Белки как уникальный класс биополимеров. Белки как биополимеры. Свойства и биологические Биополимеры белки их структуры функции

Тип урока - комбинированный

Методы: частично-поисковый, про-блемного изложения, объясни-тельно-иллюстративный.

Цель:

Формирование у учащихся целостной системы знаний о живой природе, ее системной организации и эволюции;

Умения давать аргументированную оценку новой информации по биоло-гическим вопросам;

Воспитание гражданской ответственности, самостоятельности, инициативности

Задачи:

Образовательные : о биологических системах (клетка, организм, вид, экосистема); истории развития современных представлений о живой природе; выдающихся открытиях в биологической науке; роли биологической науки в формировании современной естественнонаучной картины мира; методах научного познания;

Развитие творческихспособностей в процессе изучения выдающихся достижений биологии, вошедших в общечеловеческую культуру; сложных и противоречивых путей развития современных научных взглядов, идей, теорий, концепций, различных гипотез (о сущности и происхождении жизни, человека) в ходе работы с различными источниками информации;

Воспитание убежденности в возможности познания живой природы, необходимости бережного отношения к природной среде, собственному здоровью; уважения к мнению оппонента при обсуждении биологических проблем

Личностные результаты обучения биологии :

1. воспитание российской гражданской идентичности: патриотизма, любви и уважения к Отечеству, чувства гордости за свою Родину; осознание своей этнической принадлежности; усвоение гуманистических и традиционных ценностей многонационального российского общества; воспитание чувства ответственности и долга перед Родиной;

2. формирование ответственного отношения к учению, готовности и способности обучающихся к саморазвитию и самообразованию на основе мотивации к обучению и познанию, осознанному выбору и построению дальнейшей индивидуальной траектории образования на базе ориентировки в мире профессий и профессиональных предпочтений, с учётом устойчивых познавательных интересов;

Метапредметные результаты обучения биологии:

1. умение самостоятельно определять цели своего обучения, ставить и формулировать для себя новые задачи в учёбе и познавательной деятельности, развивать мотивы и интересы своей познавательной деятельности;

2. овладение составляющими исследовательской и проектной деятельности, включая умения видеть проблему, ставить вопросы, выдвигать гипотезы;

3. умение работать с разными источниками биологической информации: находить биологическую информацию в различных источниках (тексте учебника, научно популярной литературе, биологических словарях и справочниках), анализировать и

оценивать информацию;

Познавательные : выделение существенных признаков биологических объектов и процессов; приведение доказательств (аргументация) родства человека с млекопитающими животными; взаимосвязи человека и окружающей среды; зависимости здоровья человека от состояния окружающей среды; необходимости защиты окружающей среды; овладение методами биологической науки: наблюдение и описание биологических объектов и процессов; постановка биологических экспериментов и объяснение их результатов.

Регулятивные: умение самостоятельно планировать пути достижения целей, в том числе альтернативные, осознанно выбирать наиболее эффективные способы решения учебных и познавательных задач; умение организовывать учебное сотрудничество и совместную деятельность с учителем и сверстниками; работать индивидуально и в группе: находить общее решение и разрешать конфликты на основе согласования позиций и учёта интересов; формирование и развитие компетентности в области использования информационно-коммуникационных технологий (далее ИКТ-компетенции).

Коммуникативные: формирование коммуникативной компетентности в общении и сотрудничестве со сверстниками, понимание особенностей гендерной социализации в подростковом возрасте, общественно полезной, учебно-исследовательской, творческой и дру-гих видов деятельности.

Технологии: Здоровьесбережения, проблем-ного, раз-вивающего обучения, групповой деятельно-сти

Приемы: анализ, синтез, умозаключение, перевод информации с одного вида в другой, обобщение.

Ход урока

Задачи

Раскрыть ведущую роль белков в строении и жизнедеятельности клетки. ,

Объяснить строение макромолекул белка, име-ющих характер информационных биополимеров.

Углубить знания школьников о связи строения молекул веществ и их функции на примере бел-ков.

Основные положения

Первичная структура белка определяется геноти-пом.

Вторичная, третичная и четвертичная структурная организация белка зависит от первичной структу-ры.

Все биологические катализаторы — ферменты — имеют белковую природу.

4.Белковые молекулы обеспечивают иммуноло-гическую защиту организма от чужеродных ве-ществ.

Вопросы для обсуждения

Чем: определяется специфичность деятельности биологических катализаторов - ментов?

Каков механизм действия рецептор точной поверхности?

Биологические полимеры — белки

Среди органических веществ клетки белки занимают первое место как по количеству, так и по значению. У жи-вотных на них приходится около 50% сухой массы клетки. В организме человека встречаются 5 млн типов белковых мо-, отличающихся не только друг от друга, но и от белков других организмов. Несмотря на такое разнообразие и слож-ность строения они построены всего из 20 различных амино-кислот.

Аминокислоты имеют общий план строения, но отлича-ются друг от друга по строению радикала (К), которое весьма разнообразно. Например, у аминокислоты аланина радикал простой — СН3, радикал цистеина содержит серу — СН28Н, другие аминокислоты имеют более сложные радикалы.

Белки, выделенные из живых организмов животных, растений и микроорганизмов, включают несколько сотен, а иногда и тысяч комбинаций 20 основных аминокислот. Порядок их чередования самый разнообразный, что делает возможным существование огромного числа молекул белка, отличающихся друг от друга. Например, для белка, состоя-щего всего из 20 остатков аминокислот, теоретически воз-можно около 2 . 1018 вариантов различных белковых моле-кул, отличающихся чередованием аминокислот, а значит, и свойствами. Последовательность аминокислот в поли- пептидной цепи принято называть первичной структурой белка.

Однако молекула белка в виде цепи аминокислотных ос-татков, последовательно соединенных между собой пептид-ными связями, еще не способна выполнять специфические функции. Для этого необходима более высокая структурная организация. Путем образования водородных связей между остатками карбоксильных и аминогрупп разных аминокис-лот белковая молекула принимает вид спирали (а-структу- ра) или складчатого слоя — «гармошки» (Р-структура). Это вторичная структура но и ее часто не-достаточно для приобретения характерной биологической активности.

Вторичном структура белка ((3-структура) — сверху. Третичная структура белка внизу:

— ионные взаимодействия,

— водородные связи.

— дисульфидные связи,

— гидрофобные взаимодействия,

— гидратируемые группы

Часто только молекула, обладающая третичной струк-турой, может выполнять роль катализатора или какую-либо другую. Третичная структура образуется благодаря взаимо-действию радикалов, в частности радикалов аминокисло-ты цистеина, которые содержат серу. Атомы серы двух ами-нокислот, находящихся на некотором расстоянии друг от друга в полипептидной цепи, соединяются, образуя так называемые дисульфидные, или 8—8, связи. Благодаря этим взаимодействиям, а также другим, менее сильным связям, белковая спираль сворачивается и приобретает фор-му шарика, или глобулы. Способ укладки полипептид- ных спиралей в глобуле называют третичной структурой белка. Многие белки, обладающие третичной структурой, мо-гут выполнять свою биологическую роль в клетке. Однако для осуществления некоторых функций организма требует-ся участие белков с еще более высоким уровнем организа-ции. Такую организацию называют четвертичной структу-рой. Она представляет собой функциональное объединение нескольких (двух, трех и более) молекул белка, обладающих третичной структурной организацией. Пример такого слож-ного белка — гемоглобин. Его молекула состоит из четырех связанных между собой молекул. Другим примером может служить гормон поджелудочной железы — инсулин, вклю-чающий два компонента. В состав четвертичной структуры некоторых белков включаются помимо белковых субъеди-ниц и разнообразные небелковые компоненты. Тот же гемо-глобин содержит сложное гетероциклическое соединение, в состав которого входит железо.Свойства белка. Белки, как и другие неорганические и органические соединения, обладают рядом физико-хими-ческих свойств, обусловленных их структурной организа-цией. Это во многом обусловливает функциональную актив-ность каждой молекулы. Во-первых, белки — преимущественно водорастворимые молекулы.

