она заключается в признании историчности , а, следовательно, принципиальной незавершенности настоящей, да и любой другой научной картины мира. Та, которая есть сейчас, порождена как предшествующей историей, так и специфическими социокультурными особенностями нашего времени. Развитие общества, изменение его ценностных ориентаций, осознание важности исследования уникальных природных систем, в которые составной частью включен и сам человек, меняет и стратегию научного поиска, и отношение человека к миру.

Но ведь развивается и Вселенная. Конечно, развитие общества и Вселенной осуществляется в разных темпоритмах. Но их взаимное наложение делает идею создания окончательной, завершенной, абсолютно истинной научной картины мира практически неосуществимой.

Научная картина мира (НКМ) включает в себя важнейшие достижения науки, создающие определенное понимание мира и места человека в нем. В нее не входят более частные сведения о свойствах различных природных систем, о деталях самого познавательного процесса.

В отличие от строгих теорий, научная картина мира обладает необходимой наглядностью.

Научная картина мира – это особая форма систематизации знаний, преимущественно качественное их обобщение, мировоззренческий синтез различных научных теорий.

В истории науки научные картины мира не оставались неизменными, а сменяли друг друга, таким образом, можно говорить об эволюции научных картин мира. Наиболее наглядной представляется эволюция физических картин мира : натурфилософской – до XVI – XVII вв., механистической – до второй половины XIX в., термодинамической (в рамках механистической теории) в XIX в, релятивистской и квантово-механической в XX веке. На рисунке схематично представлено развитие и смена научных картин мира в физике.

Физические картины Мира

Существуют общенаучные картины мира и картины мира с точки зрения отдельных наук, например, физическая, биологическая и т.п.

Из истории научных представлений Первобытное знание

Первобытная культура синкретичная – нерасчлененная. В ней тесно переплетаются познавательная, эстетическая, предметно-практическая и другие виды деятельности. Интересна следующая история. В одной центральноавстралийской пустыне заблудилась группа путешественников-европейцев. Ситуация в тех условиях трагическая. Проводник, абориген, успокоил путешественников: «В этой местности я раньше никогда не был, но знаю ее… песню». Следуя словам песни, он вывел путешественников к источнику. Этот пример ярко иллюстрирует единство науки, искусства и повседневного обыденного опыта.

Мифология

В первобытную эпоху отдельные стороны, аспекты мира обобщались не в понятиях, а в чувственно-конкретных, наглядных образах. Совокупность связанных между собой подобных наглядных образов и представляла собой мифологическую картину мира.

Миф есть способ обобщения мира в форме наглядных образов.

Миф несет в себе не только определенное обобщение и понимание мира, но и переживание мира, некоторое мироощущение.

Первобытный миф не только рассказывался, но и воспроизводился ритуальными действиями: плясками, обрядами, жертвоприношениями. Совершая ритуальные действия, человек поддерживал связь с теми силами (существами), которые сотворили мир.

Мифологическое сознание постепенно преобразовывалось рациональными формами. Переход к научному познанию мира требовал появления качественно новых, по сравнению с мифологическими, представлений о мире. В таком немифологическом мире существуют не антропоморфные, а независимые от людей и Богов процессы.

Милетская школа

Естествознание начинается тогда, когда формулируется вопрос: существует ли за многообразием вещей некое единое начало. Возникновение европейской науки принято связывать с Милетской школой. Ее историческая заслуга состояла в постановке первой и важнейшей естественно-научной проблемы – проблемы первоначала. Представители Милетской школы – Фалес, Анаксимандр, Анаксимен – были одновременно и первыми учеными-естествоиспытателями, и первыми философами.

Фалес Милетский вошел в историю науки и как философ, и как математик, который выдвинул идею математического доказательства. Идея математического доказательства – величайшее достижение древнегреческих мыслителей.

Платон

Платон предположил существование двух реальностей, двух миров. Первый мир – это мир множества единичных, изменяющихся, подвижных вещей, материальный мир, который отражается чувствами человека. Второй мир – это мир вечных, общих и неизменных сущностей, мир общих идей, который постигается разумом.