Во-вторых, белковые молекулы несут большой поверхно-стный заряд. Это определяет целый ряд электрохимических эффектов, например изменение проницаемости мембран, ка-талитической активности ферментов и других функций.

В-третьих, белки термолабильны, т. е. проявляют свою активность в узких температурных рамках.

Действие повышенной температуры, а также обезвожи-вание, изменение рН и другие воздействия вызывают разру-шение структурной организации белков. Вначале разруша-ется самая слабая структура — четвертичная, затем третич-ная, вторичная и при более жестких условиях — первичная. Утрата белковой молекулой своей структурной организации называется денатурацией.

Если изменение условий среды не приводит к разруше-нию первичной структуры молекулы, то при восстанов-лении нормальных условий среды полностью воссоздается структура белка и его функциональная активность. Такой процесс носит название ренату рации. Это свойство белков полностью восстанавливать утраченную структуру широко используется в медицинской и пищевой промышленнос-ти для приготовления некоторых медицинских препара-тов, например антибиотиков, вакцин, сывороток, фермен-тов; для получения пищевых концентратов, сохраняющих длительное время в высушенном виде свои питательные свойства.

Функции белков. Функции белков в клетке чрезвы-чайно многообразны. Одна из важнейших — пластическая (строительная) функция: белки участвуют в образовании всех клеточных мембран и органоидов клетки, а также вне-клеточных структур.

Исключительно важное значение имеет каталитическая роль белков. Все биологические катализаторы — фермен-ты — вещества белковой природы, они ускоряют химиче-ские реакции, протекающие в клетке, в десятки и сотни тысяч раз.

Взаимодействие фермента (Ф) с веществом (С), в результате чего образуются продукты реакции (П)

Остановимся на этой важнейшей функции несколько подробнее. Термин «катализ», который в биохимии встре-чается не менее часто, чем в химической промышленности, где широко используются катализаторы, буквально означа-ет «развязывание», «освобождение». Сущность каталитиче-ской реакции, несмотря на огромное разнообразие катали-заторов и типов реакций, в которых они принимают участие, в основных чертах сводится к тому, что исходные вещества образуют с катализатором промежуточные соединения. Они сравнительно быстро превращаются в конечные продукты реакции, а катализатор восстанавливается в первоначаль-ном виде. Ферменты — те же катализаторы. На них распро-страняются все законы катализа. Но ферменты имеют бел-ковую природу, и это сообщает им особые свойства. Что же общего у ферментов с известными из неорганической химии катализаторами, например платиной, оксидом ванадия и дру-гими неорганическими ускорителями реакций, а что их от-личает? Один и тот же неорганический катализатор может применяться во многих различных производствах. Ферменты активны только при физиологических зна-чениях кислотности раствора, т. е. при такой концен-трации ионов водорода, которая совместима с жизнью и нормальным функционированием клетки, органа или сис-темы.

Регуляторная функция белков заключается в осуществ-лении ими контроля обменных процессов: инсулин, гормо-ны гипофиза и др.

Двигательная функция живых организмов обеспечива-ется специальными сократительными белками. Эти бел-ки участвуют во всех видах движения, к которым способны клетки и организмы: мерцание ресничек и движение жгути-ков у простейших, сокращение мышц у многоклеточных животных, движение листьев у растений и др.

Транспортная функция белков заключается в присое-динении химических элементов (например, кислорода к ге-моглобину) или биологически активных веществ (гормонов) и переносе их к различным тканям и органам тела. Специ-альные транспортные белки перемещают РНК, синтезиро-ванные в клеточном ядре, в цитоплазму. Широко представ-лены транспортные белки в наружных мембранах клеток, они переносят различные вещества из окружающей среды в цитоплазму.

При поступлении в организм чужеродных белков или микроорганизмов в белых кровяных тельцах — лейкоци-тах — образуются особые белки — антитела. Они связы-

ваются с несвойственными организму веществами (антиге-нами) по принципу соответствия пространственных конфи-гураций молекул (принцип — «ключ-замок»). В результате этого образуется безвредный, нетоксичный комплекс — «ан-тиген-антитело», который впоследствии фагоцитируется и переваривается другими формами лейкоцитов — это за-щитная функция.

Белки могут служить и одним из источников энергии в клетке, т. е. выполняют энергетическую функцию. При полном расщеплении 1 г белка до конечных продуктов вы-деляется 17,6 кДж энергии. Однако белки в таком качестве используются редко. Аминокислоты, высвобождающиеся при расщеплении белковых молекул, участвуют в реакциях пластического обмена для построения новых белков.

Вопросы и задания для повторения

Какие органические вещества входят в со-став клетки?

Из каких простых органических соединений состоят белки?

Что такое пептиды?

Какова первичная структура белка?

Как образуется вторичная, третичная структуры белка?

Что такое денатурация белка?

Какие функции белков Вам известны?

Выберите правильный на ваш взгляд вариант ответа.

1. Кто открыл существование клеток?

Роберт Гук

Карл Линней

2. Чем заполнена клетка?

Цитоплазмой

Оболочкой

3. Как называется плотное тело расположенное в цитоплазме?

ядро

оболочка

органоиды

4. Какой из органоидов помогает клетке дышать?

лизосома

митохондрия

мембрана

5. Какой органоид придает зеленый цвет растениям?

лизосома

хлоропласт

митохондрия

6. Какого вещества больше всего в неорганических клетках?

вода

минеральные соли

7. Какие вещества составляют органическую клетку на 20%?

Нуклеиновые кислоты

Белки

8. Каким общим названием можно объединить следующие вещества: сахар, клетчатка, крахмал?

углеводы

9. Какое из веществ дает 30 % энергии клетке?

жиры

углеводы

10. Какого вещества больше всего в клетке?

Кислород

Аминокислоты, белки. Строение белков. Уровни организации белковой молекулы

Видеоурок по биологии " Белки "

Функции белков

Ресурсы

В. Б. ЗАХАРОВ, С. Г. МАМОНТОВ, Н. И. СОНИН, Е. Т. ЗАХАРОВА УЧЕБНИК «БИОЛОГИЯ» ДЛЯ ОБЩЕОБРАЗОВАТЕЛЬНЫХ УЧРЕЖДЕНИЙ (10-11класс) .

А. П. Плехов Биология с основами экологии. Серия «Учебники для вузов. Специальная литература».

Книга для учителя Сивоглазов В.И., Сухова Т.С. Козлова Т. А. Биология: общие закономерности.

Хостинг презентаций























Назад Вперёд

Внимание! Предварительный просмотр слайдов используется исключительно в ознакомительных целях и может не давать представления о всех возможностях презентации. Если вас заинтересовала данная работа, пожалуйста, загрузите полную версию.

Цель урока: расширить и углубить знания учащихся о важнейших органических веществах клетки – белках.

Задачи урока:

  • Образовательные : обобщить знания учащихся о биологических функциях белков, строении, структуре, познакомить учащихся с химическими функциями белков, раскрыть связь между химическими знаниями и повседневной жизнью человека, проконтролировать степень усвоения основных умений и навыков, изученных и сформированных на предыдущих уроках, а также уроках биологии.
  • Воспитательные : продолжить формирование научного мировоззрения, воспитывать культуру речи.
  • Развивающие : развивать познавательный интерес к предмету, такие процессы как внимание, логическое мышление, эрудицию; навыки самостоятельной работы с учебником, умение анализировать информацию, устанавливать причинно-следственные связи между составом, строением, функций и применением веществ; применять теоретические знания на практике; навыки составления уравнений реакций образования пептидов из аминокислот; навыки работы с химическими веществами; продолжить развитие химической речи учащихся, таких понятий как полимер, альфа-аминокислота, денатурация, реакция поликонденсации, расширить кругозор учащихся с привлечением дополнительных источников информации, продолжить формировать умения и навыки использования знаний и умений в новых ситуациях.