Идея – это то, что видно разумом в вещи. Это некое конструктивное начало, порождающая модель. Это старые мифологические Боги, переведенные на философский язык. Идея – это некоторое общее понятие, некоторое обобщение.

Никто из Богов и героев не пребывал в мире идей. Мир идей первичен по отношению к миру чувственных вещей. Материальный мир производен от идеального.

НАУЧНАЯ КАРТИНА МИРА

НАУЧНАЯ КАРТИНА МИРА

Различают общенауч. картину мира, картины мира наук, близких по предмету исследования, и картины мира отд. наук (физическая, астрономическая, биологическая и др. ) .

Первые картины мира были выдвинуты в рамках антич. философии и носили натурфилос. . Н. к. м. начинает формироваться только в эпоху возникновения науч. естествознания в 10 - 17 вв. В общей системе Н. к. м. определяющим элементом выступает той области познания, края занимает лидирующее положение. В совр. естеств.-науч. познании такое положение занимает физич. картина мира.

В структуре Н. к. м. можно выделить два гл. компонента: концептуальный (понятийный) и чувственно-образный. Концептуальный представлен филос. категориями (материя , движение, пространство, время и др. ) и принципами (материального единства мира, всеобщей связи и взаимообусловленности явлений и др. ) , общенауч. понятиями и законами (напр., сохранения и превращения энергии) , а также фундаментальными понятиями отд. наук (поле , вещество, энергия , Вселенная, биологич. и др. ) . Чувственно-образный компонент Н. к. м.- это совокупность наглядных представлений (напр., планетарная атома, Метагалактики в виде расширяющейся сферы, о спине электрона как вращающемся волчке) .

Гл. отличие Н. к. м. от донаучной или вненаучной (напр., религиозной) состоит в том, что она строится на основе определ. фундаментальной науч. теории (или теорий) , служащей её обоснованием. Так, напр. , физич. картина мира 17-19 вв. строилась на базе классич. механики, а совр. физич. картина мира - на базе квантовой механики, а также спец. и общей теории относительности. С др. стороны, фундаментальная науч. теория находит в Н. к. м. средства для своей интерпретации: Н. к. дт. создаёт , общенауч. фон для её анализа. Н. к. м. как систематизации науч. знания отличается от науч. теории. Если Н к. м. отражает , отвлекаясь от процесса получения знания, то науч. теория содержит в себе логич. средства как систематизации знаний об объекте, так и проверки (в частности, экспериментальной) их истинности. Н. к. м. выполняет эвристич. роль в процессе построения фундаментальных науч. теорий.

Н. к. м. тесно связана с мировоззрением, являясь одним из действенных способов его формирования. Она выступает связующим звеном между мировоззрением и науч. теорией. Н. к. м. находится в постоянном развитии, в ней осуществляются в ходе науч. революций качеств. преобразования (смена старой картины мира новой) .

Дышлевый П. С., Естеств.-науч. картина мира как форма синтеза знания, в сб. : Синтез совр. науч. знания, М., 1973 , с. 94-120; Методологич. принципы физики, М., 1975 , гл.3; Степин В. С., Становление науч. теории, Минск, 1976 ;

Представления о мире, которые вводятся в картинах исследуемой реальности, всегда испытывают определенное воздействие аналогий и ассоциаций, почерпнутых из различных культурного творчества, включая и производственный определенной исторической эпохи. Напр., представления об электрическом флюиде и теплороде, включенные в механическую картину мира в 18 в., складывались во многом под влиянием предметных образов, почерпнутых из сферы повседневного опыта и техники соответствующей эпохи. Здравому смыслу 18 в. легче было согласиться с существованием немеханических сил, представляя их по образу и подобию механических, напр. представляя поток тепла как поток невесомой жидкости - теплорода, падающего наподобие водной струи с одного уровня на другой производящего за счет этого работу так же, как совершает эту работу вода в гидравлических устройствах. Но вместе с тем в механическую картину мира представлений о различных субстанциях - носителях сил - содержало и объективного знания. Представление о качественно различных типах сил было первым шагом на пути к признанию несводимости всех видов взаимодействия к механическому. Оно способствовало формированию особых, отличных от механических, представлений о структуре каждого из таких видов взаимодействий.