Тип урока: комбинированный

Оборудование:

  • раствор яичного белка, р-ры сульфата меди (II), хлорида цинка, гидрокисида натрия, этиловый спирт, пробирки №1– яичный белок, мясной бульон, молоко, №2 - бульонный кубик, медная проволока, шерстяная нитка, спиртовка, спички; дидактический материал (схема “Химический состав организма”, “Общая формула альфа-аминокислоты”, структурные формулы аланина, серина), карточки-задания, компьютер, телевизор.
  • На ученических столах: пробирки с веществами (№1 - яичный белок, мясной бульон, молоко, №2 - бульонный кубик), медная проволока, шерстяная нитка, спиртовка, спички; задания.
  • На классной доске: схема “Химический состав организма”, “Общая формула альфа-аминокислоты”, структурные формулы аланина, серина.

Структура урока

I. Организационный момент

II. Изучение нового материала

III. Закрепление

IV. Заключение

V. Домашнее задание

Ход урока

I. Организационный момент (1 мин)

Приветствие учителя. Проверка готовности класса к уроку. Психологический настрой класса. Отмечание отсутствующих.

II. Изучение нового материала (40мин)

1. Подведение к теме урока.

Вступительное слово учителя с элементами беседы. Заполнение схемы на доске.

Организм состоит из множества веществ. Давайте их классифицируем. Перед вами список различных веществ: вода, белки, углеводы, минеральные соли, жиры, нуклеиновые кислоты. Разделите их на группы и дайте названия группам.

Заполнение схемы. (ученик у доски)

Откройте учебник параграф 27 стр.227 рис. 36, на котором показан химический состав организма человека. Какого вещества в организме больше? (воды – 65%).

Из органических веществ, образующих организм, каких веществ больше? (белков)

Итак, основой живого организма является белки. Сегодня на уроке мы рассмотрим белки, их состав и строение, познакомимся с химическими функциями белков. Для этого нам понадобятся знания из курса биологии, а также ваш жизненный опыт.

Тема нашего урока: “Белки как биополимеры. Химические функции белков”. (Слайд 1 , Запись даты и темы урока в тетради)

2. Биологические функции белков.

Беседа, выполнение задания в тетради.

Вспомним биологические функции белков. Выполните письменно следующее задание. Возьмите лист с заданиями. (Приложение 1)

Задание №1. (слайд 2)

Перечислены белки и их функции. Сопоставьте функцию с белком с помощью стрелок. На выполнение задание 1 минута. Будьте внимательны при выполнении задания.

  • Ферменты – ... (каталитическая)
  • Миозин – ... (двигательная)
  • Гемоглобин – ... (транспортная)
  • Коллаген, кератин – ... (структурная)
  • Инсулин - ... (регуляторная)
  • Альбумин -... (Запасающая)
  • Тромбин - ... (защитная)
  • Гликоген - ...----------------

Гликоген лишнее вещество в данном перечне, так как не является белком. Это углевод.

А сейчас вам вопрос от учителя биологии Ирины Аркадьевны (Слайд 3) :

В науке известен следующий факт: влюблённый студент-химик решил оригинальным способом воспользоваться информацией о том, что в нашем организме есть железо. Он решил из железа, которое содержится в его крови сделать кольцо для дамы сердца. Небольшими порциями он выпускал кровь, химическим путём выделял железо. Но такой романтический способ добычи металла закончился трагически: он умер от малокровия. Ведь он не знал, что в нашей крови железа содержится примерно от 3 до 4 грамм. В состав какого белка входит железо, и какое значение он имеет для организма? (железо входит в состав белка-гемоглобина, который участвует в переносе кислорода).

Посмотрите, насколько разнообразны функции белков. С белками связаны все жизненные процессы. Благодаря белкам организм приобрёл возможность двигаться, усваивать пищу, расти, размножаться, реагировать на внешние воздействия.

Итак, мы вспомнили некоторые биологические функции белков. Переходим к следующему вопросу: белок как химическое вещество.

3. Состав и строение белков.

Беседа с элементами объяснения, выполнение упражнений.

Рассмотрим состав и строение белков.

Составьте определение белков из предложенных слов (Слайд 4) :

Белок, альфа - аминокислота, биополимер, мономер. (Белок- это биополимер, мономером которого является альфа - аминокислота).

Какие химические элементы входят в состав белков? (Углерод, водород, кислород, азот, а также сера, фосфор и другие).

Составьте на доске формулу альфа – аминокислоты из предложенных частей:

С, NH 2 , H, COOH, R.

(R – CHNH 2 –COOH) (ученик у доски)

Какие функциональные группы входят в состав аминокислоты? (аминогруппа, карбоксильная группа)

Какими свойствами обладает аминокислота? (амфотерными)

Почему аминокислота – амфотерное соединение? (аминогруппа определяет основные свойства, карбоксогруппа – кислотные свойства)

Сколькими аминокислотами образованы белки? (20)

В результате какой реакции образуются белки? (поликонденсации)

Что собой представляет реакция поликонденсации? (это реакция, в результате которой образуется полимер, с отщеплением побочного продукта)

Выполним следующее задание на доске и в тетради:

Задание№2 (ученик у доски):

Составить уравнение реакции образования дипептида из глицина, серина. Указать в нём пептидные связи.

Образующийся участок представляет собой дипептидный участок белка-инсулина. Полимерные цепи белков состоят из десятков тысяч, миллионов и более остатков аминокислот. Перед вами формулы некоторых белков (Слайд 5) :

  • С 254 Н 377 О 75 N 65 S 6 инсулин
  • С 3032 Н 4876 О 872 N 780 S 6 Fe 4 – гемоглобин
  • С 1864 Н 3021 О 576 N 468 S 21 - лактоглобулин (белок молока)

Как вы думаете, какова молекулярная масса белков? (Очень большая). Например, молекулярная масса инсулина – M r 5727, гемоглобина 66184, лактоглобулина (белка молока) – 39112.

Белковая цепь настолько длинная, что для лучшего выполнения функций она упаковывается в структуры.

Рассмотрим структуры белков.

Какие структуры белков вы знаете? (первичную, вторичную, третичную, четвертичную)

Смоделируем структуры белка из проволоки, которая лежит у вас на столе. Возьмите её.

С какой структурой белка её можно сравнить? (первичной)

Что представляет собой первичная структура белка? (чередование аминокислот в полипептидной цепи)

Намотайте проволоку на ручку. С какой структурой белка можно сравнить получившуюся спираль? (вторичной)

Что изменилось в молекуле? (уменьшился размер, форма стала другой)

Из данной спирали сделайте комок. Какая структура белка получилась? (третичная)

Что представляет собой третичная структура? (глобулу)

Повернитесь друг к другу, объедините две глобулы? Эта какая структура белка? (четвертичная)

Выполняем следующее задание из карточки.

На карточке представлены рисунки структур белка. Снизу под цифрами перечислены типы связей, определяющих структуры. Определите структуру белка и тип связей. Подпишите нужную цифру под рисунком.

Проверим правильность выполнения задания. (Слайд 6)

Какая структура самая прочная? (первичная)

4. Химические свойства белков.

Объяснение учителя с элементами беседы. Выполнение демонстрационных и лабораторных опытов. Запись на доске и в тетради

Начнём изучение свойств белков, связанных с их структурой. Внимание на экран: вопрос от учителя технологии Татьяны Леонидовны (Слайд 7) :

Любая хозяйка знает, если нужно сварить вкусный бульон для 1 блюда, мясо кладётся в холодную воду, а когда вкусное мясо для 2 блюда - в горячее. Есть ли в этом химический смысл?

О каком свойстве белков идёт речь? (о денатурации)

1) Денатурация (под действием нагревания, химических веществ и т.д.)

Что такое денатурация? (процесс утраты белковой молекулой своей структуры при изменении внешних факторов).

а) повышение температуры

Что вызывает денатурацию при варке мяса? (нагревание, повышение температуры)

Итак, мы рассмотрели состав и строение белков. Переходим к следующему вопросу.

Ответим на вопрос Татьяны Леонидовны.

Почему для вкусного бульона мясо кладётся в холодную воду, для вкусного мяса – в горячую? (Если мясо положить в холодную воду, растворимые белки переходят в воду и там денатурируются. Бульон получается вкусным. Если мясо положить в горячую воду, белки денатурируются сразу в мясе, поэтому мясо получается вкусным)

– Какие факторы, кроме температуры, вызывают денатурацию? (изменение температуры, облучением, действием тяжёлых металлов, кислот, органических веществ, обезвоживанием и другими воздействиями)

б) действие солей тяжёлых металлов (дем.опыт)

Беру раствор яичного белка. Добавляю в один стакан хлорид цинка, во второй сульфат меди (II).

Что наблюдаем при этом? (свёртывание белков)

Белки связывают ионы тяжёлых металлов и обезвреживают их. При отравлении тяжёлыми металлами пострадавшему дают молоко как противоядие.

в) действие органических веществ (дем.опыт)

К раствору яичного белка добавляю этиловый спирт. Наблюдаем осаждение белков.

Какие структуры белка разрушаются при денатурации? (вторичная, третичная, четвертичная с сохранением первичной). Утрачивается биологическая активность. Белок становится доступен действию пищеварительных ферментов.

Какая бывает денатурация? (обратимая и необратимая). Данная денатурация необратимая. Может ли структура белка восстановиться? Обратим ли процесс денатурации? (Да). Ренатурация – процесс восстановления структуры белка.

Следующие химические свойства помогают определить белки в растворах.

2) Цветные реакции

а) биуретовая (на пептидную связь)

Это универсальная реакция определения белков. Посмотрим видеоопыт. (Слайд 8)

Заполняем схему в тетради.

Белок + ______________ = ____________ окрашивание

Белок + (щелочь+ CuSO 4) = фиолетовое окрашивание

Проведём экспертизу неизвестных веществ в пробирках с помощью биуретовой реакции. Приступайте к выполнению лабораторного опыта по инструкции. (Слайд 9)

В какой пробирке находится белок? Посмотрите, какие вещества находились у вас в пробирках (Слайд 10) :

  • Пробирка №1 – молоко
  • Пробирка №2 – бульонный кубик
  • Пробирка №1 – мясной бульон
  • Пробирка №2 – бульонный кубик
  • Пробирка №1 - яичный белок
  • Пробирка №2 – бульонный кубик

Я выбрала бульонный кубик для определения белков. Бульонный кубик белки содержит? (Нет). А в его составе указаны растительные жиры и мясо курицы.

б) ксантопротеиновая (на ароматические кольца) (видеофрагмент, Слайд 11 )

Заполняем схему в тетради:

Белок +__________= ___________окрашивание

белок + конц. HNO 3 = жёлтое окрашивание

При неосторожном обращении с азотной кислотой от попадания её на кожу остаётся жёлтое пятно. Это ксантопротеиновая реакция с покровными тканями.

Эти качественные реакции можно применить в жизни. А когда и где вам подскажет небольшой видеофрагмент из фильма Аллы Суриковой “Ищите женщину” (Слайд 12).

В каких случаях и с какой целью можно применить их в жизни? (В пищевой промышленности, судебной медицине для обнаружения белков)

Биуретовая и ксантопротеиновая реакции - это качественные реакции, реакции, которые позволяют уверенно судить – белок перед нами или нет.

3) Гидролиз

Какой процесс называют гидролизом белков? Вставьте пропущенные слова. (Слайд 13)

Гидролиз – это разрушение... структуры белка под воздействием..., а также водных растворов кислот или щелочей. (первичной, ферментов)

Какие продукты образуются при гидролизе белков? (аминокислоты)

Как можно изменить уравнение реакции образования пептида, чтобы превратить её в реакцию гидролиза? (Написать её наоборот)

Чтобы составить уравнение реакции гидролиза дипептида глицилаланина добавить воду. Идёт разрыв пептидной связи. Атом водорода присоединяется к остатку от аминогруппы, гидроксогруппа к остатку от карбоксильной группы.

Общая схема гидролиза белков есть у вас в учебнике.

Гидролиз – это основа пищеварения.

4) Горение (с образованием углекислого газа, воды, азота.)

Запах: ... .

Как проверить, что изделие из шерсти? (Шерсть – это белок, надо сжечь кусочек нити и по запаху определить результат)

Приступайте к выполнению лабораторного опыта по инструкции. (Слайд 14)

Мы рассмотрели основные химические функции белков.

III. Закрепление (3 мин.)

Фронтальный опрос.

Перед вами на слайде представлены группы слов. Обобщите несколько слов 1 словом или термином. (Слайд 15-23)

А) третичная, вторичная, первичная, четвертичная - ? (структуры)

Б) 20, незаменимая – ? (аминокислота)

В) белки, жиры, углеводы -? (органические вещества)

Г) температура, обратимая, необратимая -? (денатурация)

Д) пепсин, амилаза, трипсин – ? (ферменты)

Е) Cu(OH) 2 , фиолетовое окрашивание - ? (биуретовая реакция)

IV. Заключение (1 мин.)

Заключительное слово учителя.

Сегодня мы познакомились с химией белка. Ни одно вещество химики не изучали так долго, как белки, прежде чем удалось разгадать тайну их строения. Они выполняют большую роль не только в организме человека, но и в жизни. Не случайно в переводе с греческого языка белки называют протеинами, что значит “первый, главный”.

V. Домашнее задание (1 мин.)

Параграф 27

Приготовить сообщения на темы:

А) применение цветных реакций

Б) история изучения белков

В) факторы, вызывающие денатурацию.

Литература

1. Артёменко А.И. Удивительный мир органической химии. - М.: Дрофа, 2004.

2. Горковенко М.Ю Поурочные разработки по химии к учебным комплектам О.С.Габриеляна и др. 10 класс. М. “ВАКО”, 2005.

3. Рябов М.А. Сборник заданий и упражнений по химии: 10-й кл.: к учебнику О.С.Габриеляна и др. “Химия. 10 класс”. – М.:Экзамен, 2008.

4. Химия 10 класс. Учеб. для общеобразоват. учреждений/ О.С.Габриелян, Ф.Н.Маскаев, С.Ю.Пономарёв, В.И.Теренин. – М.:Дрофа, 2010.

Белки – это биополимеры, состоящие из остатков аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот. Структура белка-

Обладают неисчерпаемым разнообразием структур.

Первичная структура – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH .

Третичная структура – это пространственная конфигурация, принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка. Физические свойства-

Одни белки растворяются в воде, образуя, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей). Химические свойства

1. Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д. 2. Качественные реакции на белки :

а) При горении белка – запах палёных перьев.

б) Белок +HNO3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO4 → фиолетовая окраска

3. Гидролиз Белок + Н2О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты );

· регуляторные (гормоны );

· структурные (кератин шерсти, фиброин шелка, коллаген);

полимерами называются вещества, имеющие большую молекулярную массу, состоящую из множества повторяющихся структурных звеньев. Существуют природные полимеры (крахмал , белки, целлюлоза, каучук) и синтетические полимеры (полиэтилен , фенопласты). Низкомолекулярные вещества, из которых синтезируют полимеры, называются мономерами.

CH2=CH2 мономер полиэтилена - этилен

(-CH2-CH2-)n –молекула полимера

CH2-CH2- – структурное звено – многократно повторяющаяся группа атомов. Физические свойства-

Полимеры имеют высокую механическую прочность. Стойкие, Не имеют определённой температуры плавления , не растворяются в воде и в большинстве органических растворителей. Полиэтилен – полупрозрачный материал, воздухо- и влагонепроницаем, легкоплавкий, химически стойкий. Применяется для плёнок, труб, бытовых изделий (посуда, игрушки), электроизоляции, поверхностных покрытий.



8. Взаимное влияние атомов в молекулах органических веществ. Этанол - типичный представитель класса предельных одноатомных спиртов, в котором функциональная группа ОН связана с углеводородным радикалом. Так как кислород обладает большей электроотрицательностью по сравнению с водородом и углеродом, связь О-Н в молекуле этаноласильно полярная, с избыточным отрицательным зарядом на атоме кислорода и с положительным зарядом на атоме водорода. Вследствие этого атом водорода гидроксогруппы обладает большей реакционной способностью, чем атомы водорода в углеводородном радикале. Спирты являются амфотерными соединениями, т. е. проявляют свойства кислот и оснований.