Онтологический статус научных картин мира выступает необходимым условием объективации конкретных эмпирических и теоретических знаний научной дисциплины и их включения в культуру

Через отнесение к научной картине мира специальные достижения науки обретают общекультурный и мировоззренческое . Напр., основная физическая общей теории относительности, взятая в ее специальной теоретической форме (компоненты фундаментального метрического тензора, определяющего метрику четырехмерного пространства-времени, вместе с тем выступают как потенциалы гравитационного поля), малопонятна тем, кто не занимается теоретической физикой. Но при формулировке этой идеи в языке картины мира (характер геометрии пространства-времени взаимно определен характером поля тяготения) придает ей понятный для неспециалистов статус научной истины, имеющей мировоззренческий смысл. Эта видоизменяет представления об однородном евклидовом пространстве и квазиевклидовом времени, которые через систему обучения и воспитания со времен Галилея и Ньютона превратились в мировоззренческий обыденного сознания. Так обстоит дело с многими открытиями науки, которые включались в научную картину мира и через нее влияют на мировоззренческие ориентиры человеческой жизнедеятельности. Историческое развитие научной картины мира выражается не только в изменении ее содержания. Историчны сами ее формы. В 17 в., в эпоху возникновения естествознания, механическая картина мира была одновременно и физической, и естественнонаучной, и общенаучной картиной мира. С появлением дисциплинарно организованной науки (кон. 18 в. - 1-я пол. 19 в.) возникает спектр специально-научных картин мира. Они становятся особыми, автономными формами знания, организующими в систему наблюдения факты и теории каждой научной дисциплины. Возникают проблемы построения общенаучной картины мира, синтезирующей достижения отдельных наук. Единство научного знания становится ключевой философской проблемой науки 19-1-й пол. 20 в. Усиление междисциплинарных взаимодействий в науке 20 в. приводит к уменьшению уровня автономности специальных научных картин мира. Они интегрируются в особые блоки естественнонаучной и социальной картин мира, базисные представления которых включаются в общенаучную картину мира. Во 2-й пол. 20 в. общенаучная картина мира начинает развиваться на базе идей универсального (глобального) эволюционизма, соединяющего принципы эволюции и системного подхода. Выявляются генетические связи между неорганическим миром, живой природой и обществом, в результате устраняется резкое естественнонаучной и социальной научной картин мира. Соответственно усиливаются интегративные связи дисциплинарных онтологии, которые все более выступают фрагментами или аспектами единой общенаучной картины мира.

Лит.: Алексеев И. С. Единство физической картины Мира как методологический принцип.- В кн.: Методологические принципы физики. М., 1975; Вернадский В. И. Размышления натуралиста, кн. 1,1975, кн. 2, 1977; Дышлевый П. С. Естественнонаучная картина мира как форма синтеза научного знания.- В кн.: Синтез современного научного знания. М., 1973; Мостепаненко М. В. Философия и физическая теория. Л., 1969; Научная картина мира: логико-гносеологический . К., 1983; Планк М. Статьи и речи.- В кн.: Планк М. Избр. науч. труды. М., 1975; Пригожий И, Стенгерс И. Порядок из хаоса. М., 1986; Природа научного познания. Минск, 1979; Степан В. С. Теоретическое . М., 2000; Степан В. С., Кузнецова Л. Ф. Научная картина мира в культуре техногенной цивилизации. М., 1994; ХолтонДмс. Что такое “антинаука”.- “ВФ”, 1992, № 2; Эйнштейн А. Собр. науч. трудов, т. 4. М., 1967.

В. С. Стенин

Новая философская энциклопедия: В 4 тт. М.: Мысль . Под редакцией В. С. Стёпина . 2001 .