Фенол - это производное бензола, в котором один из атомов водорода

замещен на гидроксильную группу.

Гидроксильная группа и бензольное кольцо оказывают влияние друг на друга. Под действием n-электронного облака неподеленная пара кислорода смещается в сторону бензольного ядра (возникает эффект сопряжения). Вследствие этого усиливается поляризация связи О ~ Н и возрастает подвижность атомов водорода в гидроксогруппе. Влияние же гидроксогруппы на свойства бензольного кольца проявляется в увеличении подвижности атомов водорода в положениях 2, 4, 6. Фенол обладает более выраженными кислотными свойствами по сравнению со спиртами, в частности с этанолом. Раствор фенола, применяемый для дезинфекции, называется карболовой кислотой.

Этанол и фенол реагируют со щелочными металлами (кислотные свойства

и (основное свойство), для этанол взаимодействует с галогеноводородам

фенола такая реакция невозможна Н25О4 С2Н50Н + НС] -) С2Н5С] + Н20

фенол реагирует с растворами щелочей (кислотное свойство), для этанола такая реакция невозможна

анола и фенола - веществ с одина-

Таким образом, сравнив своиства эт но различнымисвойствами, вывод о взаимном влиянии атомов.



9. Виды химическойсвязи: ионная, ковалентная (полярная, неполярная}, металлическая. Ковалентная связь образуется за счет перекрывания электронных облаков двух атомов. Каждый̆ атом предоставляет один неспаренный электрон для образования одной химической связи, при этом происходит образование общей электронной пары . Если ковалентная связь образуется между двумя одинаковыми атомами, она называется неполярной .

Если ковалентная связь образуется между двумя различными атомами, общая электронная пара смещайся к атому с большей электроотрицательностью (электроотрицательностью называется способность атома притягивать электроны). В этом случае возникает полярная ковалентная связь. Частным случаем ковалентной связи является донорно-акцепторная связь. Д ля ее образованья у одного атома должна быть свободная орбиталь на внешнем электронном уровне, а у другого - пара электронов. Один атом (донор) предоставляет другому (акцептору) свою электронную пару, в результате она становится общей, образуется химическая связь. Пример - молекула СО :

Ионная связь образуется между атомами с сильно отличающейся электроотрицательностью. При этом один атом отдает электроны и превращается в положительно заряженный ион, а атом, получивший электроны, в отрицательно заряженный. Ионы удерживаются вместе за счет сил электростатического притяжения.

Водородная связь образуется между полярными молекулами (вода, спирты, аммиак) за счет притяжения разноименных зарядов.

Прочность водородной связи существенно (~20 раз) меньше, чем ионной или ковалентной связи.

10. Водородные соединения неметаллов. Закономерности в изменений их свойств в связи с положением химических элементов в периодической системе Гидриды , В соединениях с неметаллами водород проявляет степень окисления +1. Поскольку энергия ионизации водорода очень большая, химическая связь его с неметаллами не ионная, а полярно-ковалентная. Наиболее электроотрицательные р-элементы в правой части периодов, например сера и хлор, реагируют с водородом, образуя ковалентные гидриды, которые обладают кислотными свойствами и сила этих кислот увеличивается по мере увеличения размера атома присоединяемого к водороду неметалла. Исключениями являются метан СН4, представляющий собой нейтральное соединение, а также аммиак NH3, обладающий основными свойствами. Водородные соединения неметаллов хорошо растворимы в воде и образуют кислоты с теми же формулами. Более электроотрицательные р-элементы, например алюминий, кремний и фосфор, в нагретом состоянии не реагируют с водородом. 11 . Начала термодинамики. Представления об энтропии. Термодинамика изучает физические объекты материального мира только в состоянии термодинамического равновесия. Находящаяся при определенных неизменных внешних условиях и постоянной температуре окружающей среды. Тем термодинамика рассматривает условия существования необратимых процессов. Например, распространение молекул газа (закон диффузии). Задачей термодинамики необратимых процессов сначала было изучение неравновесных процессов для состояний, не слишком сильно отличающихся от равновесного. Второе начало термодинамики. Энтропия. Второе начало термодинамики вводит новую функцию состояния – энтропию. Термин «энтропия означает «превращение». В формулировке: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия; вычисляются все проводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т, и все полученные таким образом значения суммируются (первая часть второго начала термодинамики). При реальных (неидеальных) процессах энтропия изолированной системы возрастает». Учета и сохранения количества энергии еще недостаточно для того, чтобы судить о возможности того или иного процесса. Энергию следует характеризовать не только количеством, но и качеством. При этом существенно, что энергия определенного качества самопроизвольно может превращаться только в энергию более низкого качества . Величиной, определяющей качество энергии, и является энтропия. Процессы в живой и нежи вой материи в целом протекают так, что энтропия в замкнутых изолированных системах возрастает, а качество энергии понижается . В этом и есть смысл второго начала термодинамики. Закон 3! W – число различных состояний системы, доступное ей при данных условиях, или термодинамическая вероятность макросостояния системы.

энтропия правильно сформированного кристалла чистого вещества при абсолютном нуле равна нулю. Этот постулат может быть объяснен статистической термодинамикой, согласно которой энтропия есть мера беспорядочности системы на микроуровне: S = kblnW

12. Гинетическая связь углеводородов. Среди множества видов связей можно выделить такие, которые указывают, что первично, а что вторично, как одни объекты или явления порождают другие. Такие виды связей называются генетическими.
Между гомологическими рядами углеводородов существует генетическая связь, которая обнаруживается в процессе взаимного превращения этих веществ. Например,
С2Н6 - С2Н4 - С2Н2 - С6Н6 - С6Н6Сl6;

13. Гидролиз солей Гидролизом называется взаимодействие ионов соли с Н2О, приводящее к образованию слабого электролита.

Любую соль можно представить как продукт взаимодействия кислоты и основания.

В зависимости от видов этих исходных веществ выделяют 4 типа солей.

Соли, образованные сильной кислотой и сильным основанием:

NaOH+HCl=NaCl+H2O

Такие соли гидролизу не подвергаются и их водные растворы имеют нейтральную среду.

Соли, образованные слабой кислотой, но сильным основанием:

H2CO3 + 2 NaOH = Na2СO3 + 2 H2O

В водных растворах таких солей с H2Oбудут взаимодействовать анионы слабой кислоты, которые образуются при диссоциации соли:

Na2СO3®2Na++CO32−

Эти анионы будут присоединять к себе ионы Н+, отщепившиеся от молекул H2O, в результате этого образуется слабый электролит HСO3−- гидрокарбонат-анион, а в растворе станут накапливаться ионы ОН−, которые будут сообщать раствору такой соли щелочную реакцию.

14. Глицерин многоатомный спирт состав молекулы физические хим . Физические свойства многоатомных спиртов:

1) важнейшие представители многоатомных спиртов – это этиленгликоль и глицерин;

2) это бесцветные сиропообразные жидкости сладковатого вкуса;

3) они хорошо растворимы в воде;

4) эти свойства присущи и другим многоатомным спиртам, например этиленгликоль ядовит.

Химические свойства многоатомных спиртов .

1. Как вещества, которые содержат гидроксильные группы, многоатомные спирты имеют сходные свойства с одноатомными спиртами.

2. При действии галогеноводородных кислот на спирты происходит замещение гидроксильной группы:

СН2ОН-СН2ОН + Н СI -> СН2ОН-СН2СI + Н2О.

Глицерин - бесцветная, вязкая, очень гигроскопичная жидкость, смешивается с водой в любых пропорциях. Сладкий на вкус, отчего и получил своё название.В соединении с пропиленгликолем становится менее текучим при понижении температуры до близкой к нулю градусам Цельсия.

Область применения глицерина разнообразна: пищевая промышленность, табачное производство, электронные сигареты, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке).

Способы получения и применения многоатомных спиртов: 1) подобно одноатомным спиртам, многоатомные спирты могут быть получены из соответствующих углеводородов через их галогенопроизводные ; 2) наиболее употребительный многоатомный спирт – глицерин, он получается расщеплением жиров, а в настоящее время все больше синтетическим способом из пропилена, который образуется при крекинге нефтепродуктов.

15. Глюкоза представители моносахариды химическое . Глюкоза (C6H12O6), или виноградный сахар, или декстроза встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара.

Бесцветное кристаллическое вещество сладкого вкуса, растворимое в воде и органических растворителях, растворимо в реактиве Швейцера: аммиачном растворе гидроксида меди - Cu(NH3)4(OH)2, в концентрированном растворе хлорида цинка и концентрированном растворе серной кислоты.

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий):

1) она встречается почти во всех органах растения: в плодах, корнях, листьях, цветах;

2) особенно много глюкозы в соке винограда и спелых фруктах, ягодах;

3) глюкоза есть в животных организмах;

4) в крови человека ее содержится примерно 0,1 %.

Особенности строения глюкозы

1. Состав глюкозы выражается формулой: С6Н12O6, она принадлежит к многоатомным спиртам.

2. Если раствор этого вещества прилить к свежеосажденному гидроксиду меди (II), образуется ярко-синий раствор, как в случае глицерина.

Опыт подтверждает принадлежность глюкозы к многоатомным спиртам.

3. Существует сложный эфир глюкозы, в молекуле которого пять остатков уксусной кислоты. Из этого следует, что в молекуле углевода пять гидроксильных групп. Этот факт объясняет, почему глюкоза хорошо растворяется в воде и имеет сладкий вкус.

Если раствор глюкозы нагреть с аммиачным раствором оксида серебра (I), то получится характерное «серебряное зеркало».

Шестой атом кислорода в молекуле вещества входит в состав альдегидной группы.

4. Чтобы составить полное представление о строении глюкозы, надо знать, как построен скелет молекулы. Поскольку все шесть атомов кислорода входят в состав функциональных групп, следовательно, атомы углерода, образующие скелет, соединены друг с другом непосредственно.

5. Цепь атомов углерода прямая, а не разветвленная.

6. Альдегидная группа может находиться только в конце неразветвленной углеродной цепи, и гидроксильные группы могут быть устойчивы, находясь лишь у разных атомов углерода.

7. Глюкоза одновременно и альдегид, и многоатомный спирт: она альдегидоспирт..

16.Диеновые углеводороды, их химическоестроение, свойства, получение системы Диены - органические соединения, содержащие две двойных связи углерод-углерод. В зависимости от взаимного расположения двойных связей диены подразделяются на три группы: сопряженные диены, в которых двойные связи разделены одинарной (1,3-диены), аллены с

кумулированными двойными связями (1,2-диены) и диены с изолированными двойными связями, в которых двойные связи разделены несколькими одинарными.
Низшие диены - бесцветные легкокипящие жидкости (температуры кипения изопрена - 34 °C, 2,2-диметил-1,3-бутадиена - 68.78 °C, 1,3- циклопентадиена - 41.5 °C).

Диеновые углеводороды различаются расположением двойных связей, такое расположение вследствие эффектов сопряжения связей сказывается на их реакционной способности. Существуют три класса диенов:
Аллены - диены с кумулированными связями, замещённые производные пропадиена-1,2 H2C=C=CH2
Сопряжённые диены или 1,3-диены - замещённые производные бутадиена-1,3 CH2=CH–CH=CH2
Изолированные диены, в которых двойные связи располагаются через две и более простых связи С–С
Диеновые углеводороды легко полимеризуются. Реакция полимеризации диеновых углеводородов лежит в основе синтеза каучука. Вступают в реакции присоединения (гидрирование, галогенирование, гидрогалогенирование.
Натуральный каучук представляет собой полимер изопрена, который в большинстве своем содержится в млечном соке гевеи и многих других растений. Основными физическими и химическими свойствами этого эластомера является его растворимость в углеводородах и их производных, нерастворимость в воде и спиртах. При комнатной температуре, как правило, природный каучук присоединяет кислород, вследствие чего происходит «старение» материла, в связи с чем, уменьшается и его эластичность и прочность.
Первым синтетическим каучуком, имевшим промышленное значение, был полибутадиеновый (дивиниловый) каучук, производившийся синтезом по методу С. В. Лебедева (анионная полимеризация жидкого бутадиена в присутствии натрия), однако из-за невысоких механических качеств нашёл ограниченное применение.
Основные типы синтетических каучуков:
Изопреновый
Бутадиеновый каучук
Бутадиен-метилстирольный каучук
Бутилкаучук (изобутилен-изопреновый сополимер) Этилен-пропиленовый (этилен-пропиленовый сополимер) Бутадиен-нитрильный (бутадиен-акрилонитрильный сополимер) Хлоропреновый,

17. Дисперсные системы. Коллоидно-дисперсные системы

В природе и технике часто встречаются дисперсные системы, в которых одно вещество равномерно распределено в виде частиц внутри другого вещества.

В дисперсных системах различают дисперсную фазу - мелкораздробленное вещество идисперсионную среду - однородное вещество, в котором распределена дисперсная фаза. Например, в мутной воде, содержащей глину, дисперсной фазой являются твердые частички глины, а дисперсионной средой - вода; в тумане дисперсная фаза - частички жидкости, дисперсионная среда - воздух; в дыме дисперсная фаза -- твердые частички угля, дисперсионная среда - воздух; в молоке - дисперсная фаза - частички жира, дисперсионная среда - жидкость и т. д.

К дисперсным системам относятся обычные (истинные) растворы, коллоидные растворы, а также суспензии и эмульсии. Они отличаются друг от друга прежде всего размерами частиц, т. е. степенью дисперсности (раздробленности).

Системы с размером частиц менее 10-9 м представляют собой - истинные растворы, состоящие из молекул или ионов растворенного вещества. Их следует рассматривать как однофазную систему. Системы с размерами частиц больше 10-7 м - это грубодисперсные системы - суспензии и эмульсии.

Суспензии - это дисперсные системы, в которых дисперсной фазой является твердое вещество, а дисперсионной средой - жидкость, - причем твердое вещество практически нерастворимо в жидкости. Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость, в которой вещество не растворяется, и хорошо взболтать (например, взбалтывание глины в воде). Со временем частички выпадут на дно сосуда. Очевидно, чем меньше частички, тем дольше будет сохраняться суспензия.

Эмульсии - это дисперсные системы, в которых и дисперсная фаза и дисперсионная среда являются жидкостями, взаимно не смешивающихся. Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Примером эмульсии является молоко, в котором мелкие шарики жира плавают в жидкости. Суспензии и эмульсии - двухфазные системы.

Коллоидные системы

Коллоидные растворы - это высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы, причем линейные размеры частиц последней лежат в пределах от 10-9 м до 10-7 м. Как видно, коллоидные растворы по размерам частиц являются промежуточными между истинными растворами и суспензиями и эмульсиями. Коллоидные частицы обычно состоят из большого числа молекул или ионов.

Суспензия - смесь веществ, где твёрдое вещество распределено в виде мельчайших частиц в жидком веществе во взвешенном состоянии. Суспензия - это грубодисперсная система с твёрдой дисперсной фазой и жидкой дисперсионной средой. Обычно частицы дисперсной фазы настолько велики (более 10 мкм), что оседают под действием силы тяжести (седиментируют). Суспензии, в которых седиментация идёт очень медленно из-за малой разницы в плотности дисперсной фазы и дисперсионной среды, иногда называют взвесями. В концентрированных суспензиях легко возникают дисперсные структуры. Типичные суспензии - пульпы, буровые промывочные жидкости, цементные растворы, эмалевые краски. Широко используются в производстве керамики. 18. Железо, положение в периодической системе, строение атома Типичные степени окисления железа +2 и +3. Степень окисления +2 проявляется за счет потери двух 4s-электронов. Степень окисления +3 соответствует также при потере еще одного Зd-электрона, при этом Зd-уровень оказывается заполненным наполовину; такие электронные конфигурации относительно устойчивы.

Физические свойства. Железо типичный металл, образует металлическую кристаллическую решетку. Железо проводит электрический ток, довольно тугоплавко, температура плавления 1539С. От большинства других металлов железо отличается способностью намагничиваться.

Химические свойства. Железо реагирует со многими неметаллами:

Образуется железная окалина смешанный оксид железа. Его формулу записывают также так: FeОFe2О3.

Реагирует с кислотами с выделением водорода:

Вступает в реакции замещения с солями металлов, расположенных правее железа в ряду напряжений:

Соединения железа. FeО основной оксид, реагирует с растворами кислот с образованием солей железа (II). Fe2О3 амфотерный оксид, реагирует также с рас творами щелочей.

гидроксиды:

Сплавы железа. Современная металлургическая промышленность производит железные сплавы разнообразного состава.

Все железные сплавы разделяются по составу и свойствам на две группы. К первой группе относятся различные сорта чугуна, ко второй различные сорта стали.

Чугун, предназначенный для переработки в сталь , называют передельным чугуном. Он содержит от 3,9 до 4,3% С, 0,31,5% Si, 1,53,5% Мn, не более 0,3% Р и не более 0,07% S. Чугун, предназначенныйдля получения отливок, называется литейным чугуном, В доменных печах выплавляются также ферросплавы, применяемые преимущественно в производстве сталей в качестве добавок. Ферросплавы имеют, по сравнению с передельным чугуном, повышенное содержание кремния (ферросилиций), марганца (ферромарганец), хрома (феррохром) и других элементов.

Общие способы получения металлов.

Металлы находятся в природе преимущественно в виде соединений. Только металлы с малой химической активностью (благородные металлы) встречаются в природе в свободном состоянии (платиновые металлы, золото, медь, серебро, ртуть). Из конструкционных металлов в достаточном количестве имеются в природе в виде соединений лишь железо, алюминий, магний. Они образуют мощные залежи месторождений относительно богатых руд. Это облегчает их добычу в больших масштабах.

Поскольку металлы в соединениях находятся в окисленном состоянии (имеют положительную степень окисления), то получение их в свободном состоянии сводится к процессу восстановления:

Этот процесс можно осуществить химическим или электрохимическим путем.

При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (II), а также водород, активные металлы, кремний. С помощью оксида углерода (II) получают железо (в доменном процессе), многие цветные металлы (олово, свинец, цинк и др.):

Восстановление водородом используется, например, для получения вольфрама из оксида вольфрама (VI):

19. Понятие о жесткости воды. Борьба . Жесткость воды – это совокупность свойств, обусловленных содержанием в воде катионов кальция и магния. Анионами растворимых солей кальция и магния могут быть гидрокарбонат-ионы, сульфат-ионы и хлорид-ионы. Различают временную (карбонатную) и постоянную жесткость.

Временная жесткость обусловлена содержанием в воде гидрокарбонатов кальция и магния. Временная жесткость легко устраняется кипячением:

Постоянная жесткость обусловлена наличием в воде сульфатов, хлоридов и других солей кальция и магния. Постоянную жесткость можно устранить, используя следующие способы.

а) Известково-содовый способ – к воде добавляют смесь гашеной извести и соды. При этом временная жесткость воды устраняется гашеной известью, а постоянная – содой:

б) Катионитный способ – воду пропускают через колонку, заполненную катионитом (катиониты – твердые вещества, содержащие в своем составе подвижные катионы, способные обмениваться на ионы внешней среды) На катионите задерживаются ионы кальция и магния, а в раствор переходят ионы натрия, в результате чего жесткость воды уменьшается:

Общее содержание кальция в организме человека в среднем составляет 1,9% от общей массы тела, при этом 99% всего количества приходится на долю скелета и лишь 1% содержится в остальных тканях и жидкостях организма. Суточная потребность в кальции для взрослого человека 0,45-1,2 г. Кальций участвует во всех жизненных процессах организма. Нормальная свертываемость крови происходит только в присутствии солей кальция. Кальций играет важную роль и в нервно-мышечной возбудимости организма.

20.Жиры как сложные эфиры глицерина и карбоновых кислот, их состав и свойства. Жиры, или триглицериды (где ацил – остаток карбоновой кислоты -C(O)R)- природныеорганическиесоединенияполныесложные,

эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

В состав природных триглицеридов входят остатки насыщенных

(предельных) кислот(пальмитиновойC15H31COOH, стеариновой C17H35COOH и др.) и ненасыщенныхнепредельныхкислот() (олеиновойC17H33COOH, линолевойC17H31COOH, линоленовой

C15H29COOH и др.).

Жидкие жиры превращают в твердые путем реакции гидрогенизации (каталитическогогидрирования). При этомводородприсоединяетсяпо двойной связи, содержащейся в углеводородном радикале молекул масел.

21.изомерия органических соединений ее виды. Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле, стерео-изомеры - расположением атомов в пространстве при одинаковом порядке связей между ними.

Структурная изомерия
Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие (начиная от вкуса и запаха и кончая лекарственным действием) резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов - обмена веществ.

22.искусственные волокна на примере цнллофана и вискоза. – это химические волокна, получаемые из природных полимеров, главным образом целлюлозы, получаемой из дерева и соломы. Ткани из искусственных волокон, также как и из натуральных, обладают высокими гигиеническими и иными качествами.

Вискозные ткани изготавливаются исходя из их назначения. Им можно придать внешний вид хлопка, льна, шерсти или шелка. Кроме того, вискоза применяется для прядения вискозных неволокнистых изделий (целлюлозной пленки, целлофана), а также для производства искусственной кожи (кирзы). Вискоза обладает некоторыми достоинствами по сравнению с традиционными натуральными тканями. Так, вискоза лучше впитывает влагу, чем хлопок. Изделия из вискозы обладают приятным шелковистым блеском, при этом легко окрашиваются и обладают высокой светостойкостью (в отличие от шелка). Из недостатков необходимо назвать сильную сминаемость, высокую степень усадки и невысокую прочность (особенно во влажном состоянии). Поэтому стирать вискозу необходимо в щадящем режиме. Отжимать лучше вручную и не сильно, либо вообще не отжимать, а сразу вешать сушиться. Гладить ее рекомендуется в таком же режиме, как и шелк.

Вискозное волокно занимает первое место среди химических волокон по объему производства. Вискоза производится из жидких растворов природной целлюлозы: из древесины ели, сосны, стеблей некоторых растений, из отходов переработки хлопкового волокна. Остатки еловой щепы и хлопкового пуха обрабатывают раствором щелочи (едкий натр), получают щелочную целлюлозу, которую затем обрабатывают сероуглеродом и полученный растров продавливают через фильеры - пластины с мельчайшими отверстиями - получают струйки материала, которые затвердевают и образуют элементарные нити. Ученые России предвидели блестящую будущность вискозного волокна.

Свойства

Вискозное волокно является самым универсальным из химических волокон, оно приближено к хлопковому. Ткань из вискозы на ощупь мягкая и приятная. Она образует красивые складки. Волокно имеет рыхлую структуру, напоминает шелк по внешнему виду. Вискозу также отличает крайне высокая гигроскопичность. Вискоза впитывает в два раза больше влаги, чем, например, хлопок. Ткань из вискозы очень легко окрашивается в самые яркие цвета. При увлажнении чистая вискоза становится менее прочной, однако, эта проблема полностью решается вплетением специальных укрепляющих волокон. Плотность нетканого полотна из вискозы может варьироваться от 1,53 г/смі до 4,5 г/смі. Эластичность вискозы не превышает 2−3%. Вискозная нетканка не теряет своих свойств при нагревании вплоть до 150 °C. Вискозное волокно очень хорошо сочетается с другими волокнами, что позволяет улучшать различные свойства материи: крепкость, мягкость, гигроскопичность. Вискоза не электризуется. «Зеленые» свойства

23 .кетоны состав свойства способы получения и применения: Способы получения кетонов

Кетоны могут быть получены окислением алкенов (кислородом в присутствии солей палладия и озоном), спиртов и гидратацией алкинов. Промышленное значение имеет метод гидроформилирования алкенов (оксосинтез).

1. Из спиртов. Дегидрированием спиртов получают многие альдегиды и кетоны, но в настоящее время процесс сохранил свое значение только для получения формальдегида (катализатор Cu). Промышленным способом получения является окисление спиртов. В качестве окислителей применяют K2Cr2O7/разб. H2SO4, Cr2O3/разб. H2SO4. Окислением первичных спиртов получают альдегиды, вторичных – кетоны.

На вопрос Биология 9 класс!! ! Ответе подробно! Почему белки биополимеры??? заданный автором Малосольный лучший ответ это Биополиме́ры - класс полимеров, встречающихся в природе в естественном виде, входящие в состав живых организмов: белки, нуклеиновые кислоты, полисахариды. Биополимеры состоят из одинаковых (или разных) звеньев - мономеров. Мономеры белков - аминокислоты, нуклеиновых кислот - нуклеотиды, в полисахаридах - моносахариды.
Выделяют два типа биополимеров - регулярные (некоторые полисахариды) и нерегулярные (белки, нуклеиновые кислоты, некоторые полисахариды) .
Содержание [убрать]
1 Белки
2 Нуклеиновые кислоты
3 Полисахариды
4 См. также
[править] Белки
Основная статья: Белки
Белки имеют несколько уровней организации - первичная, вторичная, третичная, и иногда четвертичная. Первичная структура определяется последовательностью мономеров, вторичная задаётся внутри- и межмолекулярными взаимодействиями между мономерами, обычно при помощи водородных связей. Третичная структура зависит от взаимодействия вторичных структур, четвертичная, как правило, образуется при объединении нескольких молекул с третичной структурой.
Вторичная структура белков образуется при взаимодействии аминокислот с помощью водородных связей и гидрофобных взаимодействий. Основными типами вторичной структуры являются
α-спираль, когда водородные связи возникают между аминокислотами в одной цепи,
β-листы (складчатые слои) , когда водородные связи образуются между разными полипептидными цепями, идущими в разных направлениях (антипараллельно) ,
неупорядоченные участки
Для предсказания вторичной структуры используются компьютерные программы.
Третичная структура или «фолд» образуется при взаимодействии вторичных структур и стабилируется нековалентными, ионными, водородными связями и гидрофобными взаимодействиями. Белки, выполняющие сходные функции обычно имеют сходную третичную структуру. Примером фолда является β-баррел (бочка) , когда β-листы располагаются по окружности. Третичная структура белков определяется с помощью рентгеноструктурного анализа.
Важный класс полимерных белков составляют Фибриллярные белки, самый известный из которых коллаген.
В животном мире в качестве опорного, структурообразующего полимера обычно выступают белки. Эти полимеры построены из 20 α-аминокислот. Остатки аминокислот связаны в макромолекулы белка пептидными связями, возникающими в результате реакции карбоксильных и аминогрупп.
Значение белков в живой природе трудно переоценить. Это строительный материал живых организмов, биокатализаторы – ферменты, обеспечивающие протекание реакций в клетках, и энзимы, стимулирующие определённые биохимические реакции, т. е. обеспечивающие избирательность биокатализа. Наши мышцы, волосы, кожа состоят из волокнистых белков. Белок крови, входящий в состав гемоглобина, способствует усвоению кислорода воздуха, другой белок – инсулин – ответственен за расщепление сахара в организме и, следовательно, за его обеспечение энергией. Молекулярная масса белков колеблется в широких пределах. Так, инсулин – первый из белков, строение которого удалось установить Ф. Сэнгеру в 1953 г. , содержит около 60 аминокислотных звеньев, а его молекулярная масса составляет лишь 12 000. К настоящему времени идентифицировано несколько тысяч молекул белков, молекулярная масса некоторых из них достигает 106 и более.

Основная часть органических соединений — биологические полимеры (греч. poly много  meros часть). К ним относят белки, нуклеиновые кислоты и полисахариды (углеводы).

В клетках растений преобладают углеводы, а в животных клетках больше белков.

Строение белков, или протеинов (греч. protos первый, важнейший), напоминает длинную цепь, каждым звеном которой является определенная аминокислота. Все живое взаимосвязано процессами питания. Несмотря на различия в строении белков, все организмы для их синтеза используют 20 одинаковых аминокислот, 8 из них не могут синтезироваться организмом человека и должны поступать с пищей - их называют незаменимыми. Некоторые белки (казеин молока, миозин мышц) содержат все аминокислоты, другие (в молоках рыб) - менее половины.

Для небольшого белка из 250 аминокислот, каждая из которых - одна из 20, получается 20250 (примерно 10325) возможных молекул! Это громадная величина: в видимой части Вселенной (более 13 млрд световых лет) "всего лишь" 1080 электронов. Удивительно, что из огромного множества возможных комбинаций аминокислот образованы именно функциональные белки, необходимые для жизни.

Относительная молекулярная масса белков достигает десятков тысяч; инсулина - 5 700, а гемоглобина - 65 000. Эти гигантские соединения, включающие в среднем 300-500 аминокислот (тысячи атомов), называют макромолекулами.

Аминокислоты амфотерны: они способны проявлять как кислотные, так и основные свойства. В состав каждой аминокислоты кроме специфического только для нее радикала R входит кислотная (карбонильная) группа СООН и аминогруппа NH2, придающая ей основные свойства (в кислых и основных аминокислотах этих групп больше одной). Под действием ферментов карбонильная группа одной аминокислоты может взаимодействовать с аминогруппой другой аминокислоты с образованием так называемой -пептидной связи, поэтому белки называют еще полипептидами.

В искусственных условиях вне клетки без участия ферментов среди разнообразных возникающих химических связей между различными группами атомов аминокислот лишь незначительное количество связей могут оказаться -пептидными. Такие соединения не имеют биологической активности и белками не являются.

Последовательность аминокислот в белке называют первичной структурой. В виде вытянутой цепи белок не в состоянии выполнять свои специфические функции. Следующие друг за другом аминокислоты в белке образуют или спиральные структуры (-спирали), или складки (так называемые -структуры, которые собираются в складчатые листы-гармошки). Такую пространственную организацию (укладку) полипептидной цепи называют вторичной структурой. Но и этой сложной формы белкам недостаточно для выполнения всех своих функций.

В большинстве белков элементы вторичной структуры (-спирали, -структуры и неупорядоченные участки) дополнительно уложены с образованием третичной структуры. Глобулярные (лат. globulus шарик) белки уложены в клубок (или глобулу). Каждый белок образует свою характерную глобулу, со своими изгибами и петлями. При средней длине белковой цепи 100-200 нанометров (1нм=10-9 м) диаметр глобулы всего 5-7 нм. Третичная структура фибриллярных (лат. fibrilla нить) белков образует пучки нитей или слои (белки коллагены, кератины).

Для приобретения своих специфических свойств некоторые белки образуют структуры более высокого порядка. В четвертичной структуре последовательно соединены несколько глобул (или фибрилл). Так, белок гемоглобин состоит из четырех глобулярных субъединиц (каждая несет группу гема с ионом железа).

Формирование правильной пространственной структуры происходит по мере синтеза белковой цепи (последовательного присоединения аминокислот), на каждом этапе сборки белка соблюдается правило минимума потенциальной энергии: гидрофобные участки прячутся внутрь, а гидрофильные - вытесняются наружу; заряды разного знака максимально сближаются (например, NH3+ и COO–). Если по какой-либо причине эти правила укладки нарушаются, то белок оказывается неактивным или даже опасным для организма. Инфекционные белки-прионы (англ. protein infections particles) отличаются от своих нормальных изоформ только вторичной и третичной структурой, но вызывают у человека и млекопитающих неизлечимые заболевания центральной нервной системы ("коровье бешенство").

1. Какие молекулы называют биополимерами?
2. Все ли необходимые аминокислоты синтезирует наш организм?
3. Каким образом аминокислоты связываются в полипептид?
4. Что называют первичной, вторичной, третичной и четвертичной структурами белка? Какова функция этих структур?


© Все права защищены